<<

MASTER'S THESIS

Mineralogy and of the Banded -Formation in the Svartliden Deposit, Northern

Marjorie Sciuba

Master of Science (120 credits) Exploration and Environmental Geosciences

Luleå University of Technology Department of Civil, Environmental and Natural resources engineering

Mineralogy and geochemistry of the Banded Iron-Formation in the Svartliden gold deposit, northern Sweden

Marjorie Sciuba

2013

The fish doesn’t think, because the fish knows everything.

Emir Kusturica, Arizona Dream

Front cover: Picture of the Svartliden BIF

Acknowledgements

Firstly, I indebted Dragon Mining Sweden for the financial support. I warmly thank Roman Hanes for his precious time, because he never has time =) Not only he helped me sampling but appeared to be very patient in teaching and advising me in many ways. Without pushing anything, he showed me the way how a thesis should be. I also thank Kateřina Schlöglová for her help and the time she gave me: from teaching me Corel Draw to her help in mineralogy and in geochemistry. Thank you for your friendship and for being my housemate during a couple of months. I am grateful to Roman and Katia for their several corrections of the thesis. I thank Chris Gordon for giving me that topic the first time we met. Without you, this thesis would have never existed… Thanks for your help in structural geology and for your teaching especially in the . I gratefully thank Roman and Chris for making me believe that my work would be useful somehow… Sushi Gordon is acknowledged for its support during a couple of weeks. I acknowledge Glenn Bark, my patient supervisor for his help and his advices even we were far away. Thank the whole exploration team of Dragon Mining: Henrik Ask, Leo Hedman, Tobias Lundmark, and of course Niklas Sääv, for their help during six months! I acknowledge also those people who offered me nicely their advices: the passionated David Dolejš who gave me all the keys of the geochemistry of my BIF, Laurent Tissandier from the CRPG in Nancy who allowed me to use the microprobe and Jean Marc Montel my headmaster in France, who first allowed me to come to study in Sweden and then helped with SEM data. Finally, I would like especially to thank un grand professeur, Mr Alain Cheilletz. In just one hour, he gave me the key of this study and made me see the light of the end of this master thesis.

iv BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE Abstract

The Svartliden gold deposit is situated in the Gold Line, South West of the Skellefte District, northern Sweden. It is considered an epigenetic lode style gold deposit dominated by a - arsenopyrite assemblage. The gold mineralization, dominantly hosted by a volcano-sedimentary sequence, is structurally controlled and occurs along a ENE-trending steeply dipping shear zone. The deposit has been metamorphosed in low- to mid- facies and is hydrothermally altered. The mineralization is hosted by a banded iron-formation (BIF) which is present along the host rock sequence. The boudinaged BIF units extend over 1 km and are from a few centimeters to 5 meters thick. The small size of Svartliden BIF is characteristic of Algoma-type BIF. Two scales of layering occur in the BIF: mesobanding, the most prominent structure because of and microbanding. At lowest metamorphic grade, -grunerite- is the dominant assemblage whereas clinopyroxene-fayalite-pyrrhotite are present in addition to those in the highly metamorphosed BIF. Those assemblages are characteristic of low- to mid- amphibolite facies. Gold occurs as inclusions in arsenopyrite, which is dominantly associated with pyrrhotite. The Svartliden BIF is closely associated with volcanic rocks such as and ultramafic units. Metamorphism mobilized elements characteristic of hydrothermal input (Cu and

Co), whereas Al 2O3, TiO 2, Zr, REE and Y stayed immobile. The (REE+Y)NASC pattern of the BIF shows evidence of both primary hydrothermal solutions and whereas LREE enrichment and the positive Eu anomaly are a signature inherited from hydrothermal solutions. This indicates that the Svartliden BIF was formed by a mixture of seawater and hydrothermal fluids. The tectonic setting of the Gold Line and surrounding areas, interpreted as a volcanic back-arc environment, suggests that the Svartliden BIF is of Algoma-type.

Key words : banded iron-formation, Svartliden, Gold Line, amphibolite facies, Algoma-type, Superior-type

Corresponding author : email: [email protected]

v Table of contents

1. Introduction ...... 1 1.1. Aim of the study...... 1 1.2. Presentation of the main types of BIF...... 2 1.2.1. Algoma-type BIF ...... 3 1.2.2. Superior-type banded iron-formation...... 6

2. Regional geology...... 11 2.1. Bothnian Basin and Skellefte District...... 11 2.2. Gold Line mining district...... 12

3. Geology of the Svartliden gold deposit...... 14 3.1. Discovery of the Svartliden gold deposit...... 14 3.2. Geological settings...... 15 3.2.1. Geology of the deposit...... 15 3.2.2. Structural settings...... 16 3.3. Petrography of the Svartliden rock types ...... 18 3.3.1. Metavolcanic rocks ...... 18 3.3.2. Metasedimentary rocks ...... 19 3.3.3. Intrusive rocks...... 21 3.4. Hydrothermal alteration and description...... 22 3.4.1. Proximal alteration and mineralization...... 22 3.4.2. Distal alteration...... 24

4. Methods...... 25 4.1. Sampling ...... 25 4.2. Analytical methods...... 26 4.2.1. Optical microscopy ...... 26 4.2.2. Mineral chemistry ...... 26 4.2.3. Whole rock geochemistry ...... 26

5. Geological description of the BIF at Svartliden...... 27 5.1. Localization, thickness and lateral extent of the BIF...... 27 5.2. Relationship between the BIF and the other lithologies ...... 27 5.3. Layering and other structures based on metamorphic grade...... 30 5.3.1. Type 1: least altered BIF...... 30 5.3.2. Type 2: moderatly altered BIF...... 31 5.3.3. Type 3: strongly altered BIF...... 31 5.3.4. Micro-faulting and micro-folding ...... 33 5.4. Mineralogical and textural description of the BIF ...... 34 5.4.1. and sulphides ...... 34

vi BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE 5.4.2. Silicates and other minerals ...... 37 5.5. Geochemistry of the BIF...... 42 5.5.1. Major oxides ...... 42 5.5.2. Trace elements ...... 44 5.5.3. Rare earth elements...... 46

6. Discussion ...... 51 6.1. Mineral assemblage, metamorphism and hydrothermal alteration ...... 51 6.2. Geochemistry and relationship to primary environmental settings...... 55 6.3. Timing of BIF formation and tectonic setting...... 58

7. Conclusions ...... 59

vii Table of figures

Fig. 1. Simplified geological map of Scandinavia, modified after Bark and Weihed (2007). ...1 Fig. 2. Texture of BIFs, translated from Jebrak and Marcoux (2008)...... 3 Fig. 3. Repartition of the different facies in Algoma- and Superior-type BIFs, modified after Guilbert and Park (1986)...... 5 Fig. 4. World map of the main BIFs, translated and modified after Jebrak and Marcoux (2008)...... 6 Fig. 5. Tectonic environments for deposition of BIFs, modified after Gross (1993)...... 9 Fig. 6. Geology of the Skellefte District and surrounding areas, modified after Bergström (2001)...... 10 Fig. 7. Sketch of the paleotectonic environment of the Skellefte District and surrounding area. The Svartliden BIF is situated SW of the volcanic arc, modified after Weihed (1992)...... 11 Fig. 8. Gold deposits and occurrences of BIF in the Gold Line, SW of the Skellefte District, modified after Bark and Weihed (2007)...... 13 Fig. 9. Underground development at the Svartliden gold mine (data from Dragon Mining, 2011)...... 14 Fig. 10. Geological model based on drill core logging of the Svartliden gold deposit, view from east. The open pit is represented by the orange outline. Compiled by Dragon Mining geologists...... 16 Fig. 11. (a) Plane view of Svartliden deposit with the principal geological structures and model of fold trace. The whole sequence has been firstly folded and the axis of this fold has been folded itself. Then, the structure has been faulted: the main central fault is predominantly strike-slip. (b) Schematic cross-section of Svartliden deposit showing the late folding stage. Data compiled by Dragon Mining geologists...... 17 Fig. 12. Amphibolite is (a) fine to (b) coarse grained. (c) Ultramafic unit with prominent spotty magnetite. Pictures of drill core samples...... 18 Fig. 13. schist (a) with some chloritization (b) with relicts of andalusite. Pictures of drill core samples...... 19 Fig. 14. (a) Graphitic sulphidic biotite schist, with pyrrhotite veinlets that parallel the foliation. (b) Quartz biotite schist with sheared quartz veins. Pictures of drill core samples...... 20 Fig. 15. Svartliden mostly composed by quartz-feldspar-oligoclase-biotite-muscovite- with (a) pegmatitic texture and (b) medium-grained texture. Pictures of drill core samples. 21 Fig. 16. Examples of mineralization: (a) veinlets and aggregates of pyrrhotite (Po) in a mineral assemblage composed of -Ca--quartz, (b) pyrrhotite, arsenopyrite- loellingite-electrum (Apy: Arsenopyrite, Po: Pyrrhotite). (c) The of the mineralization constitutes quartz and calc-silicate minerals. (d) Rare coarse grains of gold are associated with quartz. Pictures of drill core samples...... 23 Fig. 17. (a) Spotty biotite alteration in fine grained amphibolite (b) Calc-silicate alteration in fine grained amphibolite consists mainly in large diopside (Di), (here, missing) and garnet (Grt). Pictures of drill core samples...... 24 Fig. 18. Map of the open pit with the vertical projection of the BIF found at depth and the studied drill cores indicated...... 25 Fig. 19. Schematic section of the North Lode. The BIF is mineralized and closely associated with the ore (Amp: amphibole, Apy: arsenopyrite, Carb: , Di: diopside, Grt: garnet, Po:

viii BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE pyrrhotite, Qz: quartz, Ves: vesuvianite, Wo: wollastonite). Data compiled by Dragon Mining geologists...... 28 Fig. 20. Contact between the BIF and the other rock types at Svartliden (a) face from the level 345-1 at 154 m from the main ramp of the underground. The contact between the BIF and sheared rocks is brecciated and (b) mainly composed by pyrrhotite, arsenopyrite and clasts, picture of drill core sample SV11445. This kind of contact is often visible between the BIF and the ore...... 29 Fig. 21. (a) Primary texture of the BIF. It is micro- to mesobanded. Fe-rich bands are composed mostly of magnetite and minor pyrrhotite (dark grey bands). Quartz (Qz) and (Amp) occur in the interbands. Picture of drill core sample SV10242. (b) Sketch of the same sample illustrating the geometric relationship between extensional veins and layering and possible fluids migration paths...... 30 Fig. 22. (a) Moderatly altered BIF. The Fe-rich bands are replaced by and grunerite and surrounded by grunerite. The interbands are composed of quartz and amphibole, drill core SV10256. (b) The microbands are preserved at both ends of the iron-formation. Magnetite is completely replaced by pyrrhotite, drill core SV10256 (c) Amphiboles replace pervasively the minerals in Fe-rich bands, drill core SV10246. (d) In the strongly altered BIF, primary magnetite is partially to completely replaced by pyrrhotite and arsenopyrite. Olivine surrounds the Fe-rich bands and interbands are composed by up to 70 % amphibole, drill core SV10231. (e) The Fe-rich bands are boudinaged (visible in small scale) and contain olivine, and crosscut by late magnetite veins. Late amphibole and quartz replace the minerals in the interbands, drill core SV10240. (f) Primary magnetite is replaced by pyrrhotite. Pyrrhotite veins crosscutting the primary banding are replaced by secondary magnetite, drill core SV11405. (Amp: amphibole, Apy: arsenopyrite, Gru: grunerite, Mag: magnetite, Ol: olivine, Po: pyrrhotite, Qz: quartz)...... 32 Fig. 23. (a) Micro-faulting of the BIF clearly post metamorphic, drill core SV10317. (b) Micro-folding containing gold grains visible in microscopy, drill core SV11403. (c) Micro-folds where pyrrhotite has been concentrated in the fold hinges, drill core SV11402. (Amp: amphibole, apy: arsenopyrite, Gru: grunerite, Po: pyrrhotite, Qz: quartz)...... 33 Fig. 24. (a) Pyrrhotite in vein is replaced by magnetite, thin section from core SV10240. (b) Isomorphic inclusions of pyrrhotite inside magnetite grains. The triple angle between magnetite grains indicate a textural equilibrium during their formation, thin section from core SV10241. (c) Pyrrhotite grains present ex-solution lamellae texture and host , thin section from core SV10231. (d) Secondary magnetite network around fayalite grains suggests the breakdown of olivine during retrograde metamorphism, thin section from core SV10240. (e) A matrix of pyrrhotite surrounds silicates in deformed BIF, thin section from core SV10231 (f) is found as intergrowths with magnetite inside pyrrhotite, thin section from core SV10246. Photomicrographs in reflective light. (Cpy: chalcopyrite, Il: ilmenite, Mag: magnetite, Po: pyrrhotite)...... 35 Fig. 25. (a) Pyrrhotite is replaced by late magnetite and arsenopyrite is formed inside pyrrhotite grains, thin section from core SV10231. (b) Arsenopyrite and chalcopyrite are associated with pyrrhotite. The primary mineral assemblage is replaced by amphiboles in late stage of metamorphism, thin section from core SV11402. (c) Arsenopyrite is decayed by formation of silicates and hosts (d) gold grains, thin section from core SV11403. Photomicrographs in reflective light. (Apy: arsenopyrite, Au: gold, Cpy: chalcopyrite, Mag: magnetite, Po: pyrrhotite)...... 36 Fig. 26. (a) Clinopyroxene grain is surrounded by hornblende, PPL, thin section from core SV10240 (b) Actinolite replaces clinopyroxene in retrograde metamorphism, thin section from core SV10246 (c) Grunerite grains size varies according to the distance from the Fe-rich band, XPL, thin section from core SV10241 (d) Actinolite has clastic texture in sheared zone, PPL, thin section from

ix core SV10317. (Act: actinolite, Cpy: clinopyroxene, Fa: fayalite, Gru: grunerite, Hbl: hornblende, Po: pyrrhotite)...... 38 Fig. 27. Composition of calcic amphiboles of the Svartliden BIF (n=115), based on the nomenclature of amphiboles (Leake et al., 1997)...... 38 Fig. 28. (a) Fayalite grains (XPL) contains (b) magnetite inclusions (reflective light), thin section from core SV11574. (c) Late grunerite replaces fayalite, XPL, thin section from core SV10246. (d) Secondary quartz and grunerite replace minerals in retrograde metamorphism, thin section from core SV10231. (Fa: fayalite, Gru: grunerite, Po: pyrrhotite, Qz: quartz)...... 39 Fig. 29. (a) Compositional ranges of various ferromagnesian silicates (atomic cation proportion). Note how consistent is the fayalite composition. (b) mineral composition of clinopyroxene from the Svartliden BIF...... 40 Fig. 30. (a) Fluorapatite vein parallel the primary banding and are composed by isomorphic micro-grains. (b) Fractures filled up by serpentine, crosscut the apatite veins, XPL, thin section from core SV10246. (c) The 120° degree angle between flurorapatite grains show an equilibrium during their crystallisation, XPL. (Ap: apatite, Fa: fayalite, Gru: grunerite, Srp: serpentine)...... 41 Fig. 32. (a) Plot of the major chemical components of the Svartliden BIF. The shaded region represents the range of oxides for 204 chemical analyses of Archaean and BIFs, modified after Klein and Ladeira (2000). The chemical analyses come from Klein and Beukes (1992). (b) CaO plots against MgO. (c) Fe 2O3 plots against SiO 2. (d) The composition of the Svartliden BIF in Al 2O3 and SiO 2 is plotted in the hydrothermal area, diagram modified after Wonder et al. (1988)...... 43 Fig. 33. Some metal contents (ppm) in the Svartliden BIF (n=21 for Pb, Zn, Cu, Crand V, n=11 for Ni, n=5 for Co and n=16 for Sc), compared with those from classical Algoma- and Superior-type BIF trends modified after Gonzalez et al. (2009)...... 44 Fig. 34. (a) The Co+Cu+Ni abundance against ∑REE (La+Ce+Nd+Sm+Tb+Yb+Lu) for the Svartliden BIF plots in or close by the hydrothermal deposits field. The area labelled “hydrothermal deposits” encloses data for deposits from the FAMOUS and Galapagos regions, which are mostly green muds and/or nontronite, and the area labelled “metalliferous deep-sea sediments” represents mostly deep-sea drilling project samples from East Pacific sites (Bonnot- Courtois, 1981). (b) Co, Cu and Ni plotted against ∑REE (La+Ce+Nd+Sm+Tb+Yb+Lu) show that Cu is mostly responsible of the trend and was immobile (c) The Co+Cu+Ni abundance against Fe 2O3. (d) Al 2O3 plots against ∑REE...... 45 Fig. 35. REE content in the Svartliden BIF, normalized (a) to chondrite (data from McDonough and Sun, 1995) and (b) to North American Composite (data from data Gromet et al., 1984, and extrapolated Pr, Y and Ho values from Haskin and Haskin, 1966)...... 46 5 5 Fig. 36. (REE+Y) PAAS patterns for average hydrothermal fluids (x 10 ), seawater (x 10 ) modified after Basta et al (2011) and the Svartliden BIF. Data sources: average of high-T hydrothermal solutions form TAG and EPR, 13°N and 17-19°S (Douville et al., 1999); low-T hydrothermal solutions (Michard et al., 1993); average of deep seawater from EPR (~2500m, Klinkhammer et al., 1983; Bau et al., 1995; and 1000-2000 m, Bau et al., 1996); surface seawater from north Pacific Ocean (Alibo and Nozaki, 1999)...... 47

Fig. 37. (REE+Y) NASC patterns for several BIFs in the world: Sierras Pampeanas BIF of San Luis, Argentina (Gonzalez et al., 2009); Penge iron-formation, , (Bau et al., 1996), BIFs of the Chitradurga schist belt (Raju, 2009), the Babadudan schist belt (Arora et al., 1995), and the Sargur schist belt (Kato et al., 1996), ; Dales Gorge, Joffre and Boolgeeda iron-formation, Hamersley basin, (Alibert et al., 1993)...... 48

Fig. 38.Variations with time of the average (Eu/Eu*) NASC for Algoma- and Superior-type BIFs, modified after Huston and Logan (2004). The Svartliden Eu anomaly is plotted against its lower possible age of formation...... 49 x BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Fig. 39. Plot of Ce (SN) and Pr (SN) anomalies for a set of late and Archaean and early Paleoproterozoic iron-formations (modified from Planavsky et al., 2010). Positive Ce anomalies are only present in late Paleoproterozoic iron-formations, whereas all shown iron- formations lack negative Ce anomalies. Field I: neither Ce nor La anomaly, field IIa: positive La anomaly, no Ce anomaly, field IIb: negative La anomaly, no Ce anomaly, field IIIa: positive Ce anomaly, field IIIb: negative Ce anomaly. The Svartliden anomalies are plotted in field IIIb which means that it has a negative Ce anomaly...... 50 Fig. 40. Paragenetic sequence of the Svartliden BIF. Minerals formed by metamorphism are not distinguishable from those formed by hydrothermal alteration because both events occurred at the same time. Gold is concentrated with arsenopyrite likely during peak metamorphism...... 53

xi List of appendices

Appendix 1. Sampling and brief description of the thin sections (Act: actinolite, Ap: apatite, Apy: arsenopyrite, Chl: chlorite, Cpx: clinopyroxene, Cpy: chalcopyrite, Fa: fayalite, Gru: grunerite, Hbl: hornblende, Il: ilmenite, Mag: magnetite, Po: pyrrhotite, Qz: quartz, Srp: serpentine) ...... 68 Appendix 2. Simplified modelling of the sampling sections with drill holes indicated (a) section 1375 (b) section 1525 (c) section 1550 (d) section 1625 (e) section 1650 (f) section 1850 (g) section 2250 (h) section 2325. The granite and the ultramafic units are not represented...... 70 Appendix 3. SEM results in atomic percentage for the thin section SV10240-1...... 78 Appendix 4. SEM results in atomic percentage for the thin section SV10240-2...... 83 Appendix 5. SEM results in atomic percentage for the thin section SV10241-1...... 86 Appendix 6. SEM results in atomic percentage for the thin section SV10246-1...... 88 Appendix 7. SEM results in atomic percentage for the thin section SV10246-2...... 90 Appendix 8. SEM results in atomic percentage for the thin section SV10246-3...... 92 Appendix 9. SEM results in atomic percentage for the thin section SV10246-3...... 93 Appendix 10. SEM results in atomic percentage for the thin section SV10297-1...... 95 Appendix 11. SEM results in atomic percentage for the thin section SV10405 ...... 98 Appendix 12. SEM results in atomic percentage for the thin section SV11402 ...... 100 Appendix 13. SEM results in atomic percentage for the thin section SV11403-1...... 102 Appendix 14. SEM results in atomic percentage for the thin section SV11405 ...... 104 Appendix 15. Composition in oxides in Svartliden BIF ...... 105 Appendix 16. Composition in major and trace elements in Svartliden BIF...... 106

xii BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

1. Introduction

1.1. Aim of the study

Banded iron-formation (BIF) is an interesting rock type because of the absence of a modern analogue and of its economic importance. It is also significant for understanding the geologic processes operating during the early history of the Earth. BIF is not only an economic source of iron, but also the second most dominant host rock for gold mineralization after volcanic rocks in greenstone belts (Groves and Foster, 1991).

The Svartliden gold deposit is situated in the Gold Line in Västerbotten, 700 km north of Stockholm, between the towns of Lycksele and Storuman (Fig. 1). Since 2005, the mine has produced 2.1 Mt Au at 4.5 g/t (Quaterly report, Dragon Mining, September 2011). This gold deposit has a minor BIF closely associated with the mineralization. As the mine contains resources only until 2015, brown-field exploration now focuses on extending the mine. A better understanding of the BIF is a key question for future exploration. This study aims to characterize the iron-formation, with respect to classification of BIF type.

Fig. 1. Simplified geological map of Scandinavia, modified after Bark and Weihed (2007). 1 M. SCIUBA - MS C THESIS (2013) Two main types of BIF exist in the world: the Algoma-type iron-formations which are commonly smaller units whereas Superior-type iron-formations are composed of larger units (Gross, 1965). As the stratigraphic sequence at Svartliden has not been studied in detail until now, the Svartliden BIF is poorly known. This study aims to determine which BIF type is present at Svartliden, as this will affect the local exploration.

1.2. Presentation of the main types of BIF

BIFs are the most important source of iron in the world (Jebrak and Marcoux, 2008), that is why research has been focused on this type of iron deposit.

According to James (1954), iron-formations are chemical sediments, typically thin-bedded or laminated, containing 15 % or more iron of sedimentary origin, commonly but not necessarily containing layers of . The iron-minerals are commonly interlayered with quartz, chert and (Gross, 1980). They are microbanded to macrobanded via mesobands (Fig. 2; Trendall and Blockey, 1970). Microbanding is defined as the alternation of Fe-rich and chert-rich laminae: one Fe-rich and one chert-rich lamina constitutes a single macroband (Trendall, 1973; Trendall and Blockley, 1970). Four different types of iron-formation based on lithology, composition, associated rocks and, exist: 1) Clinton type, 2) Minette type, 3) Algoma-type and 4) Superior-type. The Clinton type and the Minette type are mainly --chamosite beds with oolitic textures and represent only a minor part of the world iron-formations. They are commonly called Grained Iron-Formation (GIF). The Algoma- and Superior-type, called Banded Iron-Formation (BIF), are mainly banded cherty rocks and provide the major part of the world iron production (Gross, 1965). The principal difference between both is the depositional environment. Basically, Algoma-type iron-formations have a small extension and have been deposited as chemical sediments along with other sedimentary rocks and volcanic in and adjacent to volcanic arcs and spreading centers; whereas Superior-type iron-formations have a large lateral extension, and were chemically precipitated on marine continental shelves and in shallow basins (Gross, 1965, 1980, 1983; Guilbert and Park, 1986; Misra, 1999; Jebrak and Marcoux, 2008; Bekker et al., 2010).

