Heterozygous APC Germline Mutations Impart Predisposition To

Total Page:16

File Type:pdf, Size:1020Kb

Heterozygous APC Germline Mutations Impart Predisposition To www.nature.com/scientificreports OPEN Heterozygous APC germline mutations impart predisposition to colorectal cancer Livia Preisler1,2, Aline Habib1,2, Guy Shapira2, Liron Kuznitsov‑Yanovsky1,2, Yoav Mayshar1,5, Ilana Carmel‑Gross1, Mira Malcov1, Foad Azem1, Noam Shomron2, Revital Kariv3, Dov Hershkovitz4 & Dalit Ben‑Yosef1,2* Familial adenomatous polyposis (FAP) is an inherited syndrome caused by a heterozygous adenomatous polyposis coli (APC) germline mutation, associated with a profound lifetime risk for colorectal cancer. While it is well accepted that tumorigenic transformation is initiated following acquisition of a second mutation and loss of function of the APC gene, the role of heterozygous APC mutation in this process is yet to be discovered. This work aimed to explore whether a heterozygous APC mutation induces molecular defects underlying tumorigenic transformation and how diferent APC germline mutations predict disease severity. Three FAP‑human embryonic stem cell lines (FAP1/2/3‑hESC lines) carrying germline mutations at diferent locations of the APC gene, and two control hESC lines free of the APC mutation, were diferentiated into colon organoids and analyzed by immunohistochemistry and RNA sequencing. In addition, data regarding the genotype and clinical phenotype of the embryo donor parents were collected from medical records. FAP‑hESCs carrying a complete loss‑of‑function of a single APC allele (FAP3) generated complex and molecularly mature colon organoids, which were similar to controls. In contrast, FAP‑hESCs carrying APC truncation mutations (FAP1 and FAP2) generated only few cyst‑like structures and cell aggregates of various shape, occasionally with luminal parts, which aligned with their failure to upregulate critical diferentiation genes early in the process, as shown by RNA sequencing. Abnormal disease phenotype was shown also in non‑pathological colon of FAP patients by the randomly distribution of proliferating cells throughout the crypts, compared to their focused localization in the lower part of the crypt in healthy/non‑FAP patients. Genotype/phenotype analysis revealed correlations between the colon organoid maturation potential and FAP severity in the carrier parents. In conclusion, this study suggest that a single truncated APC allele is sufcient to initiate early molecular tumorigenic activity. In addition, the results hint that patient‑specifc hESC‑derived colon organoids can probably predict disease severity among FAP patients. Colorectal cancer (CRC) is the third most frequently diagnosed cancer and the second leading cause of cancer death worldwide1. Colorectal tumorigenesis begins with the transformation of normal epithelium to aberrant crypt foci, which then progress to adenoma and proceed to carcinoma2,3. Tis process is closely linked to the stepwise accumulation of multiple genetic and epigenetic aberrations that promote deregulated diferentia- tion and uncontrolled proliferation4–6. Inactivation of adenomatous polyposis coli (APC), a tumor suppressor gene, has been recognized as a key early event in up to 85% of sporadic CRCs4,7. While most cases of CRC are considered sporadic, hereditary CRC syndromes account for 2–5% of all cases 8. As hereditary CRC syndromes are caused by genes that are also somatically altered in the sporadic form, they have been used as a model to understand the molecular pathogenesis underlying CRC in general 9. Familial adenomatous polyposis (FAP) is an inherited autosomal-dominant syndrome caused by a germline mutation in the APC gene10. In accord- ance with Knudson’s ‘two hit’ hypothesis, FAP patients with a germline APC mutation have a very high risk to acquire an additional somatic APC mutation mainly in the colorectum, that will eventually lead to the develop- ment of multiple adenomas, starting at adolescence, with nearly 100% progression to CRC by the age of 40, if 1Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239 Tel-Aviv, Israel. 2Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel. 3Department of Gastroenterology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel. 4Institute of Pathology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel. 5Present address: Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel. *email: [email protected] Scientifc Reports | (2021) 11:5113 | https://doi.org/10.1038/s41598-021-84564-4 1 Vol.:(0123456789) www.nature.com/scientificreports/ lef untreated10–12. Te site of the ’frst hit’ in the APC tumor suppressor gene has an impact on the type of the ’second hit’ that will either cause APC loss of heterozygosity or a truncated protein 13–17. Moreover, the type and location of this germline mutation are associated with colonic polyp burden, surgical outcome, and the presence of extra-colonic FAP manifestations 13,18. Although the role of APC in CRC initiation has been extensively studied19–24, it is not yet clear whether a heterozygous APC mutation is sufcient to cause the earliest molecular changes leading to colon carcinogenesis in human. It also remains to be determined if various APC germline mutations diferentially afect the initiation and the severity of the developing disease. In the current study, three FAP-human embryonic stem cell (hESCs) lines carrying various human APC germline mutations that were derived in our lab from donated embryos 25,26, were exploited to study whether a mutation in a single allele of APC is sufcient to alter the molecular and cellular phenotype of colon epithelial cells in the in vitro derived colon organoids. Moreover, this unique research model enabled the study of the correlation of specifc mutations to FAP manifestations in vivo in the donor parents. Materials and methods Ethics approvals. Te use of spare in-vitro fertilization (IVF) embryos following preimplantation genetic diagnosis (PGD) for the derivation of hESC lines and for the study of genetic disease was approved by the Israeli National Ethics Committee (7/04-043) and was conducted in accordance with the guidelines of the Bioethics Advisory Committee of the Israel Academy of Sciences and Humanities. Clinical data analysis of the FAP fami- lies was performed under IRB 675/18. Cell lines. Tree FAP-hESC lines were examined in this study: Lis25_FAP1 (FAP1), Lis30_FAP2 (FAP2)25, and Lis34_FAP3 (FAP3; NIH hESC line registry). All experiments were conducted using FAP-hESCs at passage 35–45. Two non-mutated APC hESC lines were used as controls: H9 and Hues13 (MTA with WiCell Inc.). We have previously reported full characterization of the FAP1 and FAP2-hESC lines 25. Te pluripotency of FAP3 was verifed by analysis of the pluripotent stem cell nuclear marker OCT4 and the cell surface marker SSEA4 expression profles (Suppl. Figure 1A). FAP3-hESCs also exhibited typical hESCs morphology and had a normal karyotype, as shown by chromosomal microarray analysis (CMA; Suppl. Figure 1B). Cell culture. hESCs were cultured on Geltrex-coated (TermoFisher) plates in mTeSR1 medium (STEM- CELL Technologies), supplemented with 100 µg/ml primocin (InvivoGen). hESCs were cultured in standard hESC medium (DMEM/F12, 20% KOSR (Invitrogen), 10 ng ml−1 basic fbroblast growth factor (FGF) (Pepro- tech), 1% MEM non-essential amino acids, 0.1 mM β-mercaptoethanol and 1 mM glutamine), were grown on a feeder layer of mouse embryonic fbroblast (MEF) cells. hESCs were passaged using accutase (Merck Biological Industries) and medium was supplemented with 10 µM ROCK inhibitor Y-27632 (Axon Medchem) for the frst 24 h of culture, to inhibit apoptosis. Chromosomal microarray analysis. Genomic DNA was isolated from samples using the DNeasy Blood & Tissue Kit (Qiagen). Te DNA was amplifed, labeled, and hybridized to a 24sure V3 microarray (Illumina), according to the manufacturer’s protocol. Scanning was performed using an Agilent G2565CA scanner and the arrays were analyzed using the BlueFuse Multi sofware. Te detected copy number variants (CNVs) were inter- preted by referring to key public databases (ISCA, DGV, Ensembl, Decipher). Colonic epithelial diferentiation. Diferentiation of FAP- and WT-hESC lines into colon organoids was induced using a published protocol 27. Briefy, to generate defnitive endoderm, hPSCs were treated with 3 μM CHIR99021 (CHIR, Stem-RD) and 100 ng/ml activin A (R&D systems) in RPMI (Cellgro), for one day, and then with 100 ng/ml activin A in RPMI supplemented with 0.2% BSA (Gibco) for three