2 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Fig. 2. Texture of BIFs, translated from Jebrak and Marcoux (2008).

1.2.1. Algoma-type BIF

The Algoma name has been chosen according to the Algoma District of where many varieties of lithological facies and typical depositional environment were described (Goodwin, 1962). Algoma-type iron-formations are predominantly Archaean in age (>2.6 Ga) but they also occur in the Eoarchaean to Paleoproterozoic (4.5 to 1.6 Ga; Goodwin, 1973; James, 1983; Gross, 1985; Isley and Abbott, 1999; Misra, 1999; Huston and Logan, 2004). Usually they are lenticular bodies, less than 50 m thick (seldom more; Guilbert and Park, 1986) and rarely extending for more than 10 km along strike (Bekker et al., 2010). These characteristics do not indicate that all Algoma- type iron-formations were originally smaller than Superior-type. As most of them have been affected by deformation and tectonic dismemberment, their true size and extent are likely underestimated (Gole and Klein, 1981). They are abundant in terms of number of deposits and worldwide distribution (Gross, , 1983; Guilbert and Park, 1986; Misra, 2008; Bekker et al., 2010).

Algoma-type BIFs are associated with volcano-sedimentary sequences of greenstone belts (Clout and Simonson, 2005; Bekker et al., 2010). The volcanic rocks are to ultramafic or volcanic rocks, according to the nature of the associated volcanic centre (Guilbert and Park, 1986; Bekker et al., 2010). As summarized in the Table 1, the sedimentary associated rocks are (Guilbert and Park, 1986), and in some cases, pyroclastics and fine-grained clastic

3 M. SCIUBA - MS C THESIS (2013) sediments, turbidites and (Gross, 1980, 1983; Guilbert and Park, 1986; Misra, 2008; Bekker et al, 2010). Those sediments indicate eugeosynclinal environment of deposition (Misra, 1999). In some cases, Algoma-type BIFs are associated with volcanic massive sulphide (VMS) deposits (Bekker et al., 2010).

Algoma-type iron-formations have been deposited in relatively deep-water settings, like island arc- back regions or intra-cratonic rift zones (Gross, 1980) as they typically lack evidence of wave or storm action (Table 1). They may have formed at any stage in the development of a volcanic belt starting with deposition around hydrothermal effusive centres, and extending into local basins and depressions amid the flows and sedimentary complexes (Fig. 5; Gross, 1965, 1980, 1983; Guilbert and Park, 1986; Clout and Simonson, 2005; Misra, 2008; Jebrak and Marcoux, 2008; Bekker et al., 2010).

Mineralogically, BIFs are typically composed of grey or red beds of chert interlayered with magnetite and hematite-rich layers. But other mineral facies, like massive siderite and - pyrrhotite beds, occasionally form part of the formation in addition to magnetite and hematite-rich layers. Most of these mineral assemblages have compositions close to the phases originally precipitated from basin waters, e.g. siderite, ferric hydroxides, and poorly ordered precursors of silicate minerals such as greenalite (Clout and Simonson, 2005). Algoma- and Superior-type iron- formation contain similar mineralogy (Bekker et al., 2010). However stilpnomelane is a mineral only present in Algoma-type BIFs (Clout and Simonson, 2005). It usually reflects contamination with volcaniclastic detritus (LaBerge, 1966a,b; Pickard, 2002).

According to the depth of formation and Eh/pH conditions results of variations in composition of the seawater in the sedimentary basin, four different facies can be found in BIFs: , silicate, carbonate and sulphide (Fig. 3; James, 1954; Gross, 1965, 1980; Misra, 1999; Bekker et al., 2010). Each facies is characterized by minerals found in iron-rich bands (Gross, 1965, 1983; Guilbert and Park, 1986, Misra, 1999). Sulphide-facies iron-formation is pyritic carbonaceous shale or slate and not really a type of iron-formation and is usually more important in Algoma-type than in Superior- type iron-formation (Gross, 1985; Jebrak and Marcoux, 2008). Oxide-facies iron-formation consists predominantly of magnetite or hematite interlayered with silica, carbonates, iron silicates or some combination of these minerals (Guilbert and Park, 1986). The carbonate-facies marjor constituents are interbedded siderite or iron-rich , and chert (Guilbert and Park, 1986; Bekker et al., 2010).

4 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Fig. 3. Repartition of the different facies in Algoma- and Superior-type BIFs, modified after Guilbert and Park (1986).

Under relative low grade metamorphic conditions, at the biotite zone and lower, greenalite, , stilpnomelane, chamosite, ripidolite (Fe-chlorite), riebeckite, and ferri-annite might be present (Bekker et al., 2010). At higher grades, , grunerite, , garnet, and fayalite can occur (Bekker et al., 2010).

Even if the figures vary in the litterature, the chemical compositions of Algoma- and Superior- type iron-formations are almost constant with 40 to 55 % SiO 2 and 20 to 35 % Fe (Guilbert and Park,

1986; Klein, 2005). Both BIF types are marked by very low Al 2O3 contents (usually < 2 wt. %), indicating deposition as chemical precipitates in environments starved of detrital input (Klein, 2005). Trace elements consistent with volcanic exhalation, are found like Mn (several percents), Ba, Co (> 100 ppm), Ni, Cu, Cr, As and Sr (Guilbert and Park, 1986). It has been noticed by Saager et al. (1982) that Algoma-type BIFs contain more Au than Superior-type BIFs. Some variations exist in the chemistry between both types with respect to the TiO 2, Eu and Cs (Gross, 1965; Huston et al., 2004; Kato et al., 2006; Basta et al., 2011). Algoma-type BIFs are characterized by large positive Eu anomalies (> 1.8) and negative Ce anomalies (Huston and Logan, 2004). As Algoma-type iron- formations are associated with local events, their geochemistry may reflect local volcanic or hydrothermal conditions, rather than being representative of the large-scale chemistry of the oceans during their formation (Bekker et al., 2010).

The Lupin deposit (Lhotka and Nesbitt, 1989; Bullis et al., 1993) and the Abitibi (Guilbert and Park, 1986) in , the greenstone belts in Australia, the Rio das Velhas Supergroup with Brumal and Cuiaba BIF (Vial et al., 2007) in , the greenstone belts of the Indian (Misra, 1999), the Archaean Malene Supracrustals in West Greenland (Uitterdijk Appel, 1988) and Vubachikwe deposit in Rhodesia (Fripp, 1976) seem to be good examples of Algoma-type BIF (Fig. 4). But only some of them host gold mineralization like Lupin in Canada

5 M. SCIUBA - MS C THESIS (2013) (Lhotka and Nesbitt, 1989), Rio das Velhas (Vial et al., 2007) or Cuiaba (Ribeiro-Rodrigues et al., 2007) in Brazil.

Fig. 4. World map of the main BIFs, translated and modified after Jebrak and Marcoux (2008).

1.2.2. Superior-type banded iron-formation

Iron-formations from the area of represent the most well known examples of this type of BIF, that is why this name has been given to the Superior-type BIFs (Gross, 1965; Misra, 1999). Superior-type BIFs are much more abundant and economically more important than Algoma-type BIFs (Guilbert and Park, 1986).

The Superior-type BIF is predominantly early Proterozoic in age (from 2.7 to 1.9 Ga) (Gross, 1985; Guilbert and Park, 1986, Misra, 1999). It is formed as large bodies of 100 m or more in thickness (Guilbert and Park, 1986; Bekker et al., 2010). The lateral extent is commonly between 10 and 100 km (Misra, 1999). They are less abundant in numbers and geographical distribution than the Algoma-type (Fig. 4; Gross, 1965, 1980, 1983; Guilbert and Park, 1986; Misra, 2008; Huston et al., 2004; Jebrak and Marcoux, 2008; Bekker et al., 2010).

This type of iron-formation is typically associated with carbonates, quartz arenite and black shale (Table 1; Gross; 1965, 1980, Bekker et al., 2010). The sedimentary sequence is also composed of , conglomerate and argillite (Gross, 1965). This type of BIF is also commonly associated with only minor amounts of volcanic rocks (Gross, 1980). These volcanic rocks are commonly present in the stratigraphic sequence even where no direct link with a volcanic centre is established (Guilbert and Park, 1986; Misra, 2008).

6 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE The Superior-type iron-formation, defined like epeirogenic, is deposited close to or above storm and fair-weather wave base, so in continental-shelf environments, in relatively shallow marine environments, close to continental margins (Gross, 1985; Bekker et al., 2010). Some iron- formations were precipitated over various kinds of clastic and carbonate sediments on the continental shelves and slopes (Misra, 1999). Their deposition coincided with volcanic activity in offshore linear belts that were parallel to the continental margins (Guilbert and Park, 1986; Misra, 1999). As these offshore tectonic belts were marked by extensive volcanic activity, it is not rare to find extrusion and intrusion of mafic and ultramafic rocks in Superior-type iron-formations (Guilbert and Park, 1986; Misra, 2008; Jebrak and Marcoux, 2008; Bekker et al., 2010).

Superior-type iron-formations are characterized by small positive or negative Eu anomaly (Huston and Logan, 2004). Their geochemistry reflects probably global scale processes (Huston and Logan, 2004) although potential influence by nearby cratonic areas needs to be also considered (Bekker et al., 2010).

The economically most important iron deposits are probably the Hamersley basin in Australia and the Transvaal Supergroup in South Africa (Fig. 4; Misra, 1999). Smaller Superior-type iron- formations are also found in Orissa, India (Majumber et al., 1982) and in of northern with the Biwabik Formation (Guilbert and Park, 1986). The Cauê Iron deposit, in the Itabira District in Brazil is one of few Superior-type BIFs that hosts gold mineralization (Olivo et al., 1995).

7 M. SCIUBA - MS C THESIS (2013)

Table 1. Main characteristics of Superior- and Algoma-type iron-formations, modified after Gross (1980).

Basin types Superior Algoma

Lake Superior

Labrador Trough Michipicoten

Transvaal Skibi Lake Typical basins Hamersley Kapico

Kursk Lake St Joseph

Krivoy Rog

EPEIROGENIC OROGENIC Tectonic Cratonic sheld Volcanic arcs environment Slope Extrusive volcanism, fractures systems

Subsidence Deep systems Tectonic Activity Uplift thrust faults

Circulation Limited Thermal circulation, turbidity currents

Depth Shallow Deep

Basin size Large Small

Associated rocks:

Sedimentary Black shale, chert, Chert, ,turbidites

Volcanic , Dolomite Tuffs, pyroclastics

Intrusive Basic dykes, sills

8 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Fig. 5. Tectonic environments for deposition of BIFs, modified after Gross (1993).

9 M. SCIUBA - MS C THESIS (2013)

Fig. 6. Geology of the Skellefte District and surrounding areas, modified after Bergström (2001).

10 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

2. Regional geology

2.1. Bothnian Basin and Skellefte District

The Svartliden gold deposit is located in the Gold Line mining district, SW of the Skellefte District (Fig. 6) which is considered one of the more prominent ore districts in northern Europe. Paleoproterozoic in age, the Skellefte District is elongated in NW-SE and constitutes mainly greenschist to lower amphibolite facies felsic volcanic- and sedimentary rocks (Weihed et al., 1992). The Skellefte District hosts a large number of massive sulphide deposits, mainly pyritic Zn-Cu-Pb deposits, which are commonly Au-rich (Allen et al., 1996). The Skellefte District interpreted as a Paleoproterozoic volcanic arc (Fig. 7) is considered to be formed close by the Bothnian Basin, a Proterozic sedimentary basin (Allen et al., 1996).

Fig. 7. Sketch of the paleotectonic environment of the Skellefte District and surrounding area. The Svartliden BIF is situated SW of the volcanic arc, modified after Weihed (1992).

The Svartliden gold deposit is situated in the Bothnian Basin, a large oceanic basin formed in Paleoproterozoic and interpreted to be the result of the final break-up at of a rifted Archaean craton SW of the Skellefte District (Nironen, 1997).

11 M. SCIUBA - MASTER THESIS (2013) The Bothnian Basin is generally composed of turbiditic greywackes and argillites, debrites and other conglomeratic rocks, interlayered mafic and subordinate felsic volcanic rocks (Fig. 6; Kathol et al., 2005). The thickness of the metagreywackes (> 10 km) suggests an originally continental margin environment (Gaál and Gorbatschev, 1987; Lundqvist, 1987). Some horizons of black shales are also intercalated with the volcano-sedimentary sequence. The rocks show evidence of two or more periods of folding. In some areas where the rocks are better preserved, the turbiditic metagreywackes show a distinct layering of arenitic and argilitic beds (Kathol et al., 2005). The metasedimentary rocks in the Bothnian Basin have been metamorphosed into amphibolite facies (Allen et al., 1996) and in places to granulite facies (Hallberg, 1994; Lundström, 1998). Amphibolite-granulite facies conditions have been reported from the Storuman area by Lundström (1998), indicating temperatures of 500 to 580°C for the metagreywackes in that area. According to the bedrock map (Fig. 8), the Svartliden gold deposit is hosted by > 1.95 Ga sedimentary rocks of the Bothnian Basin.

2.2. Gold Line mining district

During the last twenty , a number of gold prospects have been discovered in the Lycksele- Storuman area, to the SW of the Skellefte District (Bark and Weihed, 2007). Situated in the northern parts of the Bothnian Basin, this area was called the Gold Line because till-geochemistry anomalies of Au trend in a belt oriented NW-SE (Bark and Weihed, 2007).

The Gold Line mining district consists mostly of 1.86-1.75 Ga granite, with some older (1.96-1.86 Ga) metavolcanic rocks and some metagreywackes metamorphosed to mid-amphibolite facies (Bark and Weihed; Fig. 8). The metagreywackes show continental island-arc settings and the metavolcanic rocks are interpreted to be formed in a volcanic arc (Bark and Weihed, 2007). The tectonic setting for the metavolcanics rocks is suggested to be a volcanic arc environment, at a deformed continental margin (Bark and Weihed, 2007), typical of orogenic gold deposits.

The Fäboliden gold deposit is situated in the Gold Line, ca. 20 km SE of the Svartliden deposit. An economically barren BIF occurs to the northeast of the gold mineralization (Fig. 8). It is observable in one 5 m wide outcrop where 2-3 cm wide layers of quartz and Fe-oxides are intercalated within mafic metavolcanic rocks (Bark and Weihed, 2007). Even if the Fäboliden gold deposit has been well studied (Bark and Weihed, 2007, 2012; Bark, 2008), the knowledge about the iron-formation is still poor.

12 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE Banded iron-formations have also been found in the north eastern part of the Norrbotten county, NE of Pajala (Fig. 1) associated with the greenstone group (Bergman et al., 2001). Even if these BIFs are more than 400 km from Svartliden, they need to be taken into consideration when discussing regional distribution of BIF.

Fig. 8. Gold deposits and occurrences of BIF in the Gold Line, SW of the Skellefte District, modified after Bark and Weihed (2007).

13 M. SCIUBA - MASTER THESIS (2013) 3. Geology of the Svartliden gold deposit

3.1. Discovery of the Svartliden gold deposit

As the Skellefte VMS district is a well-known metallogenic province in the Västerbotten county, the Swedish Geological Survey (SGU) decided in the 1980’s, to explore also in the neighboring area. In 1985, a team of SGU geologists found a couple of mineralized boulders at some distance from Svartliden. They continued to sample river- and stream sediments, and gold was found in several sites. In 1995, what was to become Lappland Goldminers AB, owner of the Fäboliden gold deposit, performed a boulder tracing campaign in the same area and found boulders with up to 88 g/t Au. During the same , 4 drill holes intersected significant gold mineralization (with grades up to 50 g/t Au and 5 m at 4-9 g/t Au). Hence, the Svartliden gold deposit was found. In 1996 Lappland Goldminers AB formed a joint venture with the Canadian company Viking Gold Corporation, and between 1996 and 1998 the Canadian company undertook different geophysical surveys and drilled an additional 45 diamond drill holes to delineate a gold mineralization with an extent of > 1000 m. The deepest intersection of the gold lode was found at 110 m.

In 1999, Viking Gold Corporation was bought by Dragon Mining AB which today exploits the Svartliden deposit. The construction of the processing plant and the open pit started in 2002 and the production in March 2005. The company now plans to end production from the open pit in October 2012, and to focus their operation underground, which started in late 2011 (Fig. 9). The remaining resources are expected to last until 2015. Since 2005, Dragon Mining has mined more than 2.1 Mt of ore, at a grade of 4.5 g/t Au (Dragon Mining, 2011).

Fig. 9. Underground development at the Svartliden gold mine (data from Dragon Mining, 2011). 14 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE 3.2. Geological settings

3.2.1. Geology of the deposit

The Svartliden gold deposit is situated along the Gold Line, SW of the Skellefte District (Fig. 8) and is considered a structurally controlled epigenetic lode gold deposit (Hart et al., 1999; Laurent, 2001; Eklund, 2007). The deposit is hosted by supracrustal rocks of the Bothnian Supergroup which comprises metasedimentary rocks intercalated by mafic metavolcanic rocks (Kathol and Weihed, 2005). The rocks are deformed and metamorphosed in lower to mid-amphibolite facies. The ore zones, divided into the North and Main lode are hosted by an east-west trending steeply dipping metamorphosed volcano-sedimentary sequence. The ore bodies extend over 1 km along strike with a vertical extent of approximately 300 m.

The stratigraphy of the Svartliden host rock sequence comprises of a southern metasedimentary unit, an amphibolite unit and a northern metasedimentary unit (Fig. 10). The southern metasedimentary unit is composed mainly of mostly biotite- to quartz biotite schist with a minor unit of graphitic sulphidic biotite schist. The central folded amphibolite unit can be subdivided into a southern and a northern amphibolite, split by a thin unit of metasedimentary rocks composed of biotite schist and graphitic sulphidic biotite schist (middle metasediments). The southern amphibolite locally hosts lenses, variable in size, of meta-ultramafic rocks. The gold mineralization is controlled by the strongly sheared southern contact of the northern amphibolite unit, where narrow deformed beds of BIF occur. The northern metasedimentary rocks are composed of graphitic sulphidic biotite schist and quartz biotite schist. The host rock sequence is intruded by horizontal and randomly oriented granitic and pegmatitic dykes.

15 M. SCIUBA - MASTER THESIS (2013)

Fig. 10. Geological model based on drill core logging of the Svartliden gold deposit, view from east. The open pit is represented by the orange outline. Compiled by Dragon Mining geologists.

3.2.2. Structural settings

The volcano-sedimentary sequence (amphibolite and metasediments) at Svartliden is located within a broad shear zone (pers. comm. Christopher Gordon, 2012). Kinematic indicators (rotated garnet clasts, pressure shadows and drag folds) are consistent with an initial normal shear sense. The stratigraphy is tightly folded with steep vertical limbs that begin to dip to the south at depth. The trend of the fold axis is approximately ENE-WSW and the plunge varies throughout the deposit. The geometry of the fold is consistent with normal movement within a shear zone (Fig. 11).

At some point after the initial folding, the shear zone appears to have been reactivated with an approximate dextral sense of shear based on the geometry of shear lenses and lineations associated with shear planes that are prevalent throughout the entire volcano-sedimentary sequence. This deformational event has detrimentally affected the continuity of the stratigraphy, boudinaging more 16 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE competent units. Granite dykes cut the fold but are also deformed by this event suggesting that they were emplaced prior to or during this dextral stage of deformation. This very high strain event overprints all the previous episods of deformation, complicating the stratigraphy.

As the axis of the main fold is folded itself, the sequence appears to have been gently folded at a later stage followed by brittle faulting (Fig. 11). Several late-stage faults offset the folding. The central fault is predominantly strike-slip whereas other faults are interpreted as normal faults that probably incorporate some component of strike-slip movement.

Fig. 11. (a) Plane view of Svartliden deposit with the principal geological structures and model of fold trace. The whole sequence has been firstly folded and the axis of this fold has been folded itself. Then, the structure has been faulted: the main central fault is predominantly strike-slip. (b) Schematic cross-section of Svartliden deposit showing the late folding stage. Data compiled by Dragon Mining geologists.

17 M. SCIUBA - MASTER THESIS (2013) 3.3. Petrography of the Svartliden rock types

3.3.1. Metavolcanic rocks

The metamorphosed volcanic rocks comprise of basaltic rocks, pillow and dykes interlayered locally by ultramafic rocks. Despite the high grade of metamorphism, primary volcanic textures are recognized locally (Laurent, 2001).

Amphibolite Two types of amphibolite are distinguished: 1) massive to foliated, dark green, fine- to medium- grained (Fig. 12) and 2) massive rarely foliated, coarse grained with a gabbroitic texture (Fig. 12). Both of them consist mainly of amphibole, pyroxene and plagioclase. Minor sulphides like arsenopyrite (less than 0.1 %) and pyrrhotite are disseminated.

Ultramafic rocks Ultramafic rocks are fine- to medium-grained, blue-green to greyish, with prominent spotty texture. They consist mainly of amphibole, pyroxene, olivine, chlorite, , magnetite and pyrrhotite (Fig. 12).

Fig. 12. Amphibolite is (a) fine to (b) coarse grained. (c) Ultramafic unit with prominent spotty magnetite. Pictures of drill core samples.

18 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE 3.3.2. Metasedimentary rocks

The sedimentary rocks consist of metamorphosed intercalated carbonaceous pyrrhotite-rich shales, siltstones and sandstones. This sedimentary package is typical of turbiditic sequence (Shanmugam, 1997). Primary sedimentary textures are difficult to discern due to the high degree of metamorphism and internal deformation (Laurent, 2001).

Biotite schist Brownish, fine- to medium-grained, strongly foliated biotite schist, composed mostly of biotite, quartz, and local relicts of andalusite (Fig. 13).

Fig. 13. Biotite schist (a) with some chloritization (b) with relicts of andalusite. Pictures of drill core samples.

Graphitic sulphidic biotite schist The graphitic sulphidic biotite schist is a dark grey to black, fine-grained and foliated rock (Fig. 14), with local strong internal deformation such as folds and slickensides. The metamorphic assemblage consists mainly of quartz, biotite, graphite and pyrrhotite (1-5 % and locally up to 10 %).

19 M. SCIUBA - MASTER THESIS (2013) Quartz biotite schist Quartz biotite schist is fine- to locally medium-grained, strongly foliated, with the mineral assemblage mostly composed by biotite and quartz. Quartz forms deformed lenses or veins (Fig. 14).

Fig. 14. (a) Graphitic sulphidic biotite schist, with pyrrhotite veinlets that parallel the foliation. (b) Quartz biotite schist with sheared quartz veins. Pictures of drill core samples.

20 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE 3.3.3. Intrusive rocks

The mine sequence at Svartliden has been intruded by felsic peraluminous granitic dykes belonging to the Skellefte-Härnö S-type granite (Andersson, 2012). In the mine, it occurs as horizontal dykes (> 6 m) and as minor dyke swarms (0.3-2 m thick) with random orientation. The granite is fine to coarse- grained, and whitish grey in colour. The texture varies from aplitic to pegmatitic through granular (Fig. 15). It is composed mostly of quartz-feldspar (orthoclase dominating)-oligoclase-biotite- muscovite-garnet (Andersson, 2012). The rock is weakly deformed in a brittle-ductile manner. Near the contact with the ore, it may contain some arsenopyrite and pyrrhotite but no gold.

Fig. 15. Svartliden granite mostly composed by quartz-feldspar-oligoclase-biotite-muscovite-garnet with (a) pegmatitic texture and (b) medium-grained texture. Pictures of drill core samples.

21 M. SCIUBA - MASTER THESIS (2013) 3.4. Hydrothermal alteration and ore description

The gold mineralization at Svartliden is hosted by partially to completely altered and sheared rocks. The proximal alteration (ore) occurs within the mineralization and immediate adjacent wall rock (up to 5 m) whereas the distal alteration occurs in the surrounding wall rock (tens of meters). An intermediate alteration zone has not been recognized in this deposit, this is not uncommon for orogenic gold deposits of this metamorphic grade (Eilu et al., 1999).

3.4.1. Proximal alteration and mineralization

The ore zone usually forms several metres thick sheared, boudinaged veins and lenses. The major amount of the ore zones comprise quartz and calc-silicate gangue minerals which have partially to completely replaced the host rock. Large textural and mineral variations occur within the ore zones.

The calc-silicate alteration assemblage is composed mostly by diopside, amphibole, wollastonite, grossular, , vesuvianite, and carbonates (Fig. 16). Graphite and accessory apatite are present as well. Later quartz veins crosscut the ore zone. Intensive biotite alteration halos are present in proximal host rock.

The major ore mineral assemblage consists of pyrrhotite, and arsenopyrite-loellingite (Fig. 16). Chalcopyrite, pyrite, and locally traces of are present in small amounts. Pyrrhotite forms massive veins, clusters, aggregates or is locally disseminated. The arsenopyrite-loellingite assemblage occurs as clusters of large grains (> 2 cm) or fine- to medium-grained disseminated. Gold (in electrum), 1-150 µm in size, is usually associated with arsenopyrite-loellingite. However, electrum with higher gold content (5-10 wt. % Au in electrum) occurs associated with silicate minerals (Eklund, 2007).

22 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Fig. 16. Examples of mineralization: (a) veinlets and aggregates of pyrrhotite (Po) in a mineral assemblage composed of diopside-Ca-amphibole-quartz, (b) pyrrhotite, arsenopyrite-loellingite-electrum (Apy: Arsenopyrite, Po: Pyrrhotite). (c) The gangue of the mineralization constitutes quartz and calc-silicate minerals. (d) Rare coarse grains of gold are associated with quartz. Pictures of drill core samples.

23 M. SCIUBA - MASTER THESIS (2013) 3.4.2. Distal alteration

Distal alteration is characterized mostly by biotite replacements and calc-silicate alteration veins. Quartz veining is present locally. Distal alteration occurs in both metavolcanic rocks as well as the metasedimentary rocks. The degree of alteration increases close to the ore or in subparallel high strain zones.

Biotite alteration Biotite alteration (K-alteration) consists of replacement of some previous mineral by brown colour biotite, for example amphiboles in the amphibolite. Intense biotite alteration is usually controlled by narrow high strain zones. Pervasive alteration occurs as spotty coarse grains in the amphibolite (Fig. 17).

Calc-silicate alteration Calc-silicate alteration, characterized mainly by diopside-amphibole-grossular--quartz- wollastonite occurs as zoned veins and veinlets (“ veins”) in the amphibolite (Fig. 17). This alteration occurs also in the metasedimentary rocks, but with less developed mineral assemblage (without wollastonite or grossular).

Fig. 17. (a) Spotty biotite alteration in fine grained amphibolite (b) Calc-silicate alteration in fine grained amphibolite consists mainly in large diopside (Di), wollastonite (here, missing) and garnet (Grt). Pictures of drill core samples.

24 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE 4. Methods

4.1. Sampling

Core logging is one of the most used methods to characterize ore deposits. A preliminary scheme of the spatial distribution of the BIF in the Svartliden deposit has been carried out with the software GEMCOM SURPAC TM . Seventeen diamond drill cores spatially distributed in eight sections have been chosen (Fig. 18). The cores have been logged at the scale 1:100, three meters from the BIF. As the BIF appears at depth, it has been preserved from .

The BIF in the northeastern part of the pit has not been studied because the formation was not recognized when that part of the pit was mined (before 2010). So only very scarce data concerning the BIF are available between the sections 1850 and 2250.

One drill core from the underground, three drill cores from an exploration target just west of the open pit and two drill cores from an exploration target 800 m east of the pit have also been studied but not sampled.

Fig. 18. Map of the open pit with the vertical projection of the BIF found at depth and the studied drill cores indicated.

25 M. SCIUBA - MASTER THESIS (2013) 4.2. Analytical methods

4.2.1. Optical microscopy

This study is based on 23 thin sections, sampled from the 17 diamond drill cores. Half of them was made by Minoprep, in Hunnebostrand (Sweden) and the second half was produced in Laboratories of the Geological Institutes of the Faculty of Sciences, Charles University in Prague (). The thin sections have been studied in a standard optical microscope in transmitted and reflected light at Luleå University of Technology. Photomicrographs of samples were taken under plane polarized light (PPL) and cross polarized light (XPL).

4.2.2. Mineral chemistry

For Scanning Electron Microscope (SEM) study, the thin sections were first coated with ultra thin film of carbon and then examined in a JEOL JSM-6510 electron microscope at the Centre de Recherches Pétrographiques et Géochimiques (CRPG), Vandoeuvre-lès-Nancy (France). The working distance was kept at 10 mm. The acceleration voltage was set to 15 kV, the real time of counting was set at 70 seconds. The chemical composition of amphiboles and the nature of some other minerals were investigated. Amphibole compositions have been recalculated according to Preston and Still (2001) and mineral composition have been recalculated based on the sum of cations.

4.2.3. Whole rock geochemistry

Twenty three whole rock samples of BIF were prepared at ALS Chemex in Piteå, and analyzed at ALS Chemex in Vancouver (Canada). The complete sample characterization has been obtained thanks to a combination of different methods. Major elements and gold content have been quantified by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), and full Rare Earth Element (REE) suite has been quantified by a lithium borate fusion and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis. Most of the whole rock samples correspond to the same sample points where the thin section was sampled, for correlation between geochemistry and mineralogy.

26 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

5. Geological description of the BIF at Svartliden

5.1. Localization, thickness and lateral extent of the BIF

The major part of the BIF extends from east to west along approximately 1 km (Fig. 18). It is hosted by the sheared meta-volcanosedimentary sequence of Svartliden. The BIF occurs as discontinuous boudinaged lenses varying from a few centimeters to a couple of meters thick. The length of the boudins is around 250 m. The deepest part of the BIF is found at 200-250 m. Furthermore, parts of the BIF has been discovered 800 m east of the pit and 500 m south-west from the west pit (Fig. 18).

5.2. Relationship between the BIF and the other lithologies

Relationship between the BIF and other lithologies can be seen on the schematic section through the North Lode (Fig. 19). In the mine, the BIF is spatially associated with the strongly sheared mineralized zones. The contact between the BIF and the mineralization is composed by massive pyrrhotite and arsenopyrite, but also hosts rounded clasts. This contact visible in the Fig. 20, is interpreted as a sulphidation front (Eilu et al., 1999). It has been observed underground, but also in drill core between the BIF and the mineralization.

It is important to notice that the BIF is also very often in contact with the amphibolite (Fig. 20). During the sampling campaign, a contact between the BIF and the ultra-mafic unit has been found in the western part of the mine.

27 M. SCIUBA - MASTER THESIS (2013)

Fig. 19. Schematic section of the =orth Lode. The BIF is mineralized and closely associated with the ore (Amp: amphibole, Apy: arsenopyrite, Carb: carbonate, Di: diopside, Grt: garnet, Po: pyrrhotite, Qz: quartz, Ves: vesuvianite, Wo: wollastonite). Data compiled by Dragon Mining geologists.

28 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Fig. 20. Contact between the BIF and the other rock types at Svartliden (a) face from the level 345-1 at 154 m from the main ramp of the underground. The contact between the BIF and sheared rocks is brecciated and (b) mainly composed by pyrrhotite, arsenopyrite and clasts, picture of drill core sample SV11445. This kind of contact is often visible between the BIF and the ore.

29 M. SCIUBA - MASTER THESIS (2013) 5.3. Layering and other structures based on metamorphic grade

At Svartliden, the BIF underwent metamorphism, deformation and hydrothermal processes resulting in different mineral assemblages and textures. According to some observations, three different types of BIF can be distinguished: 1) least altered BIF, 2) moderately altered BIF and 3) strongly altered BIF.

5.3.1. Type 1: least altered BIF

The least altered BIF is mostly found in the eastern part of the mine. It has been metamorphosed and shows locally weak strain. It is possible to observe the well preserved primary banding. The primary texture consists of alternating 10-50 mm thick mesobands composed magnetite and quartz together with amphiboles. Microbanding, 0.5-6 mm thick, has been preserved (Fig. 21).

Amphibole is disseminated in the interbands. This gives a greenish/yellowish color to the Svartliden BIF. Magnetite bands contain extensional veins filled with quartz and grunerite (Fig. 21).

Except from magnetite, no primary minerals of the BIF have been observed. Quartz appears here with a recrystallized texture.

Fig. 21. (a) Primary texture of the BIF. It is micro- to mesobanded. Fe-rich bands are composed mostly of magnetite and minor pyrrhotite (dark grey bands). Quartz (Qz) and amphiboles (Amp) occur in the interbands. Picture of drill core sample SV10242. (b) Sketch of the same sample illustrating the geometric relationship between extensional veins and layering and possible fluids migration paths.

30 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

5.3.2. Type 2: moderatly altered BIF

The BIF has here basically the same composition as parts of the least altered parts of the BIF, but contains much more amphiboles (Fig. 22). Mesobanding has been preserved but the thickness of the bands are unclear due to pervasive light green amphiboles (Fig. 22). Relicts of 1-2 mm microbanding appears often on the top and/or the bottom of the BIF (Fig. 22). In Fe-rich mesobands, magnetite is partially replaced by pyrrhotite and completely replaced in microbands. Dark green hornblende and actinolite are locally present in the interbands.

5.3.3. Type 3: strongly altered BIF

This BIF is mostly found in the western part of the mine. In the higher metamorphic grade, mesobands are preserved but not well defined. Microbanding is absent. Pyrrhotite dominates (up to 50 %) the Fe- rich bands, and is localized mainly in the middle of the mesobands. Large grains of arsenopyrite (up to ca. 2 mm) occur in close relationship with pyrrhotite (Fig. 22). The dark green amphiboles constitute by hornblende-actinolite are more present as compared to the medium metamorphic grade BIF. Olivine and pyroxene are present in the interbands which give that greenish colour visible in the Fig. 22. The BIF is locally crosscut by late magnetite veins (Fig. 22).

31 M. SCIUBA - MASTER THESIS (2013)

Fig. 22. (a) Moderatly altered BIF. The Fe-rich bands are replaced by olivine and grunerite and surrounded by grunerite. The interbands are composed of quartz and amphibole, drill core SV10256. (b) The microbands are preserved at both ends of the iron-formation. Magnetite is completely replaced by pyrrhotite, drill core SV10256 (c) Amphiboles replace pervasively the minerals in Fe-rich bands, drill core SV10246. (d) In the strongly altered BIF, primary magnetite is partially to completely replaced by pyrrhotite and arsenopyrite. Olivine surrounds the Fe-rich bands and interbands are composed by up to 70 % amphibole, drill core SV10231. (e) The Fe-rich bands are boudinaged (visible in small scale) and contain olivine, and crosscut by late magnetite veins. Late amphibole and quartz replace the minerals in the interbands, drill core SV10240. (f) Primary magnetite is replaced by pyrrhotite. Pyrrhotite veins crosscutting the primary banding are replaced by secondary magnetite, drill core SV11405. (Amp: amphibole, Apy: arsenopyrite, Gru: grunerite, Mag: magnetite, Ol: olivine, Po: pyrrhotite, Qz: quartz). 32 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

5.3.4. Micro-faulting and micro-folding

The Svartliden BIF, together with the ore, has been folded and faulted. Structural data that covers the whole BIF is not available but some structures have been observed in local scale (drill core). Crosscutting micro-folds and micro-faults are common in the higher metamorphic grade BIF (Fig. 23).

Some parts of the iron-formation have been sheared after metamorphism, as suggested by the clastic texture of amphiboles.

Fig. 23. (a) Micro-faulting of the BIF clearly post metamorphic, drill core SV10317. (b) Micro-folding containing gold grains visible in microscopy, drill core SV11403. (c) Micro-folds where pyrrhotite has been concentrated in the fold hinges, drill core SV11402. (Amp: amphibole, apy: arsenopyrite, Gru: grunerite, Po: pyrrhotite, Qz: quartz).

33 M. SCIUBA - MASTER THESIS (2013) 5.4. Mineralogical and textural description of the BIF

The dominant mineral assemblage of the Svartliden iron-formation is quartz-magnetite-pyrrhotite- grunerite-fayalite-hedenbergite.

The iron-rich bands are composed of magnetite which has been replaced partially to completely by pyrrhotite and arsenopyrite. Minor chalcopyrite and pyrite occur also in close relationship with pyrrhotite. Amphiboles, especially grunerite, and quartz are the main minerals of the interbands of the iron-formation. Actinolite and hornblende are also common amphiboles. Fayalite and hedenbergite are a part of the metamorphic assemblage. Apatite form bands parallel with the primary banding. Serpentine, , , graphite and ilmenite are accessory minerals in the BIF. Except the magnetite in Fe-rich bands, no relicts of primary minerals of the BIF have been observed.

5.4.1. Oxides and sulphides

Different generations of magnetite occurs in the Svartliden BIF. Primary magnetite composes up to 80 % of the Fe-rich bands in the lower grade BIF. The primary magnetite from the Fe-rich bands is partially to completely replaced by pyrrhotite according to the grade of metamorphism. It locally occurs ca. 100 µm isomorphic grains with triple angles between grains with rounded inclusions of pyrrhotite, in the primary banding (Fig. 24). This suggests a textural equilibrium during their crystallisation. A fine-scale network of magnetite is common around grains of fayalite (Fig. 24). Magnetite veins ca. 0.3-1 cm wide, crosscut locally the primary banding (Fig. 24).

Pyrrhotite occurs in large phase decomposed by magnetite like visible in the Fig. 25. In reflective light, those grains reveal an ex-solution lamellae texture (Fig. 24). Pyrrhotite is also present in veins surrounded by magnetite. (Fig. 25). Pyrrhotite hosts clasts of silicates in deformed BIF (Fig. 24).

34 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Fig. 24. (a) Pyrrhotite in vein is replaced by magnetite, thin section from core SV10240. (b) Isomorphic inclusions of pyrrhotite inside magnetite grains. The triple angle between magnetite grains indicate a textural equilibrium during their formation, thin section from core SV10241. (c) Pyrrhotite grains present ex-solution lamellae texture and host chalcopyrite, thin section from core SV10231. (d) Secondary magnetite network around fayalite grains suggests the breakdown of olivine during retrograde metamorphism, thin section from core SV10240. (e) A matrix of pyrrhotite surrounds silicates in deformed BIF, thin section from core SV10231 (f) Ilmenite is found as intergrowths with magnetite inside pyrrhotite, thin section from core SV10246. Photomicrographs in reflective light. (Cpy: chalcopyrite, Il: ilmenite, Mag: magnetite, Po: pyrrhotite).

35 M. SCIUBA - MASTER THESIS (2013) Large subangular arsenopyrite grains (0.5-2 mm) are present in Fe-rich bands where primary magnetite has been replaced by pyrrhotite. They occur inside pyrrhotite grains (Fig. 24). Arsenopyrite grains are decayed by formation of silicates like quartz and grunerite (Fig. 25). Some minerals contain angular to subangular gold grains, up to 70 µm in size (Fig. 24). Visible gold has also been found in drill core samples.

Minor chalcopyrite occurs in close relationship with pyrrhotite and arsenopyrite (Fig. 24 and Fig. 25). Ilmenite forms locally intergrowths of magnetite in pyrrhotite grains (Fig. 24). Minor pyrite has been observed. Some collomorphic Fe-oxides occur in vein cross cutting the primary banding.

Fig. 25. (a) Pyrrhotite is replaced by late magnetite and arsenopyrite is formed inside pyrrhotite grains, thin section from core SV10231. (b) Arsenopyrite and chalcopyrite are associated with pyrrhotite. The primary mineral assemblage is replaced by amphiboles in late stage of metamorphism, thin section from core SV11402. (c) Arsenopyrite is decayed by formation of silicates and hosts (d) gold grains, thin section from core SV11403. Photomicrographs in reflective light. (Apy: arsenopyrite, Au: gold, Cpy: chalcopyrite, Mag: magnetite, Po: pyrrhotite).

36 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

5.4.2. Silicates and other minerals

Amphiboles constitute a significant part of the mineralogical assemblage of the Svartliden BIF. The assemblage constitutes Fe-amphibole (grunerite), and calcic amphiboles like ferro-hornblende and ferro-actinolite (Fig. 26, Fig. 27 and Fig. 28). At least two generations of Fe-amphibole appear in the paragenetic sequence. A first generation, mostly composed of grunerite, is commonly confined to the silicate mesobands with quartz or to the contacts between the Fe-rich bands and the mesobands (Fig. 26). Grunerite grains are elongated to prismatic and ca. 150 µm in size with well developed polysynthetic twinning. It replaces partially to completely fayalite grains (Fig. 28). In some samples, grain size increases close to the Fe-rich bands (Fig. 26). A late generation of large grunerite grains (up to ca. 800 µm long) associated with quartz fill up some fractures though the primary banding. The bulk calculated composition of grunerite is (Fe 5.89 ,Mg 1.06 ,Ca 0.05 )(Si 7.95 ,Al 0.05 )O 22 (OH) 2 with n=161 where n is the number of SEM analyses used for the calculated composition.

Ferro-hornblende occurs with grunerite in the interbands. It forms locally reaction haloes around clinopyroxene grains (Fig. 26). The bulk calculated composition (n=52) of ferro-hornblende is

(Ca 2.11 ,Na 0.09 )(Fe 3.97 ,Mg 1.03 )(Si 7.30 ,Al 0.70 )O 22 (OH) 2 with traces of (Fig. 29).

Ferro-actinolite appears in the amphiboles assemblage with grunerite and ferro-hornblende. It forms fine-grained inclusions in clinopyroxene (Fig. 26). Some ferro-actinolite clasts have also been observed in the folded iron-formation (Fig. 26). In that case, grains are surrounded by a matrix composed of pyrrhotite. The calculated bulk composition (n=66) of ferro-actinolite is

Ca 1.94 (Fe 3.97 ,Mg 1.13 )(Si 7.77 ,Al 0.23 )O 22 (OH) 2, with traces of sodium (Fig. 27).

37 M. SCIUBA - MASTER THESIS (2013)

Fig. 26. (a) Clinopyroxene grain is surrounded by hornblende, PPL, thin section from core SV10240 (b) Actinolite replaces clinopyroxene in retrograde metamorphism, thin section from core SV10246 (c) Grunerite grains size varies according to the distance from the Fe-rich band, XPL, thin section from core SV10241 (d) Actinolite has clastic texture in sheared zone, PPL, thin section from core SV10317. (Act: actinolite, Cpy: clinopyroxene, Fa: fayalite, Gru: grunerite, Hbl: hornblende, Po: pyrrhotite).

Fig. 27. Composition of calcic amphiboles of the Svartliden BIF (n=115), based on the nomenclature of amphiboles (Leake et al., 1997).

38 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE Quartz occurs as xenomorphic large- (up to ca. 2 mm) to fine-grains. It replaces partially to completely grunerite (Fig. 26 and Fig. 28). The BIF has been intruded by late quartz veins which crosscut the primary banding. Some quartz grains present an ondulatory extinction suggesting a formation during a deformation stage. Quartz veins have been locally boudinaged.

Fayalite grains have generally isomorphic texture (0.5-2 mm in diameter, Fig. 28). Grain boundaries show triple angle at 120°, suggesting equilibrium during their crystallisation. Inclusions in fayalite consist of fine-grained anhedral magnetite (Fig. 28). Fayalite is replaced by grunerite as a result of retrograde metamorphism (Fig. 28). Some grains contain inclusions of hedenbergite, which suggest that fayalite is part of the high-grade metamorphic assemblage. Olivine composition is very uniform for all the thin sections studied by SEM (Fig. 29). The standard deviation of the ratio (Fe + Mg) / Si is

0.09 (Fig. 29). The calculated bulk composition (n=93) is (Fe 1.93 ,Mg 0.07 )Si 0.89 O3. So, olivine is Fa 96.5 .

Fig. 28. (a) Fayalite grains (XPL) contains (b) magnetite inclusions (reflective light), thin section from core SV11574. (c) Late grunerite replaces fayalite, XPL, thin section from core SV10246. (d) Secondary quartz and grunerite replace minerals in retrograde metamorphism, thin section from core SV10231. (Fa: fayalite, Gru: grunerite, Po: pyrrhotite, Qz: quartz).

39 M. SCIUBA - MASTER THESIS (2013) Clinopyroxene (up to 3 mm in size) occurs between bands rich in fayalite and in grunerite. are rimmed by ferro-hornblende and contains fine-grained inclusions of ferro-actinolite (Fig. 26). The average composition (n=73) of clinopyroxene is Fe 0.88 ,Mg 0.12 (Ca 0.89 ,Na 0.01 ,Mg 0.09 )(Si 1.93 ,Al 0.07 )O 6. According to the SEM data, up to 80 % of clinopyroxene are hedenbergite and the others are of augite composition (Fig. 29).

Fig. 29. (a) Compositional ranges of various ferromagnesian silicates (atomic cation proportion). =ote how consistent is the fayalite composition. (b) mineral composition of clinopyroxene from the Svartliden BIF.

40 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Late fluorapatite veins, milkish in colour, occur parallel to the banding (Fig. 30). They are composed of microcrystalline isomorphic grains ca. 30 µm in size. The triple angle between the grains shows a textural balance during their crystallisation. The bulk recalculated composition (n=23) of the fluorapatite is Ca 5(PO 4)2.75 F0.46 Al 0.06 .

Serpentine occurs as fracture filling in the Fe-rich bands, in apatite bands or appears disseminated in the interbands (Fig. 30).

Fig. 30. (a) Fluorapatite vein parallel the primary banding and are composed by isomorphic micro-grains. (b) Fractures filled up by serpentine, crosscut the apatite veins, XPL, thin section from core SV10246. (c) The 120° degree angle between flurorapatite grains show an equilibrium during their crystallisation, XPL. (Ap: apatite, Fa: fayalite, Gru: grunerite, Srp: serpentine).

41 M. SCIUBA - MASTER THESIS (2013) 5.5. Geochemistry of the BIF

Results of geochemical analyses of the Svartliden BIF are presented in Appendix 15 and Appendix 16.