days. Tese cells were than subjected to hindgut diferentiation by treatment with 3 μM CHIR99021 and 500 ng/ml FGF4 (Peprotech) in RPMI supplemented with 1X B27 (Gibco) for four days. From day 8, cells were cultured in colonic medium comprised of advanced DMEM F12 (Invitrogen) supplemented with 1X B27 (Gibco), 3 μM CHIR99021, 300 nM LDN193189 (Axon) and 100 ng/mL EGF (R&D). Te medium was refreshed every two days. On day 20, the cells were disaggregated to a single cell suspension and then re-suspended in Matrigel (BD Biosciences). RNA extraction and quantitative real‑time PCR (qRT‑PCR). qRT-PCR and Western blot analysis were conducted as described previously26. Primer sequences are listed in Supplementary Table 1. Immunofuorescence. For hESC staining, cells were grown on MEF feeder cells in 24-well plates and fxed with 4% paraformaldehyde (PFA). For intra-cellular staining, cells were incubated in blocking solution (2.5% BSA in PBS) with 0.1% Triton, followed by
Recommended publications
  • Inhibiting TNIK for Treating Colon Cancer
    (19) & (11) EP 2 305 717 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 06.04.2011 Bulletin 2011/14 C07K 16/40 (2006.01) C12N 15/11 (2006.01) C12Q 1/48 (2006.01) C12Q 1/68 (2006.01) (2006.01) (21) Application number: 09170853.7 G01N 33/50 (22) Date of filing: 21.09.2009 (84) Designated Contracting States: • Mahmoudi, Tokameh AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 3515 XS, Utrecht (NL) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • Clevers, Johannes Carolus PT RO SE SI SK SM TR 3712 AP, Huis ter Heide (NL) (71) Applicant: KoninklijkeNederlandse Akademie van (74) Representative: Swinkels, Bart Willem Wetenschappen Nederlandsch Octrooibureau 1011 JV Amsterdam (NL) J. W. Frisolaan 13 2517 JS Den Haag (NL) (72) Inventors: • Wing Li, Vivian Sze 3572 SH, Utrecht (NL) (54) Inhibiting TNIK for treating colon cancer (57) The invention relates to an inhibitor of TNIK and its use for treating cancer. EP 2 305 717 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 305 717 A1 Description Field of the invention 5 [0001] The invention relates to an inhibitor of TNIK and its use as a medicament for treating cancer. Background of the invention [0002] The primary function of the intestinal tract involves the digestion and absorption of nutrients. The intestinal 10 lumen is lined with a specialized simple epithelium, which performs the primary functions of digestion, water and nutrient absorption and forms a barrier against luminal pathogens.
    [Show full text]
  • A Significant Soluble Keratin Fraction In
    Journal of Cell Science 105, 433-444 (1993) 433 Printed in Great Britain © The Company of Biologists Limited 1993 A significant soluble keratin fraction in ‘simple’ epithelial cells Lack of an apparent phosphorylation and glycosylation role in keratin solubility Chih-Fong Chou*, Carrie L. Riopel, Lusijah S. Rott and M. Bishr Omary† Palo Alto Veterans Administration Medical Center and the Digestive Disease Center at Stanford University, School of Medicine, 3801 Miranda Avenue, GI 111, Palo Alto, CA 94304, USA *Author for reprint requests †Author for correspondence SUMMARY We studied the solubility of keratin polypeptides 8 and aments in vitro as determined by electron microscopy. 18 (K8/18), which are the predominant intermediate fil- Cross-linking of soluble K8/18 followed by immunopre- aments in the human colonic epithelial cell line HT29. cipitation resulted in dimeric and tetrameric forms, We find that asynchronously growing cells (G0/G1 stage based on migration in SDS-polyacrylamide gels. In of the cell cycle) have a substantial pool of soluble ker- addition, cross-linked and native soluble K8/18 showed atin that constitutes approx. 5% of total cellular ker- similar migration on nondenaturing gels and similar atin. This soluble keratin pool was observed after sedimentation after sucrose density gradient centrifu- immunoprecipitation of K8/18 from the cytosolic frac- gation. Our results indicate that simple epithelial ker- tion of cells disrupted using three detergent-free meth- atins are appreciably more soluble than previously rec- ods. Several other cell lines showed a similar significant ognized. The soluble keratin form is assembly competent soluble cytosolic K8/18 pool.
    [Show full text]
  • Transiently Structured Head Domains Control Intermediate Filament Assembly
    Transiently structured head domains control intermediate filament assembly Xiaoming Zhoua, Yi Lina,1, Masato Katoa,b,c, Eiichiro Morid, Glen Liszczaka, Lillian Sutherlanda, Vasiliy O. Sysoeva, Dylan T. Murraye, Robert Tyckoc, and Steven L. McKnighta,2 aDepartment of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390; bInstitute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 263-8555 Chiba, Japan; cLaboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520; dDepartment of Future Basic Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan; and eDepartment of Chemistry, University of California, Davis, CA 95616 Contributed by Steven L. McKnight, January 2, 2021 (sent for review October 30, 2020; reviewed by Lynette Cegelski, Tatyana Polenova, and Natasha Snider) Low complexity (LC) head domains 92 and 108 residues in length are, IF head domains might facilitate filament assembly in a manner respectively, required for assembly of neurofilament light (NFL) and analogous to LC domain function by RNA-binding proteins in the desmin intermediate filaments (IFs). As studied in isolation, these IF assembly of RNA granules. head domains interconvert between states of conformational disor- IFs are defined by centrally located α-helical segments 300 to der and labile, β-strand–enriched polymers. Solid-state NMR (ss-NMR) 350 residues in length. These central, α-helical segments are spectroscopic studies of NFL and desmin head domain polymers re- flanked on either end by head and tail domains thought to be veal spectral patterns consistent with structural order.
    [Show full text]
  • Microtubule-Associated Protein Tau (Molecular Pathology/Neurodegenerative Disease/Neurofibriliary Tangles) M
    Proc. Nati. Acad. Sci. USA Vol. 85, pp. 4051-4055, June 1988 Medical Sciences Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: Identification as the microtubule-associated protein tau (molecular pathology/neurodegenerative disease/neurofibriliary tangles) M. GOEDERT*, C. M. WISCHIK*t, R. A. CROWTHER*, J. E. WALKER*, AND A. KLUG* *Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom; and tDepartment of Psychiatry, University of Cambridge Clinical School, Hills Road, Cambridge CB2 2QQ, United Kingdom Contributed by A. Klug, March 1, 1988 ABSTRACT Screening of cDNA libraries prepared from (21). This task is made all the more difficult because there is the frontal cortex ofan zheimer disease patient and from fetal no functional or physiological assay for the protein(s) of the human brain has led to isolation of the cDNA for a core protein PHF. The only identification so far possible is the morphol- of the paired helical fiament of Alzheimer disease. The partial ogy of the PHFs at the electron microscope level, and here amino acid sequence of this core protein was used to design we would accept only experiments on isolated individual synthetic oligonucleotide probes. The cDNA encodes a protein of filaments, not on neurofibrillary tangles (in which other 352 amino acids that contains a characteristic amino acid repeat material might be occluded). One thus needs a label or marker in its carboxyl-terminal half. This protein is highly homologous for the PHF itself, which can at the same time be used to to the sequence ofthe mouse microtubule-assoiated protein tau follow the steps of the biochemical purification.
    [Show full text]
  • Neurofilaments: Neurobiological Foundations for Biomarker Applications
    Neurofilaments: neurobiological foundations for biomarker applications Arie R. Gafson1, Nicolas R. Barthelmy2*, Pascale Bomont3*, Roxana O. Carare4*, Heather D. Durham5*, Jean-Pierre Julien6,7*, Jens Kuhle8*, David Leppert8*, Ralph A. Nixon9,10,11,12*, Roy Weller4*, Henrik Zetterberg13,14,15,16*, Paul M. Matthews1,17 1 Department of Brain Sciences, Imperial College, London, UK 2 Department of Neurology, Washington University School of Medicine, St Louis, MO, USA 3 a ATIP-Avenir team, INM, INSERM , Montpellier university , Montpellier , France. 4 Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom 5 Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada 6 Department of Psychiatry and Neuroscience, Laval University, Quebec, Canada. 7 CERVO Brain Research Center, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada 8 Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland. 9 Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA. 10Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, 11 Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA. 12Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA 13 University College London Queen Square Institute of Neurology, London, UK 14 UK Dementia Research Institute at University College London 15 Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden 16 Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden 17 UK Dementia Research Institute at Imperial College, London * Co-authors ordered alphabetically Address for correspondence: Prof.