5.5.1. Major oxides

The bulk chemical composition of Svartliden BIF in oxides is in the range of most Archaean and

Proterozoic iron-formations (Fig. 31). The samples consist essentially of Fe 2O3 which ranges from 42.30 to 59.50 wt. % with a mean composition of 51.98 wt. % It has exceptionally high content in

Fe 2O3 compared to other BIFs. Iron contents typically range between ~ 20 and 35 wt. % (Klein,

2005). SiO 2, the second major oxide, ranges from to 36.50 to 47.40 wt. % with a mean composition of

41.81 wt. %. The ratio Fe 2O3/SiO 2 is quite consistent with an average of 1.25 and a standard deviation of 0.15. Other oxide contents show some variation: the Al 2O3 content is low and ranges from 0.11 to 1.70 wt. % (average of 0.44 wt. %). The CaO content ranges from 1.07 to 8.60 wt. % (average of 3.27 wt. %). The Svartliden BIF exhibits lower concentrations of MgO (from 0.57 to 4.75 wt. %) than

Archaean and Proterozoic BIF (Fig. 31). TiO 2 (0.01–0.10 wt. %), Na 2O (0.01–0.24 wt. %) and K 2O

(0.01–0.17 wt. %) are minor oxides whose sum does not exceed 1 wt. %. The value of P 2O5 is up to

1.80 wt. %. MgO and CaO have a strong correlation with a coefficient of r=0.88 (Fig. 31). Al 2O3 and

TiO 2 presents a strong correlation with r=0.97. Nb correlates strongly with Al 2O3 and with TiO 2, with respective coefficient of r=0.90 and r=0.92.

When Al 2O3 is plotted against SiO 2, the Svartliden BIF plots in the hydrothermal field, close to the

SiO 2-axis (Fig. 31).

42 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Fig. 31. (a) Plot of the major chemical components of the Svartliden BIF. The shaded region represents the range of oxides for 204 chemical analyses of Archaean and Proterozoic BIFs, modified after Klein and Ladeira (2000). The chemical analyses come from Klein and Beukes (1992). (b) CaO plots against MgO. (c) Fe 2O3 plots against SiO 2. (d) The composition of the Svartliden BIF in Al 2O3 and SiO 2 is plotted in the hydrothermal area, diagram modified after Wonder et al. (1988).

43 M. SCIUBA - MASTER THESIS (2013)

5.5.2. Trace elements

The bulk chemical composition of the Svartliden BIF is in the range of most Archaean and Proterozoic iron-formations (Fig. 32). The trend of the Svartliden BIF is closer to the Superior-type one for Zn, Ni and V contents. It is not possible to conclude about Cu, Co, Cr and Sc because the averages in composition are to far from both types.

Fig. 32. Some metal contents (ppm) in the Svartliden BIF (n=21 for Pb, Zn, Cu, Crand V, n=11 for =i, n=5 for Co and n=16 for Sc), compared with those from classical Algoma- and Superior-type BIF trends modified after Gonzalez et al. (2009).

The most diagnostic fingerprints of the source metals during chemical precipitation are the ferromagnesian trace elements such as Ni, Cr and Co (Dymek and Klein, 1988; Manikyamba et al., 1993; Gnaneswar Rao and Naqvi, 1995). The Svartliden BIF contains 30.65 ppm of Ni in average, ranged between 7 and 104 ppm. The Co values range between 2.20 and 31.50 ppm with an average of 9.59 ppm, and the Cu values range between 6 and 162 ppm with an average of 54.77 ppm. The Cr content is mostly under 10.00 ppm and the detection limit is too high to quantify it properly. When the sum of Co+Cu+Ni is plotted against Fe 2O3 content (Fig. 33), it presents a vertical trend with almost constant Fe 2O3 values and variation in the sum of metals. The same pattern is observable when the sum of Co+Cu+Ni is plotted against the sum of REE (Fig. 33). Some points are plotted in the hydrothermal deposits field but most of them are close to it. In the studied samples, Au ranges between 0.02 and 16.20 ppm and does not correlate with As content (ranging from < 5 to 3,270 ppm).

44 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Fig. 33. (a) The Co+Cu+=i abundance against ∑REE (La+Ce+=d+Sm+Tb+Yb+Lu) for the Svartliden BIF plots in or close by the hydrothermal deposits field. The area labelled “hydrothermal deposits” encloses data for deposits from the FAMOUS and Galapagos regions, which are mostly green muds and/or nontronite, and the area labelled “metalliferous deep-sea sediments” represents mostly deep-sea drilling project samples from East Pacific sites (Bonnot-Courtois, 1981). (b) Co, Cu and =i plotted against ∑REE (La+Ce+=d+Sm+Tb+Yb+Lu) show that Cu is mostly responsible of the trend and was immobile (c) The Co+Cu+=i abundance against Fe 2O3. (d) Al 2O3 plots against ∑REE.

45 M. SCIUBA - MASTER THESIS (2013) 5.5.3. Rare earth elements

REE pattern Rare earth element data from the Svartliden BIF is presented in the Fig. 34 and the Fig. 35. Yttrium is included based on its that results in a chemical behaviour similar to the REE (Henderson, 1984; Bau and Dulski, 1996, 1999).

The REE distribution patterns and the variation observed in total REE contents range from moderate to high abundances (∑REE = 44.56 to 95.23 ppm). The average of the ∑REE is high with 67.54 ppm.

The degree of LREE enrichment relative to HREE is presented as the ratio of chondrite-normalized

(CN) La CN /Yb CN (Rollinson, 1993; Kato et al., 1998). The Svartliden BIF La CN /Yb CN ratio is 5.03, which represents a large enrichment in LREE. The average ratio of (La/Sm) CN is 3.10, and 0.81 for

(Sm/Yb) SN , and 1.46 for (Eu/Sm) SN . The Y/Ho ratios range from 27.11 to 39.54 with an average of 34.78.

A light covariance between ∑REE and Al 2O3 is observed with a coefficient of correlation of 0.42 (Fig. 33).

Fig. 34. REE content in the Svartliden BIF, normalized (a) to chondrite (data from McDonough and Sun, 1995) and (b) to =orth American Shale Composite (data from data Gromet et al., 1984, and extrapolated Pr, Y and Ho values from Haskin and Haskin, 1966).

The Fig. 35 illustrates the (REE+Y) PAAS patterns of modern high- and low-temperature hydrothermal solutions and seawater. The (REE+Y) PAAS of the Svartliden BIF shows the same pattern as surface seawater: a slightly negative Ce anomaly and a slightly positive Y anomaly. However, the

(REE+Y) PAAS in the Svartliden BIF is much closer to hydrothermal solutions and low-T hydrothermal solutions respectively.

46 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

5 5 Fig. 35. (REE+Y) PAAS patterns for average hydrothermal fluids (x 10 ), seawater (x 10 ) modified after Basta et al (2011) and the Svartliden BIF. Data sources: average of high-T hydrothermal solutions form TAG and EPR, 13°= and 17-19°S (Douville et al., 1999); low-T hydrothermal solutions (Michard et al., 1993); average of deep seawater from EPR (~2500m, Klinkhammer et al., 1983; Bau et al., 1995; and 1000-2000 m, Bau et al., 1996); surface seawater from north Pacific Ocean (Alibo and =ozaki, 1999).

The average (REE+Y) NASC pattern of the Svartliden BIF is compared to average values of global BIFs

(Fig. 36). The Svartliden (REE+Y)NASC values range between the Sierras Pampeanas BIF

(REE+Y) NASC pattern and the Penge iron-formation pattern. However the Svartliden data is much closer to the (REE+Y) NASC pattern of the Sierras Pampeanas BIF. Both are characterized by a negative Ce anomaly, a slightly positive Eu anomaly and a slightly positive Y anomaly.

Almost all of the BIFs presented in the Fig. 36 have been metamorphosed from greenschist to amphibolite facies, for instance like the Sierras Pampeanas BIF (Gonzalez et al., 2009), the Penge iron-formation (Bau et al., 1996), the BIF of the Chitradurga schist belt, the BIF of Babadudan schist belt (Arora et al., 1995) and the BIF of the Sargur schist belt (Kato et al., 1996). However, they do not show similar (REE+Y) NASC pattern.

47 M. SCIUBA - MASTER THESIS (2013)

Fig. 36. (REE+Y) ASC patterns for several BIFs in the world: Sierras Pampeanas BIF of San Luis, Argentina (Gonzalez et al., 2009); Penge iron-formation, Transvaal Supergroup, South Africa (Bau et al., 1996), BIFs of the Chitradurga schist belt (Raju, 2009), the Babadudan schist belt (Arora et al., 1995), and the Sargur schist belt (Kato et al., 1996), India; Dales Gorge, Joffre and Boolgeeda iron-formation, Hamersley basin, Australia (Alibert et al., 1993).

48 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE Eu anomaly According to Basta (2011), the Eu anomaly is defined as Eu/Eu* = Eu/√(Sm.Gd). It is positive when above 1 and negative when below 1.

The (Eu/Eu*) CN of the Svartliden BIF varies between 0.69 and 0.91. The average (Eu/Eu*) CN is slightly negative (average = 0.83). When the values are NASC normalized, the anomaly is positive.

They vary between 1.04 and 1.36, with an (Eu/Eu*) NASC average of 1.25.

Plotted against the age, the Svartliden BIF (Eu/Eu*) NASC is close to some Superior-type BIFs values and far away of the Algoma-type ones (Fig. 37).

Fig. 37.Variations with time of the average (Eu/Eu*) ASC for Algoma- and Superior-type BIFs, modified after Huston and Logan (2004). The Svartliden Eu anomaly is plotted against its lower possible age of formation.

Ce anomaly The Ce anomaly defined as Ce/Ce* = Ce/√(La.Pr) according to Akagi (1998), is positive when above

1 and negative below 1. The Ce anomaly is negative both normalizations. The (Ce/Ce*) CN average is

0.49 (ranges between 0.43 and 0.62) and the (Ce/Ce*) NASC average is 0.47 and it ranges between 0.41 and 0.60.

The diagram Ce/Ce* against Pr/Pr* is used to identify La and Ce anomalies (Fig. 38) in BIF (Baud and Dulski, 1996). The Ce/Ce* is calculated as above and Pr/Pr* ratios as Pr NASC /(0.5Ce NASC +

0.5Nd NASC ). In the Fig. 38, the Svartliden BIF plots in the field IIIb defined by a negative Ce anomaly. None of the values of Paleoproterozoic or Archaean and early Paleoproterozoic BIF collected by Planavsky et al. (2010) plot in this field. Archaean and early Paleoproterozoic BIFs are mostly characterized by negative La anomaly and no Ce anomaly, whereas Paleoproterozoic BIFs are defined by negative La anomaly and no Ce anomaly or positive Ce anomaly.

49 M. SCIUBA - MASTER THESIS (2013)

Fig. 38. Plot of Ce (S) and Pr (S) anomalies for a set of late Paleoproterozoic and Archaean and early Paleoproterozoic iron-formations (modified from Planavsky et al., 2010). Positive Ce anomalies are only present in late Paleoproterozoic iron-formations, whereas all shown iron-formations lack negative Ce anomalies. Field I: neither Ce nor La anomaly, field IIa: positive La anomaly, no Ce anomaly, field IIb: negative La anomaly, no Ce anomaly, field IIIa: positive Ce anomaly, field IIIb: negative Ce anomaly. The Svartliden anomalies are plotted in field IIIb which means that it has a negative Ce anomaly.

50 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE 6. Discussion

The mineralogical and geochemical study aims to classify the Svartliden BIF. However, it is difficult to differentiate between Algoma- and Superior-type iron-formation. Firstly, the Svartliden BIF has been affected by strong deformation and shearing, which likely resulted in tectonic dismemberment or imbrication of genetically unrelated packages. Secondly, the BIF has been highly metamorphosed and hydrothermally altered. Those events might have affected the discriminating features used to classify BIFs.

6.1. Mineral assemblage, metamorphism and hydrothermal alteration

The primary composition of the Svartliden BIF can be discussed according to the previous observations. The paragenetic sequence of the Svartliden BIF is proposed in the Fig. 39. Three main metamorphic phases are distinguished: the primary phase, the prograde phase and the retrograde phase. Magnetite bands of the type 1 BIF seems to be the only relict of the primary assemblage. It suggests that the Svartliden BIF is an oxide facies iron-formation, formed in a shallow marine environment (Klein, 1973). However, it does not present fine crystalline texture as is typical for iron- rich minerals in well-preserved BIFs (Beukes and Gutzmer, 2008), but a massive texture with locally triple angles (Fig. 24). It might be presupposed that magnetite is a product of early and comes from the decomposition of primary hematite (Klein, 2005). The quartz texture of the type 1 BIF indicates recrystallisation during metamorphism, as metamorphism of iron formation to recrystallisation of components, increasing grain size (Beukes and Gutzmer, 2008). Carbonates were probably present in the primary mineralogical assemblage. Calcium in hedenbergite, ferro-actinolite and ferro-hornblende probably moved from carbonates during metamorphism. For instance, ferro- dolomite would bring Ca and Mg necessary to form actinolite and clinopyroxene (Klein, 1973, 2005).

The reaction would be:

Ca(Fe,Mg)(CO 3)2 + 2 SiO 2 → Ca(Fe,Mg)Si 2O6 + 2 CO 2 (1) ferro-dolomite clinopyroxene Ferro-dolomite would also be the origin of the formation of grunerite during prograde metamorphism as visible in the type 1 BIF, by the reaction (Klein, 2005):

7 Ca(Fe,Mg)(CO 3)2 + 8 SiO 2 + H 2O → (Fe,Mg) 7Si 8O22 (OH) 2 + 7 CaCO 3 + 7 CO 2 (2) ferro-dolomite grunerite calcite

51 M. SCIUBA - MASTER THESIS (2013) The strong correlation between CaO and MgO (Fig. 31) supports the assumption about ferro-dolomite as primary mineral. MgO would be incorporated in the primary carbonates (Basta et al., 2011). CaO is not related here to calc-silicate alteration because the CaO content varies strongly in Archaean and Proterozoic BIFs (Fig. 31) and none of the calc-silicate minerals have been observed .

Those minerals of the least altered BIF previously discussed, magnetite and interbands of quartz- grunerite show that the Svartliden BIF has been metamorphosed in lower amphibolite facies (Eilu et al., 1999).

The fluorapatite bands, parallel to primary banding were formed probably from the layers rich in and in in the primary BIF. It is important to notice that apatite is more common in Algoma-type BIF than Superior-type BIF (Jebrak and Marcoux, 2007). However it is not a discriminative feature.

Ferro-actinolite contained in the type 2 BIF come from prograde reactions like grunerite. The deformation visible in some samples of type 2 and type 3 BIF is stated after metamorphism because of the clasts of actinolite (Fig. 26) present in the micro-folding and locally sheared.

The pyrrhotite of the type 2 and the type 3 BIF is a part of prograde reactions but also hydrothermal alteration. The association of arsenopyrite, chalcopyrite and pyrite with pyrrhotite suggests their co- formation in the prograde phase. Decomposition of arsenopyrite by silicates like grunerite and quartz is a part of the retrograde reactions (Fig. 25). Minerals formed during retrograde metamorphism contribute to the dilution of gold in the BIF.

In the type 3 BIF, clinopyroxene and fayalite suggest high conditions during peak metamorphism (Klein, 2005). Clinopyroxene has been developed in lower temperature and pressure than fayalite (Klein, 2005). Presence of triple angle in fayalite shows equilibrium during crystallisation. Inclusions of magnetite in fayalite (Fig. 28) and the fine scale network of magnetite around fayalite grains (Fig. 24) constitute relicts of early formed magnetite. Like the replacement of clinopyoxene by ferro- actinolite, the replacement of fayalite by grunerite (Fig. 28) is a part of retrograde reactions. Retrograde metamorphism consists mostly of reactions among the anhydrous silicates (clinopyroxene and fayalite), dissolution of the BIF by hydration, and formation of amphiboles. Quartz and grunerite, both forming veins crosscutting the primary banding, are products of hydrothermal alteration (Fig. 28). However, this grunerite is formed after the quartz veins as grunerite veins crosscut the quartz veins (Fig. 22). Serpentine occurs as product of alteration of Fe-rich minerals which fills up late fractures. Chlorite might be created during retrograde metamorphism.

52 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Fig. 39. Paragenetic sequence of the Svartliden BIF. Minerals formed by metamorphism are not distinguishable from those formed by hydrothermal alteration because both events occurred at the same time. Gold is concentrated with arsenopyrite likely during peak metamorphism.

Ferro-hornblende, quartz, grunerite, and pyrrhotite, minerals found in the type 2, are characteristic of the mid-amphibolite facies (Eilu et al., 1999). The type 3, the strongly altered BIF is characterised by grunerite-ferro-hornblende-hedenbergite-fayalite-pyrrhotite-arsenopyrite. Those minerals are typical in BIF metamorphosed in mid-amphibolite facies (Eilu et al., 1999). Anhydrous minerals such as clinopyroxene and fayalite are the results of the highest metamorphic grade in iron-formation (Klein, 2005; Bekker et al., 2010). Sulphidation of Fe-oxides, i.e the replacement of primary magnetite by pyrrhotite as visible in the type 2 and type 3 BIF, is one of the most distinct features to recognize the proximal alteration zone of mid-amphibolite facies BIF (Eilu et al., 1999). The Svartliden BIF has been metamorphosed in lower- to mid-amphibolite facies. Gradational variations from lower- amphibolite facies to mid-amphibolite facies are visible from east to west in the Svartliden mine. It is expected that the Svartliden BIF underwent PT conditions between 3 and 5 kbar and ca. 500-650°C, as Gonzales et al. describes for the BIF in the Eastern Sierras Pampeanas of San Luis (Argentina) metamorphosed to amphibolite facies.

53 M. SCIUBA - MASTER THESIS (2013) Gold formation in the BIF is stated in high stage of metamorphism with the development of arsenopyrite. At this point the question is what is the origin of the gold? Is the gold primary or secondary? Primary gold can be precipitated on the sea floor (Herzig et al, 1990; Binnes, 1993). Chemical sedimentary rocks, especially Algoma-type BIFs, at least locally, show enrichment in gold of up to 1000 ppb (Saager et al., 1982; Groves et al., 1987; Gross, 1988). The average content of Au in Algoma-type BIFs has been estimated at ca. 170 ppb and at ca. 20 ppb for Superior-type BIFs (Saager et al., 1982). In Svartliden, primary gold hosted in the BIF might have been remobilized to the mineralization. In such case, as the Svartliden BIF is small in size and the resources are estimated at 2.1 Mt of Au at 4.5 g/t Au, the average content of Superior-type BIF does not seem to be enough to produce such mineralization. The Algoma-type assumption for Svartliden BIF seems to be likely more probable than the Superior-type one. In Svartliden, the least altered BIF, the type 1 contains gold. Unmetamorphosed BIF would be necessary to prove that Svartliden BIF contains some residual gold, and to compare it to the Algoma- and Superior-type BIFs primary content. The Svartliden BIF is likely too small to be the origin of the gold mineralization and a gold input from a hydrothermal fluid is likely necessary to provide all the gold in the mineralization.

The second assumption would be that the BIF acted as a chemical trap for gold mineralization from hydrothermal fluids (Groves and Foster, 1991). This coincides more with the main gold association observed in the BIF: gold occurs as inclusions in arsenopyrite, but also associated with other sulphides (mainly pyrrhotite and minor chalcopyrite and pyrite). The gold was introduced as a consequence of focused fluid flow and sulphidation of the oxide facies BIF leading to epigenetic formation of gold (Phillips and Groves, 1983; Colvine et al., 1984; Fyfe and Kerrich, 1984; Phillips et al., 1984; Fuchter and Hodgson, 1986; Lhotka and Nesbitt, 1989; Pal and Mishra, 2003). This late sulphidation, created by FeS, would also explain the very high content in Fe of Svartliden BIF. For many gold deposits associated with BIFs of Archaean greenstone belts, an epigenetic origin has been proposed (Siva Siddaiah and Rajamani, 1989). Examples include Mt. Morgans, Yilgarn Block, (Vielreicher et al., 1994), the Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil (Lobato et al., 2001), the Vubachikwe BIF, Gwanda greenstone belt, Zimbabwe (Saager et al., 1987), or the Nevoria BIF, Western Australia (Phillips, 1984). This assumption is supported by the current theory about the Svartliden mineralization which is also considered an epigenetic lode gold deposit (Hart et al., 1999, Laurent, 2001; Eklund, 2007).

54 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

6.2. Geochemistry and relationship to primary environmental settings

The Svartliden BIF shows a signature of primary hydrothermal input in its geochemistry even if it has been metamorphosed and subjected to hydrothermal alteration.

When Al 2O3 is plotted against SiO 2 (Fig. 31), the Svartliden BIF appears in the hydrothermal field.

The low Al 2O3 content is a primary feature of the iron-formation, because even in high metamorphic grades, Al is considered immobile (Ferry, 1983). So even if the SiO 2 content has been modified by metamorphism and hydrothermal alteration, the hydrothermal feature is visible in low Al 2O3 content.

The sum of the REE results against (Co+Ni+Cu) plot in or close to the hydrothermal deposits field (Fig. 33). This field represents data from green muds and/or nontronite and is concluded to be the result of mixing of hydrothermal solutions from sub-oceanic with ocean water (Klein and Ladeira, 2000). The vertical trend of the Svartliden BIF is due to Cu (values up to 162 ppm) which tends to be mobile, particularly at high temperatures, whereas Co is considered immobile (Rollinson, 1993). Even if Ni is normally also immobile (Rollinson, 1993), it tends to have been mobile in the Svartliden BIF (Fig. 33). So Co, Ni, and Cu are probably formed from a precipitation from a hydrothermal fluid.

The hydrothermal assumption is also supported by the P 2O5 content which directly link to the apatite bands (Gonzalez et al., 2009) observed in the Svartliden BIF.

The REE are commonly used in BIF studies. However, the REE pattern of the Svartliden BIF can be used only if the REE are considered immobile during metamorphism and hydrothermal alteration. Rare earth elements are commonly considered immobile during low-grade metamorphism, weathering and hydrothermal alteration (Pearce, 1983; Rollinson, 1993). For high grade metamorphism (amphibolite to granulite facies), a couple of studies on silicate-rich lithologies did not detect REE mobility during metamorphism (e.g., Cullers et al., 1974; O'Nions and Pankhurst, 1974; McGregor and Mason, 1977; Muecke et al., 1979; Pride and Muecke, 1981; Arvanitidis and Rickard, 1987). Extremely large fluid/rock ratios appear to be necessary to cause significant changes in REE patterns during regional metamorphism of silicate-rich lithologies (Taylor and McLennan, 1985). Thus except where partial melting or intense retrograde metamorphism occurred, metamorphism does not affect the primary REE patterns of silicate-rich lithologies (Lottermoser, 1992). If the metamorphism changes the mobility of REE, heavy REE (Lu and Yb) are essentially considered immobile (Gifkins, 2005), whereas the light REE may be variably mobile during alteration (MacLean and Barrett, 1993). Lanthanum is the most likely to be affected and the mobility of the other REE decreases towards the heavy REE (Barrett and MacLean, 1994). The same argument is stated for hydrothermal activity. It is

55 M. SCIUBA - MASTER THESIS (2013) not expected to have a major effect on rock chemistry unless the water/rock ratio is very high (Rollinson, 1993). Here the REE content of the Svartliden BIF is considered unaffected by metamorphism and hydrothermal alteration, and it thereby constitutes a primary feature of the BIF.

Hydrothermal solutions from the Mid-Atlantic ridge and East Pacific Rise are characterized by LREE- enriched patterns with strong positive Eu anomalies (Michard et al., 1983; Michard and Albarède, 1986; Bau and Dulski, 1999; Douville et al., 1999) whereas seawater displays HREE-enriched patterns with negative Ce and positive Y anomalies (Elderfield and Greaves, 1982; Bau et al., 1996; Alibo and Nozaki, 1999). The Svartliden BIF is characterized by a large LREE enrichment

(La CN /Yb CN = 5.03), a negative Ce anomaly (Fig. 38) and a light positive Y anomaly. Those features are interpreted as the result of a mixture between primary hydrothermal solutions and seawater.

Furthermore, the Svartliden BIF (REE+Y) NASC pattern is comparable to (REE+Y) NASC of the Sierras Pampeanas BIF, in Argentina (Fig. 36). This Argentinian BIF has been highly metamorphosed and is classified as an Algoma-type BIF, formed by a mixture of hydrothermal fluids and seawater. This comparison supports the assumption that the Svartliden BIF has been formed by mixture of hydrothermal solutions and sea-water.

The negative Ce anomaly of the Svartliden BIF (average of (Ce/Ce*) NASC = 0.47; Fig. 38) suggests that the BIF was formed in oxidised seawater. Indeed, oxidised marine settings show a strong negative Ce anomaly when shale-normalized, whereas suboxic and anoxic waters lack negative Ce anomalies (German and Elderfield, 1990). This feature is related to the age of formation of Svartliden BIF (probably before 1.95 Ga), and not to the type of BIF. The (GOE) dated at ca. 2.4 Ga (Bekker et al., 2010), is known to have modified the oxidised state of the seawater, which has a direct consequence on the Ce anomaly. One study proved that for 18 Paleoproterozoic and Archaean iron-formations, the average Ce anomalies was insignificant until after the GOE (Planavsky et al., 2010).

The anomaly, used as a tracer for hydrothermal input in BIF (Bekker et al., 2010) confirms the primary hydrothermal input. The presence of positive Eu anomalies in many Archaean and Proterozoic iron-formation REE patterns (Dymek and Klein, 1988; Klein and Beukes, 1992; Bau and Möller, 1993) is concluded to be the result of the input from sub-oceanic hydrothermal solutions from deep-sea spreading centers into ocean waters (which are considered the source of the Fe as well as of

SiO 2 of the iron-formations; Klein and Ladeira, 2000). As visible in the Fig. 35, high-temperature hydrothermal alteration (>300°C) produces fluids with a pronounced positive Eu anomaly (Michard et al., 1993; Mitra et al., 1994; Douville et al., 1999) whereas fluids produced by low-temperature hydrothermal alteration have a weak or no Eu anomaly (Michard et al., 1993). The positive NASC- 56 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE normalized Eu anomaly of the Svartliden BIF ((Eu/Eu*) NASC = 1.25) suggests that it has been subjected to medium- to low-temperature hydrothermal fluids. This Eu anomaly is a feature closer to the primary features of Algoma-type iron-formation than Superior-type iron-formation.

Despite having been subjected to high grade metamorphism and hydrothermal alteration, Svartliden BIF displays some typical characteristics of hydrothermal solutions and seawater. Basta et al. (2011) calculated the percentage of hydrothermal component and seawater component based on the Y/Ho ratio. This might be applied to the Svartliden BIF. The chondritic Y/Ho ratio is 28.75 according the data from McDonough and Sun (1995), ca. 26 for terrestrial material such as felsic and basaltic crust (Bolhar et al., 2004), and ca. 65 for Paleoproterozoic surface sea-water (Bau and Dulski, 1999). It has been showed that hydrothermal fluids of vent sites have almost chondritic Y/Ho ratios (Bau and Dulski, 1999; Douville et al., 1999). The near chondritic Y/Ho ratio (34.78) of the Svartliden BIF, which has a low detrital input as proposed by the low content in Al 2O3 and Zr, could be inherited from hydrothermal solutions. With the assumption that the Svartliden BIF was formed by mixing of hydrothermal fluids and Paleoproterozoic seawater, the average of the Svartliden BIF Y/Ho ratio could be produced by solutions containing about 83.37 % hydrothermal component (with Y/Ho ratio of ~ 65) and 16.63 % seawater component (with Y/Ho ratio of ~ 28.75).

The Svartliden BIF also displays some light terrigenous input in its geochemistry. The very low content in Al 2O3 (average of 0.44 wt.%) and Zr (less than 20 ppm except for 2 samples), both being immobile elements (Pearce, 1983), proves that the detrital input was low in the Svartliden BIF (Basta et al., 2011). Very low Al 2O3 contents indicate that iron formations were deposited in an environment devoid of siliciclastic detrital input in opposition to deep-shelf that have distinctly greater

Al 2O3 contents (Beukes and Gutzmer, 2008). Very low content in Al 2O3 and Zr support the fact that Svartliden BIF belongs to the Algoma-type. The elevated ∑REE (67.54 ppm) present in the Svartliden BIF, may be the consequence of addition of terrigenous debris to the chemical precipitate (Alibert and

McCulloch, 1993; Arora et al., 1995). The light covariance between ∑REE and Al 2O3 (r = 0.42; Fig. 33) is also one of the diagnostic features bracketing the degree of contamination in the BIF, as it tends to increase with enhanced clastic input (Dymek and Klein, 1988). An insignificant clastic contamination is confirmed by some REE ratios. According to Bau and Möller (1993), independent from their provenance, age, and metamorphic grade, iron-formations free from clastic contaminators display a similar REE signature: (La/Sm)CN > 1, (Sm/Yb) SN < 1, and (Eu/Sm) SN > 1

(Bau and Möller, 1993). The Svartliden BIF displays those three characteristics with (La/Sm) CN =

3.10, (Sm/Yb) NASC = 0.81, and (Eu/Sm) NASC = 1.46.

57 M. SCIUBA - MASTER THESIS (2013)

The strong positive correlation between Al 2O3 and TiO 2 (r = 0.97) shows that both probably originated from a common source (Ewers and Morris, 1981). Like Al, Ti is considered as an immobile element (Pearce, 1983). As none of them is likely to have been introduced in solution, the alternative sources are volcanic dust and terrigenous clastic material (Ewers and Morris, 1981; Dymek and Klein, 1988; Manikyamba et al., 1993). In the Svartliden case, the introduction from volcanic dust is more likely than from terrigenous clastic material according to the positive ratios of (La/Sm) CN , (Eu/Sm) SN and the negative ratio of (Sm/Yb) SN . A positive correlation between Al 2O3 and TiO 2 has also been reported from different BIFs in the world: in the BIF of Isua Supracrustal belt, west Greenland (Dymek and Klein, 1988), in the BIF from the Bababudan Schist Belt, India (Arora et al., 1995), and in the Brockman iron-formation of the Dales Gorge Member, Western Australia (Ewers and Morris, 1981).

6.3. Timing of BIF formation and tectonic setting

The Svartliden rocks are hosted by metagreywackes of the Botnian Supergroup which are considered > 1.95 Ga (Lundqvist et al., 1987; Claesson et al., 1993; Eliasson and Sträng 1998). Since Superior- and Algoma-type BIFs occurred prior to 1.95 Ga, the estimated minimum age of the Svartliden BIF does not allow for discrimination between the two types of BIF.

At smaller scale, the Svartliden BIF is hosted by a volcano-sedimentary sequence. It is in contact with metavolcanic rocks such as amphibolites and ultramafic rocks. It is also associated with metasediments interpreted to be part of a turbidite sequence. These characteristics suggest that the Svartliden BIF is an Algoma-type. Moreover, the tectonic settings of the metavolcanic rocks of the Gold Line is suggested to be a volcanic arc environment, at a deformed continental margin (Fig. 7; Bark and Weihed, 2007), depositional environment typical for Algoma-type BIF (Gross, 1993). The Gold Line (northern parts of the Bothnian Basin, Fig. 8) hosts also some minor volcanic-hosted massive sulphide deposits, ca. 15 km north of Svartliden (Weihed, 1992) and a large number of them are also found in the nearby Skellefte District (Fig. 7; Weihed and Eilu, 2005). It is known that VMS deposits are in some cases associated with Algoma-type BIFs (Bekker et al., 2010). Situated some ca. 30 km SE of Svartliden, close to the Fäboliden gold deposit, a BIF is also hosted by a volcano- sedimentary sequence of the Bothnian Supergroup. The BIF at Fäboliden is barren of gold and has therefore not been studied in detail (Bark and Weihed, 2007). Hence, the Svartliden BIF is not an isolated feature in the Gold Line.

58 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

7. Conclusions

1. Located in the Gold Line, the Svartliden BIF is hosted by the volcano-sedimentary sequence of the Bothnian Supergroup. The BIF is associated with metavolcanic rocks and metasedimentary rocks which are interpreted to be part of a turbidite sequence.

2. The BIF occurs as discontinuous boudinaged lenses with a thickness varying from a few centimeters to a couple of meters. The length of the boudins is commonly around 250 m.

3. Three types of BIF have been recognized according to the alteration, the metamorphism and the deformation. The type 1, the least altered is composed of preserved primary magnetite bands and interbands of quartz-grunerite. The type 2 is moderately altered and contains quartz, grunerite, ferro- actinolite, magnetite and pyrrhotite. The type 3 is the most altered and the most deformed. It is composed of quartz, grunerite, ferro-actinolite, ferro-hornblende, pyrrhotite, arsenopyrite, clinopyroxene and fayalite. The paragenetic sequence of the BIF has been proposed, distinguishing three phases: a primary phase, a prograde phase and a retrograde phase.

4. The Svartliden BIF has been hydrothermally altered and metamorphosed from low- to mid- amphibolite facies. Both events occurred in the same time.

5. The secondary character of the gold in the Svartliden deposit indicates an epigenetic origin.

6. The BIF was formed by a mixture of hydrothermal solutions and seawater.

7. Clastic and terrigenous inputs in the Svartliden BIF are likely insignificant.

8. The tectonic setting of the Svartliden area is suggested to be a volcanic arc environment.

9. The points 1, 2, 6, 7 and 8 suggest that Svartliden BIF is an Algoma-type BIF.

59 M. SCIUBA - MASTER THESIS (2013) References

Alibert, C., McCulloch, M.T., 1993. Rare earth element and Nd isotopic compositions of the BIFs and associated shales from Hamersley, Western Australia. Geochimica et Cosmochimica. Acta 57, p. 187–204. Alibo, D.S., Nozaki, Y., 1999. Rare earth elements in seawater: particle association, shale normalization, and Ce-oxidation. Geochimica et Cosmochimica Acta 63, p. 363–372 Allen, R.L.,Weihed, P., Svenson, S-Å., 1996. Setting of Zn–Cu–Au–Ag massive sulphide deposits in the evolution and facies architecture of a 1.9 Ga marine volcanic arc, Skellefte District, Sweden. , Vol. 91, p. 1022–1053 Andersson, J., 2012. The Svartliden granite- petrography, whole rock geochemistry and stable isotope composition, Master Thesis, University of Technologies of Luleå, p… Arora, M., Govil, P.K., Charan, S.N., Uday Raj, B., Balaram, V., Manikyamba, G., Chatterjee, A.K., and Naqvi, S.M., 1995. Geochemistry and Origin of Archaean BIF from the Bababudan Schist Belt, India, Economic Geology, Vol. 90, p. 2040-2057 Arvanitidis, N.D. and Rickard, D.T., 1987. An evaluation of lanthanide geochemistry in ore petrology. Miner. Wealth, Vol. 46, p.21-28. Bark. G., and Weihed. P., 2007. Orogenic gold in the new Lycksele-Storuman ore province. northern Sweden; the Palaeoproterozoic Faboliden Deposit Source: Ore geology reviews. Vol. 32. iss. 1- 2 p. 431 Bark. G., and Weihed. P., 2012. Geodynamic settings for Paleoproterozoic gold mineralization in the Svecofennian domain: A tectonic model for the Fäboliden orogenic gold deposit, northern Sweden, Ore Geology Review, Vol. 48, p. 403-412 Barrett, T.J. and MacLean, W.H., 1994. Chemostratigraphy and hydrothermal alteration in exploration for VHMS deposits in greenstone and younger volcanic rocks. In: Alteration and Alteration Processes Associated with Ore-Forming Systems. D. R. Lentz, editor. Basta. F.F., Maurice. A.E.. Fontboté. L.. Favarger. P.Y.. 2011. Petrography and geochemistry of the (BIF) of Wadi Karim and Um Anab. Eastern Desert. Egypt: Implications for the origin of BIF. Precambrian Research 187. p. 277-292 Bau, M., Möller, P., 1993. Rare earth element systematics of the chemically precipitated component in Early Precambrian iron formations and the evolution of the terrestrial atmosphere–hydrosphere– lithosphere system. Geochimica et Cosmochimica Acta 57, p. 2239–2249 Bau, M., Dulski, P., 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa Precambrian Research 79, p. 37–55 Bau, M., Dulski, P., 1999. Comparing yttrium and rare-earth in hydrothermal fluids from the Mid- Atlantic Ridge: implications for Y and REE behaviour during nearvent mixing and for the Y/Ho ratio of Proterozoic seawater. Chemical Geology 155, p. 77–90 Bekker. A.. Slack. J.F.. Planasvsky. N.. Krapež. B.. Hofmann. A.. Konhauser. K.O.. and Rouxel. O., 2010. Iron-Formation: The Sedimentary Product of a Complex Interplay among Mantle. Tectonic. Oceanic. and Biospheric Processes, Economic Geology. Vol. 105. p. 467-508 Bergman. S.. Kübler. L.. and Martinsson. O., 2001. Description of regional geological and geophysical maps of northern Norrbotten County (east of the Caledonian orogen). Geological Survey of Sweden Bergström. U.. 2001. Geochemistry and tectonic setting of volcanic units in the northern Västerbotten county. northern Sweden. Economic geology research. Vol. 1. p. 1999-2000 Beukes, N.J., and Gutzmer, J., 2008. Origin and Paleoenvironmental significance of major iron formations at the Archaean-Paleoproterozoic boundary, Economic Geology, Vol. 14, p. 5-47 60 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE Binns, R.A., 1993. Volcanogenic base metal sulphides on the modern sea floor: implications for future exploration in the Eastern Goldfields Province of Western Australia. In: P.R. Williams and J.A. Haldane (Compilers), An International Conference on Crustal Evolution, Metallogeny and Exploration of the Eastern Goldfields, Extended Abstracts. AGSO, WA Inc. Rec., 1993/54, p. 175-179 Bolhar, R., Kamber, B.S., Moorbath, S., Fedo, C.M., Whitehouse, M.J., 2004. Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planetary Science Letter 222, p. 43–60 Bonnot-Courtois. C., 1981. Distribution des terres rares dans les dépôts hydrothermaux de la zone Famous et des Galapagos – Comparaison avec les sédiments métallifères. Marine Geology. Vol.39. p.1-14 Bullis, H.R., Hureau, R.A., and Penner, B.D., 1993. Distribution of Gold and Sulphides at Lupin, Northwest Territories, Economic Geology, Vol. 89, p. 1217-1227 Claesson, S., Huhma,H.,Kinny, P.D.,Williams, I.S., 1993. Svecofennian detrital ages— implications for the Precambrian evolution of the Baltic Shield. Precambrian Research, Vol. 64, p. 109–130 Clout. J.M.F.. and Simonson. B.M.. 2005. Precambrian Iron Formations and Iron formation-Hosted Deposits. Economic Geology. Vol. 100th Anniversary Volume. p. 643-679 Colvine, A.C., Andrews, A.J., Cherry, M.E., Durocher, M.E., Fyon, A.J., Lavigne, Jr., M.J., Macdonald, A.J., Marmont, S., Poulson, K.H., Springer, J.S. and Troop, D.G., 1984. An integrated model for the origin of Archaean lode gold deposits. Ontario Geological Survey, Open File Rep., 5524, 98 p Connolly, J. A. D., 2005. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation, Earth and Planetary Science Letters, Vol. 236, p. 524–541 Culler, R.L., Yehl, L., Chaudhuri, S., and Guidotti, C.V., 1974. Rare earth elements in the Silurian politic schists from N.W. Maine. Geochimica et Cosmochimica Acta 38, p. 389-400 Dale, J., Holland, T. J. B. and Powell, R. 2000. Hornblende-garnet-plagioclase thermobarometry: a natural assemblage callibration of the thermodynamics of hornblende, Contributions to Mineralogy and Petrology, Vol. 140, p. 353–362 Diener, J. F. A., Powell, R., , R. W. and Holland, T. J. B., 2007. A new thermodynamic model for clino- and orthoamphiboles in the system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O, Journal of Metamorphic Geology, Vol. 25, p. 631–656 Douville E., Bienvenu P., Charlou J. L., Donval J. P., Fouquet Y., Appriou P. and Gamo T., 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta 63, p. 627–643 Dymek. R.F.. and Klein. C.. 1988. Chemistry. petrology and origin of BIF lithologies from the 3800Ma Isua Supracrustal Belt. West Greenland. Precambrian Research 39. p. 247-302 Dragon Mining, quaterly activities report for the quarter ended 30 September 2011 Eilu. P.K., Mathison. C.I.. Groves. D.I.. and Allardyce. W.J.. 1999. Atlas of alteration assemblages. styles and zoning in orogenic lode-gold deposits in a variety of host rock and metamorphic settings. Geology and Geophysics Department (Centre for Strategic Mineral Deposits) & UWA Extension. The University of Western Australia. Publication No. 30 Eklund. D., 2007. Mineralogy of the hypozonal Svartliden gold deposit. northern Sweden. with emphasis on the composition and paragenetic relations of electrum. Master thesis report. Department of Earth Sciences. Uppsala University Elderfield, H. and Greaves, M.J., 1982. The rare earth elements in seawater. Nature, Vol. 296, p. 214- 219 61 M. SCIUBA - MASTER THESIS (2013) Eliasson, T., Sträng, T., 1998. Kartbladen 23H Stensele. In Wahlgren, C., (Ed.) Sveriges Geologiska Undersökning, Rapporter och meddelanden 97, 55-59. (In Swedish). Ewers, W.E., and Morris, R.C., 1981. Studies of the Dales Gorge Member of the Brockman Iron formation, Western Australia, Economic Geology, Vol. 78, p. 1929-1953 Ferry, J.M., 1983. Mineral reactions and element migration during metamorphism of calcareous sediments from the Vasselboro Formation, south-central Maine, American mineralogist, Vol. 68, p. 334-354 Fripp. R.E.P., 1976. Stratabound Gold Deposits in Archaean BIF. Rhodesia. Economic Geology. Vol. 71. p. 58-75 Fuchter, W.A.H., and Hodgson, C.J., 1986. Gold deposits of the North Western Mining Camp, Gwanda greenstone belt. In: A.J. Macdonald (Editor), Proc. of Gold '86, an International Symposium on the Geology of Gold, Toronto, Ontario, p. 255-269 Fyfe, W.S., Kerrich, R., 1984. Gold: natural concentration processes. In: Foster, R.P. (Ed.), Gold '82. Balkema, Roterdam, p. 99–127 Gaál, G., Gorbatschev, R., 1987. An outline of the Precambrian evolution of the Baltic Shield. Precambrian Research, Vol. 35, p. 15–52 German, C. R., and Elderfieldh, H., 1990. Rare earth elements in the NW Indian Ocean, Geochimica et Cosmochimica Acta 54, p. 1929-l 940 Gifkins, C., Herrmann, W., and Large, R., 2005. Altered volcanic rocks, a guide to description and interpretation, Centre for Ore Deposit Research, University of Tasmania, Australia Gnaneswar Rao, T., Naqvi, S.M., 1995. Geochemistry, depositional environment and tectonic setting of the BIF of late Archaean setting of the BIF of late Archaean Chitradurga schist belt, India. Chemical Geology, Vol. 121, p. 217–243 Gole, M.J., and Klein, C., 1981, High-grade banded iron-formations, Western Australia: Assemblages with coexisting pyroxenes ± fayalite: American Mineralogist, Vol. 66, p. 87–99 Gonzalez. P.D.. Sato. Q.M.. Llambias. E.J.. and Petronilho. L.A.. 2009. Petrology and geochemistry of the banded iron formation in the Eastern Sierras Pampeanas of San Luis (Argentina): Implications for the evolution of the Nogolí Metamorphic Complex. Journal of South American Earth Sciences. Vol.28. p.89-112 Goodwin, A.M., 1962. Structure, stratigraphy, and origin of iron formations, Michipicoten area, Algoma District, Ontario, Canada, Geological Society of America bulletin, Vol. 73, p. 561-585 Goodwin. A.M., 1973. Archaean Iron-formations and Tectonic Basins of the . Economic Geology. Vol. 68. p. 915-933 Green, E. C. R., Holland, T. J. B. and Powell, R., 2007. An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogite rocks, American Mineralogist, Vol. 92, p. 1181–1189 Gross. G.A., 1965. Principal Types of Iron-Formation and Derived . Annual General Meeting. Toronto. Transations. Volume LXIX. p. 41-44 Gross. G.A., 1980. A classification of iron formations based on depositional environments. Canadian Mineralogist. Vol. 18. p.215-222 Gross. G.A., 1983. Tectonic systems and the deposition of iron-formation. Precambrian Research 20. p. 171-187 Gross, G.A., 1988. Gold content and geochemistry of iron-formation in Canada. Geological Survey of Canada, Pap., 86-19, p. 54 Gross, G.A., 1993. Industrial and Genetic Models for Iron Ore in Iron-Formations, Geological Survey of Canada, Special Paper 40, p.151-170

62 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE Gromet, P., Dymek, R., Haskin, L., Korotev, R., 1984. The ‘‘North American Shale Composite” its compilation, major and trace element characteristics, Geochimica et Cosmochimica Acta, Vol. 48, p. 2469-2482 Groves, D.I., and Foster, R.P., 1991. Archaean lode gold deposits. In: Foster, R.P. (Ed.), Gold Metallogeny and Exploration. Blackie and Son Ltd., London, pp. 63–103. Groves, D.I. and Phillips, G.N., 1987. The genesis and tectonic controls on Archaean gold deposits of the Western Australian Shield: A metamorphic replacement model. Ore Geology Review, Vol. 2, p. 287-322 Guilbert and Park, 1986. The geology of ore deposits, p603 Hallberg, A., 1994. The Enåsen gold deposit, central Sweden 1. A Palaeoproterozoic high- sulphidation epithermal gold mineralization, Mineralium Deposita, Vol 29, p. 150-162 Hart, I., Marsh, S., Laurent, I., 1999. Svartliden - a new style of mineralisation in the Skellefte District. In: Cook, N.J., Sundblad, K. (Eds.), Nordic Mineral Resources SymposiumGold '99 Trondheim. Geological Survey of , Trondheim, p. 87-88 Haskin, M. A., and Haskin, L.A., 1966. Rare earths in European shales: a redetermination. Science, Vol. 154, p. 507-509 Henderson, P., 1984. General geochemical properties and abundances of the rare earth elements. In: Henderson, P. (Ed.), Rare Earth Element Geochemistry, Developments in Geochemistry, Vol. 2. Elsevier, Amsterdam, p. 1–32 Herzig, P.M., Fouquet, Y., Hannington, M.D. and Von Stackelberg, U, 1990. Visible gold in primary polymetallic sulphides from the Lau back-arc. EOS, Vol. 71, p. 1680 Holland, T. J. B. and Powell, R., 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, Vol. 16, p. 309–343 Holland, T., and Powell, R., 1996. Thermodynamics of order-disorder in minerals. 2. Symmetric formalism applied to solid solutions, American Mineralogist, Vol. 81, p. 1425-37 Huston, D.L., and Logan, G.A., 2004. Barite, BIFs and bugs: evidence for the evolution of the Earth’s early hydrosphere, Earth and Planetary Science Letters, Vol. 220, p.41-55 Isley, A.E. and Abbott, D.H., 1999. Plume-related mafic volcanism and the deposition of banded iron formation, Journal of geophysical research, Vol. 104, p. 461-477 James, H.L., 1954. Sedimentary facies of iron-formation, Economic Geology, Vol. 49, p.235-293 James, H.L., 1983. Distribution of BIF in space and time, in Iron-formation; facts and problems edited by Trendall and Morris, Jebrak, M., and Marcoux, E., 2008, Géologie des gîtes minéraux, Ministère des Ressources. Naturelles et de la Faune, Québec, 667 p Kathol, B., and Weihed, P., 2005, Description of regional geological and geophysical maps of the Skellefte District and surrounding areas, Geological Survey of Sweden Kato, Y., Yamaguchi, K.E., and Ohmoto, H., 2006. Rare earth elements in Precambrian banded iron formations: Secular changes of Ce and Eu anomalies and evolution of atmospheric , Geological Society of America, Memoir 198 Kato, Y., Ohta, I., Tsunematsu, T., Watanabe, Y., Isozaki, Y., Maruyama, S., and Imai, N., 1998. Rare earth element variations in mid-Archaean banded iron formations: Implications for the chemistry of ocean and continent and plate tectonics, Geochimica et Cosmochimica Acta, Vol. 62, p. 3475-3497 Kato, Y., Kawakami, T., Kano, T., Kunugiza, K. and Swamy. N.S., 1996. Rare-earth element geochemistry of banded iron formations associated amphibolite from the Sargur belts, South India, Journal of Southeast Asian Earth Sciences, Vol.14, p161-164