    [Show full text]
  • Structures of the ß-Keratin Filaments and Keratin Intermediate Filaments in the Epidermal Appendages of Birds and Reptiles (Sauropsids)
    G C A T T A C G G C A T genes Review Structures of the ß-Keratin Filaments and Keratin Intermediate Filaments in the Epidermal Appendages of Birds and Reptiles (Sauropsids) David A.D. Parry School of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; [email protected]; Tel.: +64-6-9517620; Fax: +64-6-3557953 Abstract: The epidermal appendages of birds and reptiles (the sauropsids) include claws, scales, and feathers. Each has specialized physical properties that facilitate movement, thermal insulation, defence mechanisms, and/or the catching of prey. The mechanical attributes of each of these appendages originate from its fibril-matrix texture, where the two filamentous structures present, i.e., the corneous ß-proteins (CBP or ß-keratins) that form 3.4 nm diameter filaments and the α-fibrous molecules that form the 7–10 nm diameter keratin intermediate filaments (KIF), provide much of the required tensile properties. The matrix, which is composed of the terminal domains of the KIF molecules and the proteins of the epidermal differentiation complex (EDC) (and which include the terminal domains of the CBP), provides the appendages, with their ability to resist compression and torsion. Only by knowing the detailed structures of the individual components and the manner in which they interact with one another will a full understanding be gained of the physical properties of the tissues as a whole. Towards that end, newly-derived aspects of the detailed conformations of the two filamentous structures will be discussed and then placed in the context of former knowledge.
    [Show full text]
  • The Correlation of Keratin Expression with In-Vitro Epithelial Cell Line Differentiation
    The correlation of keratin expression with in-vitro epithelial cell line differentiation Deeqo Aden Thesis submitted to the University of London for Degree of Master of Philosophy (MPhil) Supervisors: Professor Ian. C. Mackenzie Professor Farida Fortune Centre for Clinical and Diagnostic Oral Science Barts and The London School of Medicine and Dentistry Queen Mary, University of London 2009 Contents Content pages ……………………………………………………………………......2 Abstract………………………………………………………………………….........6 Acknowledgements and Declaration……………………………………………...…7 List of Figures…………………………………………………………………………8 List of Tables………………………………………………………………………...12 Abbreviations….………………………………………………………………..…...14 Chapter 1: Literature review 16 1.1 Structure and function of the Oral Mucosa……………..…………….…..............17 1.2 Maintenance of the oral cavity...……………………………………….................20 1.2.1 Environmental Factors which damage the Oral Mucosa………. ….…………..21 1.3 Structure and function of the Oral Mucosa ………………...….……….………...21 1.3.1 Skin Barrier Formation………………………………………………….……...22 1.4 Comparison of Oral Mucosa and Skin…………………………………….……...24 1.5 Developmental and Experimental Models used in Oral mucosa and Skin...……..28 1.6 Keratinocytes…………………………………………………….….....................29 1.6.1 Desmosomes…………………………………………….…...............................29 1.6.2 Hemidesmosomes……………………………………….…...............................30 1.6.3 Tight Junctions………………………….……………….…...............................32 1.6.4 Gap Junctions………………………….……………….….................................32
    [Show full text]
  • INITIAL EXPRESSION of NEUROFILAMENTS and VIMENTIN in the CENTRAL and PERIPHERAL NERVOUS SYSTEM of the MOUSE EMBRYO in Vivol
    0270-6474/84/0408-2080$02.00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 4, No. 8, pp. 2080-2094 Printed in U.S.A. August 1984 INITIAL EXPRESSION OF NEUROFILAMENTS AND VIMENTIN IN THE CENTRAL AND PERIPHERAL NERVOUS SYSTEM OF THE MOUSE EMBRYO IN VIVOl PHILIPPE COCHARD’ AND DENISE PAULIN* Institut d%mbryologie du Centre National de la Recherche Scientifique et du Collkge de France, 94130 Nogent-sur-Marne, France and *Laboratoire de Gdn&ique Cellulaire, Institut Pasteur, 75015 Paris, France Received December 9,1983; Accepted February 9, 1984 Abstract The appearance of neurofilaments (NFs) and vimentin (Vim) in the nervous system of the mouse embryo was documented using immunohistochemical techniques. The three NF protein subunits appear early and simultaneously in central and peripheral neurons at 9 to 10 days of gestation. The onset of NF expression is concomitant with axon elongation and correlates extremely well with neurofibrillar differentiation and, in the case of autonomic ganglia, with the expression of adrenergic neurotransmitter properties. In the central and peripheral nervous system, NF expression is preceded by that of Vim, and both types of intermediate filaments coexist within the same cell for a short period of time. Specific markers of neuronal and glial cell types are powerful cases, they have revealed common epitopes shared by the tools for studying the mechanisms generating cellular diversi- various classes of IF (Pruss et al., 1981; Dellagi et al., 1982; fication in the nervous system. In recent years, intermediate Gown and Vogel, 1982 and, in the NF class, by the various NF filaments (IFS), a particular class of cytoskeletal proteins, have subunits (Willard and Simon, 1981; Lee et al., 1982; Goldstein attracted much interest, largely because of their polymorphism; et al., 1983).