63 M. SCIUBA - MASTER THESIS (2013) Klein, C., 1973. Changes in Mineral Assemblages with Metamorphism of Some Banded Precambrian Iron-Formations, Economic Geology, Vol. 68, p. 1075-1088 Klein, C., and Beukes, N.J., 1992. Time distribution, stratigraphy, and sedimentlogical setting, and geochemistry of Precambrian iron formation. In: Schopf, J.W., Klein, C. (Eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, New York, p. 139–146 Klein, C., and Ladeira, E.A., 2000. Geochemistry and Petrology of some Proterozoic BIF of the Quadrilatero Ferrifero, Minas Gerais, Brazil, Economic Geology, Vol. 95, p. 405-428 Klein, C., 2005. Some Precambrian BIFs (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins, American Mineralogist 90, p. 1473– 1499. Laberge, G.L., 1966a. Altered pyroclastic rocks in iron-formation in the Hamersley Range, Western Australia, Economic Geology, vol. 61, p. 147-161 Laberge, G.L., 1966b. Pyroclastic rocks in South African iron-formations, Economic Geology, vol. 61, p. 572-581 Laurent, I.F., 2001. A Geological and Geophysical Synthesis of the Svartliden Project, Sweden and its application in defining gold exploration targets, Master thesis from University of Tasmania Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., . E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., Youzhi, G., 1997. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names, The Canadian Mineralogist, Vol. 35, p. 219-246 Lhotka, P.G. and Nesbitt, B.E., 1989. Geology of unmineralized and gold-bearing iron-formation, Contwoyto Lake-Point Lake region, Northwest Territories, Canada, Canadian Journal Earth Sciences, Vol. 26, p. 46-64 Lobato, L.M., Ribeiro-Rodrigues, L.C., and Vieira, F.W.R., 2001. Brazil’s premier gold province. Pat II: geology and genesis of gold deposits in the Archaean Rio das Velhas greenstone belt, Quadrilatero Ferrifero, Mineralium Deposita 36, p. 249-277 Lottermoser, B.G., 1992. Rare earth elements and hydrothermal ore formation processes. Ore Geologic Review 7, p. 25–41 Lundström, H., 1998. Metasedimentary rocks in the district of Storuman, Västerbotten. Göteborg University, Department of Earth Sciences, Master thesis, B163, 44 p Lundqvist, T., 1987. Early Svecofennian stratigraphy of southern and central Norrland, Sweden, and the possible existence of an Archaean basement west of the Svecokarelides. Precambrian Research, Vol. 35, p. 343–352 MacLean, W.H., and Barrett, T.J., 1993. Lithogeochemical techniques using immobile elements, Journal of Geochemical Exploration, Vol. 48, p. 109-133 Majumber, T., Chakraborty, K.L., and Bhattacharyya, A., 1982. Geochemistry of Banded Iron Formations of Orissa, India, Mineral. Deposita, Vol.17, p.107-118 Manikyamba, C., Balaram, V., and Naqvi, S.M., 1993. Geochemical signatures of polygenetic origin of a banded iron formation (BIF) of the Archaean Sandur greenstone belt (schist belt) Karnataka nucleus, India, Precambrian Research, 61, p. 137-164 McDonough, W. F. and Sun, S. S., 1995. The composition of the Earth. Chemical Geology, 120, 223– 253 McGregor, V.R., Mason, B., 1977. Petrogenesis and geochemistry of metabasaltic and metasedimentary enclaves in the Amîtsoq gneisses, West Greenland, American Mineralogist 62, p. 887–904

64 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE Michard, A., Albarède, F., Michard, G., Minster, J.F., Charlou, J.L., 1983. Rare-earth elements and in high-temperature solutions from East Pacific Rise field (13°N). Nature 303, 795–797 Michard, A. and Albarede, F., 1986. The REE content of some hydrothermal fluids. Chem. Geol., Vol. 55, p.51-60 Michard, A., Michard, G., Stüben, D., Stoffers, P., Chemine, J.L., Binard, N., 1993. Submarine thermal springs associated with young volanoes: the Teahitia vents Society Islands, Pacific Ocean, Geochimica and Cosmochimica Acta, Vol. 57, p. 4977-4986 Misra, K., 1999. Understanding Mineral Deposits, Kluwer Academic Publishers, 845p Mitra A., Elderfield H., and Greaves M. J., 1994. Rare earth elements in submarine hydrothermal fluids and plumes from the Mid-Atlantic Ridge. Mar. Chem. 46, p. 217–235 Muecke, G.K., Pride, C. and Sarkar, P., 1979. Rare earth element geochemistry of regional metamorphic rocks. In: L.H. Ahrens (Editor), Origin and Distribution of the Elements. Pergamon, Oxford, p. 449-464 Nironen, M., 1997. The Svecofennian Orogen: a tectonic model. Precambrian Research, Vol. 86, p. 21-44 Olivo,G.R., Gauthier, M., Bardoux, M., Lea De Sa, E., Fonseca, J.T.F., and Santana, C., 1995. Palladium-Bearing Gold Deposit Hosted by Proterozoic Lake Superior-Type Iron-Formation at the Cauê Iron Mine, Itabira District, Southern Sao Francisco Craton, Brazil: Geologic and Structural Controls, Economic Geology, Vol. 90, p. 118-134 O'Nions, R.K. and Pankhurst, R.J., 1974. Rare-earth element distribution in Archaean gneisses and , Godthab area, West Greenland. Earth Planetary Science Letter,Vol. 22, p. 328-338 Pal, N., and Mishra, B., 2003, Epigenetic nature of the banded iron formation-hosted gold mineralization at Ajjanahalli, southern India: Evidence from ore petrography and fluid inclusion studies: Research, Vol. 6, p. 531–540 Pearce, J.A., 1983. Role of the sub-continental lithosphere in genesis at active continental margins, in: Hawkesworth C.J and Norry M.J (eds), Continental baslts and mantle xenoliths, Shiva, Nantwich, p. 230-249 Phillips, G.N. and Groves, D.I., 1983. The nature of Archaean gold-bearing fluids as deduced from gold deposits of Western Australia, Geological Society of Australian Journal, Vol. 30, p. 25-39 Phillips, G.N., Groves, D.I., and Martyn, J.G., 1984. An epigenetic origin for Archaean banded iron- formation-hosted gold deposits, Economic Geology., Vol. 79, p. 162-171 Pickard, A.L., 2002. SHRIMP U-Pb zircon ages for the Palaeoproterozoic Kuruman Iron Formation, Northern Cape province, South Africa: Evidence for simultaneous BIF deposition on Kaapvaal and cratons, Precambrian Research, Vol. 125, p. 275-315 Planavsky, N., Bekker, A., Rouxel, O.J., Kamber, B., Hofmann, A., Knudsen, A., and Lyons, T.W., 2010. Rare Earth Element and yttrium compositions of Archaean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition, Geochimica et Cosmochimica Acta 74, p. 6387-6405 Pride, C. and Muecke, G.K., 1981. Rare earth element distributions among coexisting granulite facies minerals, Scourian Complex, NW Scotland. Contribution Mineral Petrologist, Vol. 76, p. 463- 471. Raju, P.V.S., 2009. Petrography and geochemical behaviour of trace element, REE and precious metal signatures of sulphidic banded iron formations from the Chikkasiddavanahalli area, Chitradurga schist belt, India, Journal of Asian Earth Sciences, Vol. 34, p. 663-673 Ribeiro-Rodrigues, L.C., Gouveia de Oliveira, C., and Friedrich, G., 2007. The Archaean BIF-hosted Cuiaba Gold deposit, Quadrilatero Ferrifero, Minas Gerais, Ore Geology Reviews 32, p. 543- 570 65 M. SCIUBA - MASTER THESIS (2013) Rollinson, H.R., 1993, Using geochemical data: evaluation, presentation, interpretation, Pearson edition, 352 p Saager, R., Oberthür, T., and Tomschi, H.P., 1987. Geochemistry and Mineralogy of BIFs-Hosted Gold Mineralization in the Gwanda Greenstone Belt, Zimbabwe, Economic Geology, Vol. 82, p. 2017-2032 Saager, R., Meyer, M., and Muff, R., 1982. Gold Distribution in Supracrustal Rocks from Archaean Geenston Belts of Southern Africa and from Paleozoic Complexes of the European Alps: Metallogenic and Geochemical Implications, Economic Geology, Vol. 77, p. 1-24 Shanmugam, G., 1997. The Bouma Sequence and the turbidite mind set, Earth-Sciences Reviews, Vol. 42, p. 201-229 Siva Siddaiah, N.S., and Rajamani, V., 1989. The Geologic Setting, Mineralogy, Geochemistry, and Genesis of Gold Deposits of the Archaean Kolar Schist Belt, India, Economic Geology, Vol. 84, p. 2155-2172 Taylor, S.R., and McLennan, S.M., 1985. The continental Crust: its Composition and Evolution. Blackwell, Oxford, 312 pp Trendall, A.F., and Blockley, 1970. The iron formations of the Precambrian Hamersley group, Western Australia, Western Australian Geological Survey, vol. 119, 366 p Trendall, A.F., 1973. Cycles in the Weeli Wolli Formation of the Precambrian Hamersley Group, Western Australia, Economic Geology, Vol. 68, p. 1089-1097 Uitterdijk Appel, P.W., 1988. On an Sn-W-bearing iron-formation in the Archaean Malene supracrustals, West Greenland, Precambrian Research, Vol. 39, p. 131-137 Vial, D.S., Abreu, G.C.c Schuber, G., and Ribeiro-Rodrigues, L.C., 2007. Smaller gold deposits in the Archaean Rio das Velhas greenstone Quadrilatero Ferrifero, Brazil, Ore Geology Reviews 32, p. 651-673 Vielreicher, R.M., Groves, D.I., Ridley, J.R., and McNaughton, N.J., 1994. A replacement origin for the BIF-hosted gold deposit at Mt. Morgans, Yilgarn Block, W.A., Ore Geology Reviews 9, p. 325-347 Weihed, P., Bergman, J., Bergström, U., 1992. Metallogeny and tectonic evolution of the early Proterozoic Skellefte district, northern Sweden. Precambrian Res. 58, p. 143–167 White, R. W., Powell, R. and Holland, T. J. B., 2007. Progress relating to calculation of partial melting equilibria for metapelites. Journal of Metamorphic Geology, Vol. 25, 511–527

66 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Appendices

67 M. SCIUBA - MASTER THESIS (2013)

Appendix 1. Sampling and brief description of the thin sections (Act: actinolite, Ap: apatite, Apy: arsenopyrite, Chl: chlorite, Cpx: clinopyroxene, Cpy: chalcopyrite, Fa: fayalite, Gru: grunerite, Hbl: hornblende, Il: ilmenite, Mag: magnetite, Po: pyrrhotite, Qz: quartz, Srp: serpentine)

Name of Drill Depth (m) the thin core from – Short description Mineralogy

section sampled to

Gru, Act, Qz, Hbl, Fa, SV10231-1 SV10231 111.10-111.20 Deformed BIF Cpy, Po, Apy

BIF with Apy and Po inside Qz, Gru, Fa, Act, Apy, SV10231-2 SV10231 112.10-112.20 Mag bands Mag, Po, Cpy

Banding with typical aspect Qz, Gru, Fa, Po, Act, SV10231-3 SV10231 113.05-113.15 (alternating Mag yellow/blue/black)

Mag band crosscutting Fa, Gru, Qz, Po, Apy, SV10240-1 SV10240 87.30-87.45 primary banding Act, Ap, Cpx, Hbl

Qz, Hbl, Gru, Cpx, Chl, SV10240-2 SV10240 87.60-87.70 Metamorphosed BIF Act, Po, Py, Mag, Fe- oxides

Boudinaged Qz vein with Qz, Fa, Po, Gru, Act, SV10241-1 SV10241 113.20-113.30 primary banding Hbl, Apy, Cpx, Mag, Ap

SV10241-2 SV10241 114.65-114.75 Primary banding Gru, Qz, Fa, Mag, Po, Py

Qz, Gru, Mag, Po, Fe- SV10242-1 SV10242 122.50-122.60 Perfect primary banding oxides

Primary banding with SV10242-2 SV10242 122.85-122.95 Qz, Gru, Mag, Po, Ap extensional veins

Fa, Gru, Ap, Po, Mag, SV10246 SV10246 160.00-161.00 Typical aspect of the BIF Chl, Srp, Cpx, Chl, Cpy, Apy, Act, Hbl

Fa, Gru, Cpx, Act, Hbl, SV10246-1 SV10246 157.00-157.10 Folded BIF Po, Mag, Py, Ap

SV10246-2 SV10246 157.60-157.70 Dark Amp with Po layer Qz, Gru, Hbl, Act, Cpx,

68 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Po, Cpy, Py

Fa, Gru, Hbl, Qz, Po, SV10246-3 SV10246 159.50-159.60 Apatite band Mag, Cpy, Fe-oxides, Ap, Srp

Qz, Gru, Hbl, Fa, Cpx, SV10252 SV10252 241.0-241.10 Dendritic alteration Po, Py, Ap,

Spotty Mag with dark green Fa, Gru, Hbl, Act, Qz, SV10297-1 SV10297 206.95-205.05 Amp Cpx, Po, Mag, Cpy, Ap

Ultramafic unit with spotty Qz, Mag, Po, Apy, Act, SV10297-2 SV10297 207.95-208-05 Mag Chl

SV10297-3 SV10297 208.40-208.50 Thin deformed banding Gru, Qz, Po, Act

Qz, Gru, Fa, Po, Py, Ma, SV10317 SV10317 151.50-151.60 Folded and faulted BIF Apy

Fa, Gru, Cpx, Mag, Po, SV10405 SV10405 212.00-213.00 Typical aspect of the BIF Cpy, Srp

Folded BIF with Mag and Po, Fa, Qz, Gru, Act, Apy, SV11402 SV11402 256.35-256.45 and apatite band Po, Cpy, Py, Chl, Ap, Au

Dark green amphiboles with Qz, Gru, Act, Hbl, Cpx, SV11403-1 SV11403 184.85-184.95 pyrrhotite Fa, Po, Mag, Py,

Qz, Gru, Fa, Po, Py, Cpy, SV11403-2 SV11403 186.9-186.95 Rusty folded BIF Apy, Au

Thin magnetite veins Fa, Gru, Cpx, Act, Po, SV11405 SV11405 255.05-255.15 crosscutting the banding Cpy, Mag, Qz

Primary banding with apatite SV11574 SV11574 255.70-255.80 Fa, Qz, Gru, Mag, Ap, Po band

69 M. SCIUBA - MASTER THESIS (2013)

Appendix 2. Simplified modelling of the sampling sections with drill holes indicated (a) section 1375 (b) section 1525 (c) section 1550 (d) section 1625 (e) section 1650 (f) section 1850 (g) section 2250 (h) section 2325. The granite and the ultramafic units are not represented.

70 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

71 M. SCIUBA - MASTER THESIS (2013)

72 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

73 M. SCIUBA - MASTER THESIS (2013)

74 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

75 M. SCIUBA - MASTER THESIS (2013)

76 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

77 M. SCIUBA - MASTER THESIS (2013)

Appendix 3. SEM results in atomic percentage for the thin section SV10240-1

Spectrum Spectrum SV10240-1- 0 SV10240-1- 1 SV10240-1- 2 SV10240-1- 3 SV10240-1- 4 SV10240-1- 5 SV10240-1- 6 SV10240-1- 7 SV10240-1- 8 SV10240-1- 9 SV10240-1- SV10240-1- 10 10 SV10240-1- 11 SV10240-1- 12 SV10240-1-

O 62.50 62.52 62.53 63.20 63.61 63.18 63.92 63.23 63.22 63.25 63.26 62.51 60.00 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.63 0.00 0.00 0.00 0.00 0.00 Al 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Si 12.49 12.58 12.64 16.02 18.04 15.91 19.60 19.02 16.10 16.25 16.32 12.56 0.00 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.00 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 25.01 24.91 24.84 20.78 18.35 20.91 16.48 14.87 20.68 20.51 20.41 24.93 40.00

Spectrum Spectrum SV10240-1- 13 13 SV10240-1- 14 SV10240-1- 15 SV10240-1- 16 SV10240-1- 17 SV10240-1- 18 SV10240-1- 19 SV10240-1- 20 SV10240-1- 21 SV10240-1- 22 SV10240-1- 23 SV10240-1- 24 SV10240-1- 25 SV10240-1- O 60.00 60.14 62.45 62.29 60.10 63.36 63.52 63.07 62.51 62.48 62.49 61.51 59.01 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.24 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.77 0.00 Mg 0.00 0.00 2.80 3.24 0.00 0.00 0.00 0.54 0.00 0.00 0.00 1.59 0.00 Al 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.67 0.00 Si 0.00 0.70 19.97 19.69 0.50 16.78 17.59 15.87 12.56 12.41 12.47 16.10 0.00 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.75 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.00 0.00 4.95 5.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.60 23.72 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 40.00 39.15 9.83 9.76 39.40 19.87 18.89 20.52 24.93 25.11 25.04 9.98 0.41

78 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Spectrum Spectrum SV10240-1- 26 26 SV10240-1- 27 SV10240-1- 28 SV10240-1- 29 SV10240-1- 30 SV10240-1- 31 SV10240-1- 32 SV10240-1- 33 SV10240-1- 35 SV10240-1- 36 SV10240-1- 37 SV10240-1- 38 SV10240-1- 39 SV10240-1- O 59.02 63.37 63.31 63.35 63.50 63.45 63.39 61.50 63.31 63.38 63.27 63.30 50.74 F 2.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.00 2.43 2.40 2.25 2.29 2.22 2.09 1.26 2.44 2.46 0.61 0.62 0.00 Al 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Si 0.00 19.28 19.57 19.44 19.81 19.47 19.30 8.77 19.24 19.35 17.44 17.58 0.55 P 13.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 24.91 0.00 0.62 0.45 0.00 0.00 0.27 0.00 0.26 0.00 0.45 0.46 46.87 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 0.34 14.92 14.10 14.51 14.39 14.86 14.96 28.47 14.75 14.80 18.23 18.04 1.84

Spectrum Spectrum SV10240-1- 40 40 SV10240-1- 44 SV10240-1- 45 SV10240-1- 46 SV10240-1- 47 SV10240-1- 48 SV10240-1- 49 SV10240-1- 50 SV10240-1- 51 SV10240-1- 52 SV10240-1- 53 SV10240-1- 54 SV10240-1- 55 SV10240-1-

O 63.35 63.38 63.05 63.11 63.28 63.09 62.32 62.89 63.28 63.14 62.88 63.17 63.10 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 2.27 2.22 0.51 0.52 2.20 0.52 2.70 0.82 2.45 0.63 0.98 0.60 0.55 Al 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.13 0.00 0.00 0.00 0.00 0.00 Si 19.27 19.37 15.78 16.10 19.04 15.94 19.45 15.28 19.10 16.54 15.39 16.43 16.05 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.27 0.23 0.00 0.00 0.42 0.00 5.15 0.00 0.23 0.20 0.00 0.00 0.00 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 14.85 14.80 20.66 20.27 15.05 20.46 10.19 20.88 14.94 19.49 20.74 19.81 20.29

79 M. SCIUBA - MASTER THESIS (2013)

Spectrum Spectrum SV10240-1- 56 56 SV10240-1- 57 SV10240-1- 58 SV10240-1- 59 SV10240-1- 60 SV10240-1- 61 SV10240-1- 62 SV10240-1- 64 SV10240-1- 65 SV10240-1- 66 SV10240-1- 67 SV10240-1- 68 SV10240-1- 69 SV10240-1-

O 62.32 62.33 63.45 63.51 63.63 63.55 59.50 61.57 61.57 63.21 61.54 63.19 61.40 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.64 0.69 0.00 0.71 0.00 0.69 Mg 3.23 3.22 1.20 1.30 1.14 1.29 0.00 1.98 1.97 2.68 1.87 2.67 1.82 Al 0.23 0.38 0.11 0.00 0.00 0.00 0.00 3.31 3.48 0.00 3.64 0.10 3.78 Si 19.78 19.66 18.61 18.97 19.31 19.04 0.00 16.93 17.08 18.96 16.76 18.83 16.34 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.35 0.38 0.00 0.36 0.00 0.44 Ca 4.95 4.77 0.15 0.14 0.00 0.00 0.00 5.12 5.13 0.22 5.03 0.20 5.27 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 9.48 9.64 16.47 16.08 15.92 16.13 39.67 10.10 9.70 14.92 10.09 15.00 10.27

Spectrum Spectrum SV10240-1- 70 70 SV10240-1- 71 SV10240-1- 72 SV10240-1- 73 SV10240-1- 74 SV10240-1- 75 SV10240-1- 76 SV10240-1- 77 SV10240-1- 78 SV10240-1- 79 SV10240-1- 80 SV10240-1- 81 SV10240-1- 82 SV10240-1- O 61.43 63.18 61.52 61.59 61.61 63.32 61.71 61.73 63.26 62.32 62.36 62.32 62.30 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.78 0.00 0.57 0.51 0.57 0.00 0.59 0.59 0.00 0.00 0.00 0.00 0.00 Mg 1.71 2.66 1.84 1.93 1.94 2.40 1.92 2.04 2.66 0.68 0.67 0.71 0.68 Al 4.07 0.00 3.36 3.06 2.90 0.16 3.34 2.98 0.00 0.00 0.00 0.00 0.00 Si 16.20 18.96 16.53 16.60 16.96 19.25 17.15 17.44 19.31 12.29 12.46 12.29 12.17 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.41 0.00 0.35 0.29 0.32 0.00 0.32 0.30 0.00 0.00 0.00 0.00 0.00 Ca 4.96 0.38 5.24 5.14 5.20 0.24 4.89 5.00 0.34 0.00 0.00 0.00 0.00 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 10.45 14.81 10.58 10.89 10.51 14.62 10.09 9.93 14.42 24.71 24.51 24.68 24.85