    [Show full text]
  • Identification of Trichoplein, a Novel Keratin Filament- Binding Protein
    Research Article 1081 Identification of trichoplein, a novel keratin filament- binding protein Miwako Nishizawa1,*, Ichiro Izawa1,*, Akihito Inoko1,*, Yuko Hayashi1, Koh-ichi Nagata1, Tomoya Yokoyama1,2, Jiro Usukura3 and Masaki Inagaki1,‡ 1Division of Biochemistry, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan 2Department of Dermatology, Mie University Faculty of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan 3Department of Anatomy and Cell Biology, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan *These authors contributed equally to this work ‡Author for correspondence (e-mail: [email protected]) Accepted 29 November 2004 Journal of Cell Science 118, 1081-1090 Published by The Company of Biologists 2005 doi:10.1242/jcs.01667 Summary Keratins 8 and 18 (K8/18) are major components of the antibody in a complex with K8/18 and immunostaining intermediate filaments (IFs) of simple epithelia. We report revealed that trichoplein colocalized with K8/18 filaments here the identification of a novel protein termed in HeLa cells. In polarized Caco-2 cells, trichoplein trichoplein. This protein shows a low degree of sequence colocalized not only with K8/18 filaments in the apical similarity to trichohyalin, plectin and myosin heavy chain, region but also with desmoplakin, a constituent of and is a K8/18-binding protein. Among interactions desmosomes. In the absorptive cells of the small intestine, between trichoplein and various IF proteins that we trichoplein colocalized with K8/18 filaments at the apical tested using two-hybrid methods, trichoplein interacted cortical region, and was also concentrated at desmosomes.
    [Show full text]
  • Immunohistochemistry in Undifferentiated Neoplasm/Tumor of Uncertain Origin
    Immunohistochemistry in Undifferentiated Neoplasm/Tumor of Uncertain Origin Fan Lin, MD, PhD; Haiyan Liu, MD Context.—Immunohistochemistry has become an indis- predict prognostic outcomes, it is crucial to differentiate pensable ancillary study in the identification and classifi- the specific lineage of an undifferentiated neoplasm. cation of undifferentiated neoplasms/tumors of uncertain Application of appropriate immunohistochemical panels origin. The diagnostic accuracy has significantly improved enables the accurate classification of most undifferentiated because of the continuous discoveries of tissue-specific neoplasms. Knowing the utilities and pitfalls of each tissue- biomarkers and the development of effective immunohis- specific biomarker is essential for avoiding potential tochemical panels. diagnostic errors because an absolutely tissue-specific Objectives.—To identify and classify undifferentiated biomarker is exceptionally rare. We review frequently neoplasms/tumors of uncertain origin by immunohisto- used tissue-specific biomarkers, provide effective panels, chemistry. and recommend diagnostic algorithms as a standard Data Sources.—Literature review and authors’ research approach to undifferentiated neoplasms. data and personal practice experience were used. (Arch Pathol Lab Med. 2014;138:1583–1610; doi: Conclusions.—To better guide therapeutic decisions and 10.5858/arpa.2014-0061-RA) fter an extensive workup, combining clinical, radiologic, trefoil factor (TFF) 1, ankyrin repeat domain 30A (NY-BR-1), A morphologic, and
    [Show full text]
  • Differential Organization of Desmin and Vimentin in Muscle Is Due to Differences in Their Head Domains Robert B
    Differential Organization of Desmin and Vimentin in Muscle Is Due to Differences in Their Head Domains Robert B. Cary and Michael W. Klymkowsky Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347 Abstract. In most myogenic systems, synthesis of the aggregates. In embryonic epithelial cells, both vimen- intermediate filament (IF) protein vimentin precedes tin and desmin formed extended IF networks. Vimen- the synthesis of the muscle-specific IF protein desmin. tin and desmin differ most dramatically in their NH:- In the dorsal myotome of the Xenopus embryo, how- terminal "head" regions. To determine whether the ever, there is no preexisting vimentin filament system head region was responsible for the differences in the and desmin's initial organization is quite different from behavior of these two proteins, we constructed plas- that seen in vimentin-containing myocytes (Cary and mids encoding chimeric proteins in which the head of Klymkowsky, 1994. Differentiation. In press.). To de- one was attached to the body of the other. In muscle, termine whether the organization of IFs in the Xeno- the vimentin head-desmin body (VDD) polypeptide pus myotome reflects features unique to Xenopus or is formed longitudinal IFs and massive IF bundles like due to specific properties of desmin, we used the in- vimentin. The desmin head-vimentin body (DVV) jection of plasmid DNA to drive the synthesis of polypeptide, on the other hand, formed IF meshworks vimentin or desmin in myotomal cells. At low levels and non-filamentous structures like desmin. In em- of accumulation, exogenous vimentin and desmin both bryonic epithelial cells DVV formed a discrete fila- enter into the endogenous desmin system of the myo- ment network while VDD did not.
    [Show full text]
  • Vimentin, Carcinoembryonic Antigen and Keratin in the Diagnosis of Mesothelioma, Adenocarcinoma and Reactive Pleural Lesions
    Eur Respir J 1990, 3, 997-1001 Vimentin, carcinoembryonic antigen and keratin in the diagnosis of mesothelioma, adenocarcinoma and reactive pleural lesions N. AI-Saffar, P .S. Hasleton Vimentin, carcinoembryonic antigen and keratin in the diagnosis of Dept of Pathology, Regional CardiO!horacic Centre, mesothelioma, adenocarcinoma and reactive pleural lesions. N. Al-Saffar, P .S. Wythenshawe Hospital, Manchester, UK. Hasleton. ABSTRACT: An immunohistochemical study of reactive pleural lesions, Correspondence: P.S. Hasleton, Dept of Pathology, Wythensbawe Hospital, Southmoor Road, adenocarcinomas and mesothellomas using carclnoembyronic antigen Wythenshawe, Manchester M23 9LT, UK. (CEA), cytokeratln and vlmentln was carried out. All the specimens were obtained at surgery except for 11 mesotheliomas found at necropsy. Keywords: Adenocarcinoma (lung); carcinoembryonic Vlmentln was positive In 23 or 27 mesotheliomas and negative In all the antigen (CEA); keratin; mesothelioma (pleural); adenocarcinomas and 4 of 17 reactive mesothelial lesions. Conversely, vimentin. CEA was positive In all the adenocarcinomas but negative 1n all mesothe­ liomas. Immunoreactivity for vlmentln was seen In only 3 of 11 post­ Received: February 1990; accepted after revision May mortem mesotheliomas. Vlmentln Is a useful adjunct to the tissue diagnosis 2, 1990. of mesothelioma especially when CEA Is negative and cytokeratln positive. Its use appears largely confirmed to well fixed surgically derived tissues. Eur Respir J., 1990, 3, 997- 1001. The diagnosis of malignant pleural mesothelioma is 38 mesothelioma cases were necropsy specimens often difficult. It may be confused histologically with a coming mainly from the Medical Boarding Panel (M.B.P.) reactive pleurisy or adenocarcinoma. Separation from (Respiratory Diseases). Seven were epithelial, three benign lesions is obviously important.
    [Show full text]