80 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Spectrum Spectrum SV10240-1- 83 83 SV10240-1- 84 SV10240-1- 85 SV10240-1- 86 SV10240-1- 87 SV10240-1- 88 SV10240-1- 89 SV10240-1- 90 SV10240-1- 91 SV10240-1- 94 SV10240-1- 95 SV10240-1- 97 SV10240-1- 98 SV10240-1-

O 62.29 61.94 62.31 63.23 58.81 63.25 59.11 61.61 63.16 62.29 62.32 61.38 61.69 F 0.00 0.00 0.00 0.00 2.60 0.00 2.38 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.58 0.00 0.00 0.00 0.87 0.59 Mg 0.70 2.55 0.74 2.52 0.00 2.86 0.00 2.07 2.69 0.73 0.79 1.66 1.85 Al 0.00 1.91 0.00 0.00 0.00 0.00 0.00 2.86 0.00 0.00 0.00 4.24 3.51 Si 12.13 18.31 12.28 18.95 0.00 19.31 0.00 16.93 18.90 12.18 12.37 16.30 17.10 P 0.00 0.00 0.00 0.00 13.42 0.00 13.67 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.28 0.00 0.00 0.00 0.47 0.33 Ca 0.00 5.04 0.00 0.30 24.97 0.21 24.62 5.08 0.43 0.00 0.00 5.07 4.96 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 24.88 9.73 24.67 15.01 0.20 14.37 0.22 10.58 14.82 24.80 24.52 10.00 9.98

Spectrum Spectrum SV10240-1- 99 99 SV10240-1- SV10240-1- 100 100 SV10240-1- 101 SV10240-1- 102 SV10240-1- 103 SV10240-1- 104 SV10240-1- 105 SV10240-1- 106 SV10240-1- 107 SV10240-1- 108 SV10240-1- 109 SV10240-1- 110 SV10240-1- 111 SV10240-1-

O 63.26 61.66 62.07 62.31 62.30 61.61 63.27 61.50 63.29 63.32 63.25 61.70 63.23 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.65 0.00 0.00 0.00 0.69 0.00 0.72 0.00 0.00 0.00 0.60 0.00 Mg 2.56 1.87 0.71 0.72 0.81 1.76 2.67 1.64 2.58 2.37 2.48 1.89 2.80 Al 0.00 3.46 0.00 0.00 0.00 3.55 0.24 3.98 0.00 0.20 0.19 3.24 0.30 Si 19.15 17.12 12.17 12.25 12.32 16.88 19.25 16.58 19.20 19.26 18.97 17.19 19.34 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.32 0.21 0.00 0.00 0.34 0.00 0.44 0.00 0.00 0.00 0.32 0.00 Ca 0.30 5.00 0.00 0.00 0.00 5.00 0.25 5.10 0.19 0.30 0.25 4.98 0.41 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 14.74 9.92 24.61 24.72 24.57 10.17 14.31 10.04 14.74 14.55 14.86 10.08 13.92

81 M. SCIUBA - MASTER THESIS (2013)

Spectrum Spectrum SV10240-1- 112 112 SV10240-1- 113 SV10240-1- 114 SV10240-1- 115 SV10240-1- 116 SV10240-1- 117 SV10240-1- 118 SV10240-1- 119 SV10240-1- 120 SV10240-1- 121 SV10240-1- 124 SV10240-1- 125 SV10240-1- 126 SV10240-1-

O 63.21 62.28 62.29 62.28 62.32 62.28 61.40 62.62 63.17 62.99 63.01 63.33 61.35 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.69 Mg 2.47 0.73 0.66 0.60 0.62 0.80 1.69 0.64 0.64 0.66 0.50 0.93 1.64 Al 0.21 0.00 0.15 0.13 0.14 0.15 4.44 0.00 0.00 0.00 0.00 0.00 4.17 Si 18.92 12.15 12.11 12.02 12.23 12.22 16.11 13.74 16.47 15.63 15.54 17.57 15.74 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.00 0.00 0.00 0.49 Ca 0.39 0.00 0.00 0.00 0.00 0.00 4.95 0.00 0.00 0.00 0.00 0.00 5.00 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 14.79 24.83 24.79 24.98 24.68 24.54 10.17 22.99 19.72 20.71 20.96 18.16 10.91

Spectrum Spectrum SV10240-1- 127 127 SV10240-1- 128 SV10240-1- 129 SV10240-1- 130 SV10240-1- 131 SV10240-1- 132 SV10240-1- 133 SV10240-1- 134 SV10240-1- O 62.30 63.10 63.06 63.16 63.08 62.31 63.09 63.10 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.67 0.58 0.58 0.60 0.56 0.65 0.57 0.72 Al 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Si 12.15 16.10 15.87 16.40 15.96 12.22 16.03 16.20 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 24.88 20.22 20.49 19.84 20.40 24.82 20.30 19.98

82 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Appendix 4. SEM results in atomic percentage for the thin section SV10240-2 Spectrum Spectrum SV10240-2- 0 SV10240-2- 1 SV10240-2- 2 SV10240-2- 3 SV10240-2- 4 SV10240-2- 5 SV10240-2- 6 SV10240-2- 7 SV10240-2- 8 SV10240-2- 9 SV10240-2- SV10240-2- 10 10 SV10240-2- 11 SV10240-2- 12 SV10240-2- 13 SV10240-2- O 61.67 61.64 62.10 61.58 61.58 61.55 63.47 63.45 62.64 62.60 61.57 61.68 63.17 63.07 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 1.65 1.40 0.91 1.54 1.29 1.17 1.23 1.39 1.48 1.59 1.55 1.25 1.98 1.74 Al 0.31 0.27 0.48 0.23 0.23 0.26 0.18 0.19 0.00 0.28 0.24 0.25 0.38 0.29 Si 18.95 18.75 18.73 18.73 18.62 18.70 18.87 19.00 19.56 19.51 18.83 18.85 18.53 18.43 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 8.94 9.15 7.32 9.27 9.44 9.76 0.28 0.36 4.89 4.91 9.41 9.20 0.70 1.35 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 8.47 8.79 10.46 8.64 8.83 8.55 15.96 15.60 11.43 11.11 8.40 8.78 15.25 15.13

Spectrum Spectrum SV10240-2- 14 14 SV10240-2- 15 SV10240-2- 16 SV10240-2- 17 SV10240-2- 18 SV10240-2- 19 SV10240-2- 20 SV10240-2- 21 SV10240-2- 22 SV10240-2- 23 SV10240-2- 24 SV10240-2- 25 SV10240-2- 26 SV10240-2- 27 SV10240-2- O 62.82 62.60 62.59 63.22 63.28 63.18 63.26 62.68 62.58 63.26 66.67 62.52 62.54 59.65 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 1.61 1.55 1.43 1.50 1.67 1.40 1.27 1.25 1.69 1.12 0.00 1.56 1.70 1.59 Al 0.17 0.22 0.17 0.27 0.30 0.33 0.26 0.24 0.27 0.87 0.00 0.80 0.54 0.23 Si 15.70 19.59 19.39 18.27 18.74 18.10 18.13 19.54 19.55 18.15 33.33 19.07 19.26 15.23 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.00 5.04 5.02 0.68 0.65 0.79 0.58 4.89 4.97 0.73 0.00 4.91 4.87 15.39 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 19.70 11.00 11.41 16.06 15.36 16.19 16.51 11.40 10.94 15.87 0.00 11.14 11.09 7.91

83 M. SCIUBA - MASTER THESIS (2013)

Spectrum Spectrum SV10240-2- 28 28 SV10240-2- 29 SV10240-2- 30 SV10240-2- 31 SV10240-2- 32 SV10240-2- 33 SV10240-2- 34 SV10240-2- 35 SV10240-2- 36 SV10240-2- 37 SV10240-2- 38 SV10240-2- 39 SV10240-2- 40 SV10240-2- 41 SV10240-2- O 62.57 63.51 62.59 61.76 62.52 63.10 65.57 42.60 62.56 61.72 61.68 61.62 63.43 62.61 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 1.09 0.98 1.36 1.59 2.48 3.10 1.16 0.00 1.55 1.34 1.08 1.09 1.72 1.60 Al 0.20 0.27 0.47 0.23 0.24 1.03 0.26 0.00 0.26 0.24 0.21 0.19 0.23 0.28 Si 19.11 18.95 19.22 18.76 18.90 19.58 29.87 0.00 19.43 18.86 18.83 18.75 19.17 19.61 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 29.01 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 5.17 0.40 4.90 8.36 3.80 0.96 0.87 0.00 5.09 8.93 9.36 9.55 0.30 4.95 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 11.85 15.89 11.45 9.29 12.06 12.23 2.28 28.40 11.12 8.91 8.85 8.81 15.16 10.95

Spectrum Spectrum SV10240-2- 42 42 SV10240-2- 43 SV10240-2- 44 SV10240-2- 45 SV10240-2- 46 SV10240-2- 47 SV10240-2- 48 SV10240-2- 49 SV10240-2- 50 SV10240-2- 51 SV10240-2- 52 SV10240-2- 53 SV10240-2- 54 SV10240-2- 55 SV10240-2- O 63.50 61.63 61.27 61.67 61.56 62.68 62.61 61.64 62.67 62.64 61.77 61.66 61.61 61.72 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 1.39 1.41 0.96 1.35 1.40 1.26 1.33 0.93 1.08 1.33 1.24 1.20 1.41 1.63 Al 0.20 0.25 0.12 0.26 0.18 0.23 0.29 0.17 0.20 0.49 0.29 0.24 0.24 0.26 Si 19.50 18.80 15.78 18.85 18.64 19.54 19.50 18.72 19.37 19.40 18.80 18.90 18.77 19.11 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.60 9.25 8.45 9.16 9.45 4.90 5.11 9.60 4.93 4.87 8.72 9.39 9.32 8.86 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 14.81 8.67 13.41 8.71 8.76 11.39 11.16 8.95 11.75 11.26 9.19 8.61 8.65 8.41

84 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Spectrum Spectrum SV10240-2- 56 56 SV10240-2- 57 SV10240-2- 58 SV10240-2- 59 SV10240-2- 60 SV10240-2- 61 SV10240-2- 62 SV10240-2- 63 SV10240-2- 64 SV10240-2- 65 SV10240-2- 66 SV10240-2- 67 SV10240-2- 68 SV10240-2- 69 SV10240-2- O 61.70 66.67 62.70 63.55 61.60 57.35 64.40 61.46 63.63 50.83 51.67 50.68 54.19 62.51 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 1.19 0.00 1.47 1.04 1.31 0.00 0.00 1.04 0.60 0.00 0.40 0.00 1.19 1.10 Al 0.27 0.00 0.29 0.24 0.00 0.00 5.74 0.00 0.00 0.00 0.00 0.36 1.25 Si 18.63 33.33 19.62 19.23 18.83 14.17 28.11 14.89 19.02 0.00 1.92 0.68 5.36 18.69 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.92 0.00 0.00 0.00 0.00 0.00 0.00 Ca 8.94 0.00 4.66 0.45 9.49 27.40 6.11 0.00 0.25 45.40 42.91 46.92 33.03 5.05 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.28 0.34 0.22 0.00 Fe 9.27 0.00 11.26 15.73 8.52 1.08 1.38 13.72 16.49 3.31 2.82 1.37 5.65 11.40

85 M. SCIUBA - MASTER THESIS (2013)

Appendix 5. SEM results in atomic percentage for the thin section SV10241-1 Spectrum Spectrum SV10241-1- 0 SV10241-1- 1 SV10241-1- 2 SV10241-1- 3 SV10241-1- 4 SV10241-1- 5 SV10241-1- 6 SV10241-1- 7 SV10241-1- 8 SV10241-1- 9 SV10241-1- SV10241-1- 10 10 SV10241-1- 11 SV10241-1- 12 SV10241-1- 13 SV10241-1- O 66.67 66.67 59.22 62.31 61.67 61.66 62.33 61.84 62.87 63.11 63.41 61.98 62.00 66.67 F 0.00 0.00 2.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.52 0.53 0.00 Mg 0.00 0.00 0.00 1.52 1.48 1.47 1.66 1.42 0.52 2.32 2.37 1.96 1.68 0.00 Al 0.00 0.00 0.00 1.44 0.00 0.00 1.39 0.00 0.00 0.00 0.00 2.42 2.53 0.00 Si 33.24 33.27 0.00 18.25 19.12 18.75 18.51 19.19 16.62 19.30 19.41 17.78 17.68 33.27 P 0.00 0.00 13.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.00 0.00 24.97 5.20 9.29 8.98 5.20 8.60 1.74 1.43 0.00 4.87 4.95 0.00 Fe 0.00 0.00 0.00 11.28 8.45 8.44 10.91 8.96 18.25 13.84 14.82 10.47 10.63 0.00

Spectrum Spectrum SV10241-1- 14 14 SV10241-1- 15 SV10241-1- 16 SV10241-1- 17 SV10241-1- 18 SV10241-1- 19 SV10241-1- 20 SV10241-1- 26 SV10241-1- 27 SV10241-1- 28 SV10241-1- 29 SV10241-1- 30 SV10241-1- 32 SV10241-1- 31 SV10241-1- O 63.17 63.41 63.43 62.42 62.44 66.63 66.63 63.30 63.05 63.36 62.52 62.47 63.44 63.41 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 2.25 2.29 2.15 2.47 2.58 0.00 0.00 1.98 2.14 1.96 2.39 2.42 2.02 2.15 Al 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Si 19.31 19.63 19.32 19.51 19.68 33.07 33.07 19.56 19.37 19.32 19.84 19.67 19.23 19.68 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 1.19 0.27 0.00 4.95 4.89 0.00 0.00 1.09 1.97 0.55 4.83 4.89 0.00 0.50 Fe 14.07 14.40 15.10 10.66 10.41 0.22 0.22 14.07 13.47 14.81 10.42 10.56 15.31 14.26

86 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Spectrum Spectrum SV10241-1- 33 33 SV10241-1- 34 SV10241-1- 35 SV10241-1- 36 SV10241-1- 37 SV10241-1- 39 SV10241-1- 40 SV10241-1- 41 SV10241-1- 42 SV10241-1- 43 SV10241-1- 44 SV10241-1- O 62.47 63.31 63.42 62.57 62.57 61.57 66.67 60.00 60.00 63.35 63.31 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 2.52 2.01 2.00 1.77 1.80 1.48 0.00 0.00 0.00 1.96 2.08 Al 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Si 19.83 19.03 19.46 19.69 19.64 18.86 33.33 0.00 0.00 19.24 19.24 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 4.94 0.45 0.39 5.08 4.97 9.53 0.00 0.00 0.00 0.51 0.62 Fe 10.24 15.19 14.73 10.90 11.02 8.56 0.00 40.00 40.00 14.94 14.74

87 M. SCIUBA - MASTER THESIS (2013)

Appendix 6. SEM results in atomic percentage for the thin section SV10246-1 Spectrum Spectrum SV10246-1- 0 SV10246-1- 1 SV10246-1- 2 SV10246-1- 3 SV10246-1- 4 SV10246-1- 5 SV10246-1- 6 SV10246-1- 7 SV10246-1- 8 SV10246-1- 9 SV10246-1- SV10246-1- 11 11 SV10246-1- 12 SV10246-1- 10 SV10246-1- 13 SV10246-1- O 61.41 61.40 63.16 62.51 61.29 61.43 62.23 62.23 43.53 61.41 62.14 62.20 62.21 59.37 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.72 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 2.22 2.53 3.20 0.00 2.26 2.47 1.11 1.10 0.00 2.47 0.97 0.89 2.90 0.00 Al 0.00 0.00 0.00 0.00 0.18 0.16 0.13 0.15 0.06 0.19 0.00 0.07 0.31 0.00 Si 19.10 19.03 19.51 12.54 17.25 19.06 12.27 12.25 0.10 19.00 11.68 11.87 19.55 0.60 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.13 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 27.49 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 9.81 9.51 0.50 0.00 8.56 9.45 0.00 0.00 0.00 9.46 0.00 0.00 5.58 24.84 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 7.45 7.53 13.62 24.96 10.46 7.42 24.26 24.28 28.83 7.46 25.21 24.97 9.45 0.35

Spectrum Spectrum SV10246-1- 15 15 SV10246-1- 16 SV10246-1- 17 SV10246-1- 18 SV10246-1- 19 SV10246-1- 20 SV10246-1- 21 SV10246-1- 22 SV10246-1- 23 SV10246-1- 24 SV10246-1- 25 SV10246-1- 26 SV10246-1- 27 SV10246-1- 28 SV10246-1- O 59.45 63.16 62.21 61.34 62.22 61.32 61.54 62.38 63.18 63.13 63.12 62.25 62.26 62.28 F 1.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.00 3.13 3.44 2.72 3.38 2.74 2.14 3.17 3.15 3.24 3.14 1.02 0.95 1.07 Al 0.00 0.18 0.31 0.15 0.27 0.15 0.00 0.41 0.13 0.13 0.00 0.13 0.14 0.15 Si 0.39 19.38 19.48 19.04 19.72 19.05 19.05 19.98 19.41 19.21 19.11 12.25 12.23 12.49 P 13.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 24.80 0.43 4.99 9.63 5.26 9.68 9.21 4.91 0.34 0.32 0.37 0.00 0.00 0.00 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 0.19 13.72 9.57 7.13 9.16 7.05 8.06 9.15 13.78 13.97 14.26 24.36 24.42 24.00

88 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Spectrum Spectrum SV10246-1- 29 29 SV10246-1- 30 SV10246-1- 31 SV10246-1- 32 SV10246-1- O 63.09 63.02 62.96 62.09 F 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.17 Mg 3.36 3.49 3.63 3.72 Al 0.30 0.21 0.19 0.78 Si 19.26 19.12 19.26 19.42 P 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 Ca 0.46 0.51 0.81 4.94 Mn 0.00 0.00 0.00 0.00 Fe 13.53 13.66 13.15 8.88

89 M. SCIUBA - MASTER THESIS (2013)

Appendix 7. SEM results in atomic percentage for the thin section SV10246-2 Spectrum Spectrum SV10246-2- 0 SV10246-2- 1 SV10246-2- 2 SV10246-2- 3 SV10246-2- 4 SV10246-2- 5 SV10246-2- 6 SV10246-2- 7 SV10246-2- 8 SV10246-2- 9 SV10246-2- SV10246-2- 10 10 SV10246-2- 18 SV10246-2- 19 SV10246-2- 20 SV10246-2- O 61.45 61.44 42.22 62.13 62.20 62.20 62.14 62.16 62.12 62.10 62.17 62.31 62.21 62.17 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 2.68 2.53 0.00 3.16 3.19 3.34 3.24 3.19 3.20 3.05 3.35 2.83 2.81 2.79 Al 0.37 0.47 0.00 1.57 1.35 1.43 1.47 1.29 1.30 1.38 1.16 1.07 1.31 1.30 Si 18.98 18.77 0.00 18.83 19.02 19.07 18.90 19.04 18.78 18.55 19.25 18.84 18.73 18.65 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 29.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 9.03 9.06 0.00 5.02 4.83 4.75 4.97 5.06 4.96 5.01 5.03 4.46 4.87 5.00 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 7.48 7.73 28.15 9.29 9.42 9.22 9.28 9.26 9.64 9.92 9.04 10.48 10.07 10.08

Spectrum Spectrum SV10246-2- 21 21 SV10246-2- 22 SV10246-2- 23 SV10246-2- 24 SV10246-2- 25 SV10246-2- 26 SV10246-2- 27 SV10246-2- 28 SV10246-2- 29 SV10246-2- 30 SV10246-2- 31 SV10246-2- 32 SV10246-2- 33 SV10246-2- 34 SV10246-2- O 61.38 61.41 63.03 63.17 63.15 63.13 63.19 63.06 62.02 62.08 62.42 61.97 62.07 62.32 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.26 0.19 0.26 0.20 0.00 Mg 2.56 2.50 3.14 3.16 3.23 3.25 3.15 3.07 3.15 3.15 3.12 3.11 3.14 3.16 Al 0.21 0.20 0.36 0.19 0.20 0.19 0.27 0.24 1.88 1.67 1.37 1.80 1.57 1.19 Si 18.83 18.82 19.14 19.33 19.25 19.27 19.49 18.80 18.64 18.74 18.97 18.55 18.49 18.67 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 9.36 9.27 0.82 0.33 0.28 0.34 0.40 0.40 4.86 4.68 3.36 5.05 4.58 3.89 Mn 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 Fe 7.67 7.80 13.50 13.82 13.89 13.80 13.51 14.41 9.18 9.43 10.59 9.25 9.96 10.77

90 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Spectrum Spectrum SV10246-2- 35 35 SV10246-2- 36 SV10246-2- 37 SV10246-2- 38 SV10246-2- 39 SV10246-2- 40 SV10246-2- 41 SV10246-2- O 42.46 62.02 62.09 62.09 62.27 62.03 62.01 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.19 0.19 0.23 0.05 0.00 0.24 Mg 0.00 3.02 3.04 3.09 3.53 2.81 3.24 Al 0.00 1.50 1.51 1.48 0.43 2.64 1.82 Si 0.00 18.57 18.72 18.85 19.76 17.99 18.71 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 29.24 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.00 5.08 4.86 4.88 4.81 5.01 4.97 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 28.30 9.63 9.59 9.38 9.16 9.52 9.02

91 M. SCIUBA - MASTER THESIS (2013)

Appendix 8. SEM results in atomic percentage for the thin section SV10246-3 10 10 11 12 13 Spectrum Spectrum SV10246-3- SV10246-3- SV10246-3- SV10246-3- SV10246-3- SV10246-3- 0 SV10246-3- 1 SV10246-3- 2 SV10246-3- 3 SV10246-3- 4 SV10246-3- 5 SV10246-3- 6 SV10246-3- 7 SV10246-3- 8 SV10246-3- 9 SV10246-3- O 59.19 59.13 59.28 59.19 61.25 62.55 62.53 62.55 63.38 63.40 60.00 60.00 62.15 59.09 F 2.22 2.51 2.27 2.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.92 2.52 0.00 0.00 2.37 0.00 Al 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.17 0.00 Si 0.00 0.00 0.00 0.00 12.16 12.73 12.63 12.74 19.83 19.53 0.00 0.00 18.24 0.00 P 13.73 13.84 13.89 13.77 1.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.71 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 24.86 24.52 24.55 24.76 9.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.10 0.00 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 0.00 0.00 0.00 0.00 14.70 24.73 24.84 24.71 13.87 14.54 40.00 40.00 9.97 11.57 Co 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.16 Ni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.27 As 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 26.20

14 14 15 16 17 18 19 20 21 22 pectrum pectrum SV10246-3- SV10246-3- SV10246-3- SV10246-3- SV10246-3- SV10246-3- SV10246-3- SV10246-3- SV10246-3- SV10246-3- O 42.95 62.83 62.81 42.18 62.37 62.46 62.57 63.25 62.63 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.00 1.32 1.32 0.00 0.53 0.00 1.33 1.72 1.54 Al 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Si 0.00 15.44 15.36 0.00 12.36 12.29 15.49 18.66 15.71 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 28.42 0.00 0.00 29.70 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.05 0.31 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.57 0.11 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 28.63 20.42 20.52 28.12 24.74 25.25 20.18 15.76 19.70 Co 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 As 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

92 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Appendix 9. SEM results in atomic percentage for the thin section SV10246-3 Spectrum Spectrum SV10252 0 0 SV10252 1 SV10252 2 SV10252 3 SV10252 4 SV10252 5 SV10252 6 SV10252 7 SV10252 8 SV10252 SV10252- 9 SV10252- SV10252- 10 SV10252- 11 SV10252- 12 SV10252- 13 SV10252- O 62.29 62.26 62.32 62.30 62.28 63.20 62.35 63.19 63.20 62.27 62.26 63.17 63.23 62.25 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.99 0.90 0.91 0.96 0.91 2.79 3.36 2.86 2.94 0.94 0.97 3.07 2.89 0.91 Al 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.16 0.00 0.00 0.00 0.00 0.00 Si 12.42 12.19 12.52 12.43 12.29 19.17 19.96 19.15 19.39 12.27 12.27 19.21 19.30 12.17 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.00 0.00 0.00 0.00 0.00 0.39 4.84 0.33 0.42 0.00 0.00 0.28 0.25 0.00 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 24.31 24.65 24.25 24.31 24.53 14.46 9.09 14.47 13.88 24.52 24.50 14.27 14.32 24.67

Spectrum Spectrum SV10252- 14 SV10252- 15 SV10252- 16 SV10252- 17 SV10252- 18 SV10252- 19 SV10252- 20 SV10252- 21 SV10252- 22 SV10252- 23 SV10252- 24 SV10252- 25 SV10252- 26 SV10252- 27 SV10252- O 61.54 62.01 63.27 63.18 63.11 62.27 61.77 61.63 62.00 60.63 62.22 60.56 62.28 63.13 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.35 0.00 0.00 0.00 0.00 0.39 0.36 0.22 0.00 0.00 0.00 0.00 0.00 Mg 2.24 2.59 2.87 3.05 3.21 0.96 3.27 2.99 3.46 0.00 3.69 0.00 0.83 2.97 Al 0.00 1.89 0.22 0.25 0.22 0.00 1.95 2.18 1.21 0.00 0.31 0.05 0.00 0.29 Si 19.04 18.37 19.49 19.22 19.15 12.29 18.30 17.73 18.95 0.00 19.64 0.00 12.23 19.06 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.03 0.00 13.86 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.32 0.00 0.00 0.00 0.00 0.00 0.00 Ca 9.09 5.02 0.28 0.30 0.40 0.00 4.94 5.24 5.05 24.91 4.87 24.92 0.00 0.45 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 8.09 9.76 13.87 14.01 13.91 24.49 9.15 9.55 9.12 0.43 9.27 0.61 24.66 14.10

93 M. SCIUBA - MASTER THESIS (2013)

Spectrum Spectrum SV10252- 28 SV10252- 29 SV10252- 30 SV10252- 31 SV10252- 32 SV10252- 33 SV10252- 34 SV10252- 35 SV10252- 36 SV10252- 37 SV10252- 38 SV10252- 39 SV10252- 40 SV10252- 41 SV10252- O 61.54 63.00 63.13 63.10 61.53 62.98 63.20 63.11 63.10 63.07 62.31 63.14 63.11 63.18 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 2.21 3.15 2.97 2.92 2.13 2.88 2.95 2.95 3.14 2.75 0.91 3.01 3.27 3.14 Al 0.27 0.21 0.25 0.30 0.26 0.55 0.22 0.38 0.19 0.47 0.00 0.25 0.00 0.00 Si 18.89 18.94 19.07 19.18 18.73 19.05 19.41 19.37 19.13 19.25 12.48 19.06 19.18 19.36 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 8.98 0.81 0.43 0.75 8.96 1.04 0.46 0.89 0.50 1.13 0.00 0.37 0.37 0.33 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 8.11 13.89 14.14 13.75 8.39 13.39 13.76 13.31 13.94 13.32 24.29 14.17 14.08 14.00

Spectrum Spectrum SV10252- 42 SV10252- 43 SV10252- 44 SV10252- 45 SV10252- 47 SV10252- 50 SV10252- 51 SV10252- 55 SV10252- 56 SV10252- 57 SV10252- 58 SV10252- 59 SV10252- 60 SV10252- O 63.07 61.98 63.12 62.34 62.27 59.27 59.43 62.30 62.22 61.62 62.73 63.25 63.29 F 0.00 0.00 0.00 0.00 0.00 2.22 1.90 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.68 0.00 0.00 0.00 Mg 3.24 3.00 3.10 0.33 0.91 0.00 0.00 0.72 0.62 1.88 1.54 2.57 2.65 Al 0.00 1.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.50 0.00 0.00 0.00 Si 19.03 17.95 19.37 12.03 12.24 0.00 0.00 12.20 11.70 16.81 15.19 19.10 19.10 P 0.00 0.00 0.00 0.00 0.00 13.66 13.66 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.00 0.00 0.00 Ca 0.46 5.04 0.67 0.00 0.00 24.29 24.47 0.00 0.00 4.84 0.00 0.27 0.00 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 14.20 10.18 13.74 25.30 24.59 0.56 0.54 24.79 25.46 10.35 20.54 14.81 14.96

94 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Appendix 10. SEM results in atomic percentage for the thin section SV10297-1 Spectrum Spectrum SV10297-1- 0 SV10297-1- 1 SV10297-1- 2 SV10297-1- 3 SV10297-1- 4 SV10297-1- 5 SV10297-1- 6 SV10297-1- 7 SV10297-1- 8 SV10297-1- 9 SV10297-1- SV10297-1- 10 10 SV10297-1- 11 SV10297-1- 12 SV10297-1- 13 SV10297-1- O 61.49 61.41 61.46 63.19 62.03 63.07 62.29 62.28 62.31 62.28 62.31 62.28 62.29 62.32 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 2.42 2.46 2.40 2.93 3.06 3.04 0.78 0.79 0.66 0.93 0.67 0.65 0.81 0.75 Al 0.31 0.00 0.22 0.15 1.45 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Si 18.97 19.07 19.00 19.35 18.69 19.03 12.35 12.28 12.27 12.40 12.29 12.14 12.33 12.41 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 9.10 9.57 9.30 0.48 5.03 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.09 0.08 0.05 0.08 0.07 0.08 0.05 Fe 7.71 7.49 7.62 13.90 9.51 13.90 24.48 24.56 24.68 24.34 24.66 24.85 24.49 24.47

Spectrum Spectrum SV10297-1- 14 14 SV10297-1- 15 SV10297-1- 16 SV10297-1- 17 SV10297-1- 18 SV10297-1- 19 SV10297-1- 20 SV10297-1- 21 SV10297-1- 22 SV10297-1- 23 SV10297-1- 24 SV10297-1- 25 SV10297-1- 26 SV10297-1- 27 SV10297-1- O 63.02 63.18 63.14 62.19 63.09 61.44 61.47 61.43 58.62 62.34 62.28 62.29 62.25 62.30 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 3.26 3.07 3.19 3.35 3.25 2.48 2.66 2.57 1.71 0.77 0.77 0.69 0.61 0.67 Al 0.41 0.23 0.15 0.80 0.20 0.19 0.21 0.18 0.12 0.09 0.00 0.00 0.00 0.00 Si 19.39 19.34 19.19 19.22 19.34 18.90 19.03 19.06 14.07 12.46 12.22 12.22 11.93 12.23 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 1.01 0.38 0.31 4.93 0.65 9.21 9.02 9.34 19.27 0.00 0.00 0.00 0.00 0.00 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.09 0.08 0.08 Fe 12.90 13.80 14.02 9.52 13.47 7.77 7.61 7.42 6.21 24.33 24.66 24.71 25.14 24.73

95 M. SCIUBA - MASTER THESIS (2013)

Spectrum Spectrum SV10297-1- 28 28 SV10297-1- 29 SV10297-1- 30 SV10297-1- 31 SV10297-1- 32 SV10297-1- 33 SV10297-1- 34 SV10297-1- 35 SV10297-1- 36 SV10297-1- 37 SV10297-1- 38 SV10297-1- 39 SV10297-1- 40 SV10297-1- 41 SV10297-1- O 61.55 61.42 61.76 61.43 62.37 62.31 62.30 62.32 62.35 62.39 63.15 63.08 61.45 61.50 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 1.92 2.49 2.48 2.65 0.76 0.79 0.72 0.69 0.87 0.77 3.27 3.16 2.75 2.27 Al 0.00 0.23 0.17 0.23 0.00 0.00 0.00 0.00 0.00 0.18 0.33 0.25 0.31 0.24 Si 18.97 18.95 18.96 18.88 12.70 12.41 12.27 12.37 12.67 12.74 19.67 19.10 19.06 18.87 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 9.29 9.37 7.70 9.10 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.56 9.05 9.10 Mn 0.00 0.00 0.00 0.00 0.08 0.08 0.04 0.09 0.05 0.04 0.00 0.00 0.00 0.00 Fe 8.27 7.53 8.93 7.72 24.09 24.41 24.67 24.53 24.06 23.89 12.95 13.85 7.38 8.03

Spectrum Spectrum SV10297-1- 42 42 SV10297-1- 43 SV10297-1- 44 SV10297-1- 45 SV10297-1- 46 SV10297-1- 47 SV10297-1- 48 SV10297-1- 49 SV10297-1- 50 SV10297-1- 51 SV10297-1- 52 SV10297-1- 53 SV10297-1- 54 SV10297-1- 55 SV10297-1- O 62.08 62.22 61.44 63.19 63.26 61.60 61.55 61.40 62.22 62.32 62.38 61.45 60.42 61.38 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.25 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 2.96 2.89 2.40 3.09 2.91 1.97 1.80 1.88 3.09 3.10 3.02 2.60 0.00 2.64 Al 1.54 1.44 0.30 0.23 0.25 0.27 0.00 0.23 1.11 0.43 0.31 0.26 0.00 0.00 Si 18.74 18.95 19.08 19.51 19.69 18.91 18.96 18.63 19.13 19.68 19.36 19.07 0.00 19.00 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.84 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 4.86 4.56 9.50 0.47 0.48 8.95 9.40 9.74 4.95 4.97 4.44 9.21 25.58 9.45 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 9.56 9.74 7.29 13.51 13.42 8.31 8.28 8.13 9.51 9.50 10.49 7.41 0.16 7.53

96 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Spectrum Spectrum SV10297-1- 56 56 SV10297-1- 57 SV10297-1- 58 SV10297-1- 59 SV10297-1- 60 SV10297-1- 61 SV10297-1- 62 SV10297-1- 63 SV10297-1- 64 SV10297-1- 65 SV10297-1- 66 SV10297-1- 67 SV10297-1- 68 SV10297-1- 69 SV10297-1- O 62.34 62.16 63.23 59.96 60.41 62.29 58.76 63.00 63.19 63.05 63.19 63.17 63.24 63.24 F 0.00 0.00 0.00 1.33 0.00 0.00 2.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.81 3.13 3.41 0.00 0.40 3.65 0.00 2.59 3.35 3.15 3.35 3.43 3.14 2.89 Al 0.00 1.61 0.00 0.10 0.25 0.73 0.00 0.00 0.24 0.20 0.23 0.17 0.20 0.18 Si 12.54 18.66 19.80 0.37 2.46 19.72 0.00 19.40 19.55 19.26 19.64 19.57 19.70 19.29 P 0.00 0.00 0.00 13.84 0.00 0.00 13.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.00 4.28 0.26 24.22 0.00 4.60 25.54 1.78 0.27 0.85 0.33 0.28 0.38 0.20 Mn 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 24.28 9.94 13.30 0.17 36.47 9.01 0.23 13.23 13.41 13.49 13.26 13.37 13.35 14.20

Spectrum Spectrum SV10297-1- 70 70 SV10297-1- 71 SV10297-1- 72 SV10297-1- 73 SV10297-1- 74 SV10297-1- O 62.35 63.09 60.00 62.41 62.11 F 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.29 Mg 0.70 3.30 0.00 3.04 3.08 Al 0.00 0.29 0.00 1.58 2.04 Si 12.48 19.30 0.00 18.52 18.36 P 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 Ca 0.02 0.54 0.00 3.42 4.16 Mn 0.00 0.00 0.00 0.00 0.00 Fe 24.45 13.48 40.00 11.03 9.97

97 M. SCIUBA - MASTER THESIS (2013)

Appendix 11. SEM results in atomic percentage for the thin section SV10405 Spectrum Spectrum SV10405-0 SV10405-0 SV10405-1 SV10405-2 SV10405-3 SV10405-4 SV10405-5 SV10405-6 SV10405-7 SV10405-8 SV10405-9 SV10405-10 SV10405-10 SV10405-11 SV10405- 14 SV10405- 15 SV10405- O 63.19 63.19 63.15 63.31 63.26 62.38 62.36 63.22 63.25 62.36 62.36 62.97 63.22 61.40 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.57 0.60 0.62 2.66 2.52 0.59 0.50 0.62 0.60 0.60 0.55 0.56 0.61 2.28 Al 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 Si 16.91 16.94 16.73 19.46 18.81 12.48 12.32 17.06 17.23 12.41 12.33 15.43 17.18 18.84 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.40 0.38 0.35 0.26 0.00 0.00 0.00 0.35 0.37 0.00 0.00 0.00 0.00 9.55 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 18.93 18.89 19.15 14.31 15.41 24.55 24.82 18.75 18.54 24.62 24.77 21.04 18.54 7.74

Spectrum Spectrum SV10405- 16 SV10405- 17 SV10405- 18 SV10405- 19 SV10405- 20 SV10405- 21 SV10405- 22 SV10405- 23 SV10405- 24 SV10405- 25 SV10405- 26 SV10405- 27 SV10405- 28 SV10405- 29 SV10405- O 63.07 63.17 62.29 62.28 62.27 63.22 62.24 62.27 62.23 61.76 61.79 61.92 63.14 63.24 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.57 0.63 0.53 0.00 0.00 Mg 0.62 0.59 0.93 0.94 0.98 2.75 0.93 0.95 0.92 2.24 2.17 2.29 2.99 2.83 Al 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.16 0.14 3.01 3.24 2.81 0.19 0.20 Si 16.93 16.76 12.40 12.34 12.33 19.13 12.12 12.28 12.06 17.59 17.36 17.29 19.14 19.39 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.32 0.00 0.00 0.00 Ca 0.38 0.34 0.00 0.00 0.00 0.28 0.00 0.00 0.00 4.90 4.33 4.34 0.42 0.35 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 18.71 19.15 24.37 24.43 24.42 14.62 24.57 24.35 24.66 9.66 10.16 10.82 14.11 13.99

98 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Spectrum Spectrum SV10405- 30 SV10405- 31 SV10405- 32 SV10405- 33 SV10405- 34 SV10405- 35 SV10405- 36 SV10405- 37 SV10405- 38 SV10405- 39 SV10405- 40 SV10405- 41 SV10405- 42 SV10405- O 62.33 43.53 63.02 63.03 62.93 62.35 62.33 62.38 63.34 63.27 60.00 60.00 41.68 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.33 0.17 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.83 0.00 0.50 0.50 0.67 0.68 0.73 0.46 2.49 3.05 0.00 0.00 0.00 Al 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Si 12.46 0.00 16.85 16.39 16.62 12.42 12.41 12.36 19.21 19.40 0.00 0.00 0.00 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 27.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 30.53 Cl 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.00 0.00 0.61 0.38 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 24.38 29.02 18.69 19.53 19.00 24.55 24.53 24.80 14.95 14.28 40.00 40.00 27.79

99 M. SCIUBA - MASTER THESIS (2013)

Appendix 12. SEM results in atomic percentage for the thin section SV11402 Spectrum Spectrum SV11402- 5 SV11402- 4 SV11402- 6 SV11402- 7 SV11402- 8 SV11402- 9 SV11402- SV11402- 10 SV11402- 11 SV11402- 12 SV11402- 13 SV11402- 14 SV11402- 15 SV11402- 16 SV11402- 17 SV11402- O 59.02 61.76 63.45 63.40 59.21 63.46 43.44 61.99 66.67 40.83 59.37 58.40 42.77 62.48 F 2.70 0.00 0.00 0.00 2.37 0.00 0.00 0.00 0.00 0.00 2.26 3.40 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.00 0.00 0.00 0.00 0.00 0.41 Mg 0.00 0.00 1.93 1.91 0.00 1.80 0.00 1.31 0.00 0.00 0.00 0.00 0.00 1.59 Al 0.00 8.03 0.00 0.15 0.00 0.00 0.00 2.76 0.00 0.00 0.00 0.00 0.00 1.97 Si 0.17 16.06 19.41 19.17 0.66 19.34 0.00 17.57 33.33 0.00 0.49 0.00 0.00 18.11 P 13.71 0.00 0.00 0.00 13.24 0.00 0.00 0.00 0.00 0.00 13.54 13.47 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 27.60 0.00 0.00 31.96 0.00 0.00 28.72 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 24.40 7.25 0.24 0.28 23.97 0.25 0.00 5.07 0.00 0.00 23.91 24.74 0.00 3.30 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 0.00 6.89 14.98 15.09 0.55 15.16 28.96 10.67 0.00 27.22 0.43 0.00 28.51 12.14

pectrum pectrum SV11402- 18 SV11402- 19 SV11402- 20 SV11402- 21 SV11402- 22 SV11402- 23 SV11402- 24 SV11402- 25 SV11402- 26 SV11402- 27 SV11402- 28 SV11402- 29 SV11402- 30 SV11402- 31 SV11402- O 63.41 63.45 58.88 59.17 59.14 42.66 42.76 66.65 62.38 63.39 63.46 63.51 66.67 66.67 F 0.00 0.00 2.69 2.37 2.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 2.01 1.82 0.00 0.00 0.00 0.00 0.00 0.00 1.49 1.85 2.00 1.45 0.00 0.00 Al 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.62 0.00 0.00 0.00 0.00 0.00 Si 19.52 19.47 0.00 0.15 0.00 0.00 0.00 33.23 18.13 19.26 19.56 19.01 33.33 33.33 P 0.00 0.00 13.63 13.70 13.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 28.90 28.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.44 0.42 24.80 24.60 24.50 0.00 0.00 0.00 4.74 0.49 0.27 0.00 0.00 0.00 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 14.61 14.84 0.00 0.00 0.00 28.44 28.51 0.13 10.64 15.03 14.72 16.03 0.00 0.00

100 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Spectrum Spectrum SV11402- 32 SV11402- 33 SV11402- 34 SV11402- 35 SV11402- 36 SV11402- 37 SV11402- 38 SV11402- 39 SV11402- 40 SV11402- 41 SV11402- 42 SV11402- O 66.67 63.45 63.45 42.05 63.45 63.39 66.67 66.67 63.44 63.39 63.43 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.00 1.95 1.76 0.00 1.72 2.02 0.00 0.00 1.92 2.10 1.90 Al 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Si 33.33 19.48 19.36 0.00 19.47 19.65 33.33 33.33 19.34 19.47 19.40 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 29.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.00 0.26 0.33 0.00 0.51 0.67 0.00 0.00 0.23 0.43 0.37 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 0.00 14.86 15.10 28.03 14.86 14.27 0.00 0.00 15.07 14.61 14.90

101 M. SCIUBA - MASTER THESIS (2013)

Appendix 13. SEM results in atomic percentage for the thin section SV11403-1 Spectrum Spectrum SV11403-1- 0 SV11403-1- 1 SV11403-1- 2 SV11403-1- 3 SV11403-1- 4 SV11403-1- 5 SV11403-1- 6 SV11403-1- 7 SV11403-1- 8 SV11403-1- 9 SV11403-1- SV11403-1- 10 10 SV11403-1- 11 SV11403-1- 12 SV11403-1- 13 SV11403-1- O 62.91 63.08 62.19 62.68 63.49 62.16 62.11 63.40 63.32 62.33 62.32 61.27 62.20 62.14 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 3.75 3.79 3.45 2.27 2.40 3.96 3.82 2.53 2.60 4.02 3.79 3.47 3.92 3.78 Al 0.52 0.18 0.17 0.00 0.00 0.79 0.90 0.00 0.00 0.84 0.75 0.20 0.59 1.14 Si 19.39 19.43 19.75 16.49 19.87 19.64 19.42 19.87 19.54 19.59 19.54 19.25 19.83 19.33 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 1.11 0.25 5.35 0.82 0.00 4.87 5.05 0.36 0.34 3.93 4.14 9.45 4.94 4.87 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 12.32 13.27 9.09 17.75 14.24 8.58 8.70 13.84 14.20 9.29 9.45 6.36 8.53 8.74

Spectrum Spectrum SV11403-1- 14 14 SV11403-1- 15 SV11403-1- 16 SV11403-1- 18 SV11403-1- 17 SV11403-1- 19 SV11403-1- 20 SV11403-1- 21 SV11403-1- 22 SV11403-1- 23 SV11403-1- 24 SV11403-1- 25 SV11403-1- 26 SV11403-1- 27 SV11403-1- O 61.20 62.19 61.35 61.32 62.81 61.33 63.08 63.11 63.15 62.45 62.27 62.45 62.06 62.05 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 3.61 3.76 3.16 3.14 2.92 2.97 2.61 3.52 3.56 3.82 3.79 3.72 3.99 3.98 Al 0.16 1.18 0.19 0.19 0.32 0.15 0.19 0.35 0.31 0.95 1.34 0.92 1.27 1.22 Si 19.37 19.28 19.31 19.33 19.58 19.30 19.07 19.63 19.74 19.37 19.20 19.13 19.15 19.22 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 9.77 4.55 9.42 9.57 2.60 9.70 1.06 0.57 0.40 3.27 4.07 3.16 4.85 4.99 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 5.89 9.04 6.57 6.45 11.77 6.56 13.99 12.83 12.84 10.13 9.33 10.62 8.69 8.53

102 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Spectrum Spectrum SV11403-1- 28 28 SV11403-1- 29 SV11403-1- 30 SV11403-1- 31 SV11403-1- 32 SV11403-1- 33 SV11403-1- 34 SV11403-1- 35 SV11403-1- 36 SV11403-1- 37 SV11403-1- 38 SV11403-1- 39 SV11403-1- 40 SV11403-1- O 63.01 63.07 63.06 62.42 62.13 63.01 62.11 63.03 63.07 63.05 62.13 62.09 62.21 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 3.87 3.78 3.95 3.95 3.89 3.79 4.25 3.87 3.86 3.92 3.88 3.88 3.87 Al 0.22 0.25 0.18 0.98 1.36 0.24 0.71 0.25 0.22 0.28 1.20 1.26 1.24 Si 19.46 19.70 19.58 19.37 19.26 19.46 19.70 19.64 19.68 19.73 19.25 19.19 19.20 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.54 0.57 0.31 3.33 4.73 0.61 4.90 0.62 0.48 0.58 4.74 4.88 4.30 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 12.91 12.63 12.92 9.95 8.62 12.88 8.34 12.60 12.69 12.44 8.79 8.71 9.18

103 M. SCIUBA - MASTER THESIS (2013)

Appendix 14. SEM results in atomic percentage for the thin section SV11405 Spectrum Spectrum SV11405- 0 SV11405- 1 SV11405- 2 SV11405- 3 SV11405- 4 SV11405- 5 SV11405- 6 SV11405- 7 SV11405- 8 SV11405- 9 SV11405- SV11405- 10 SV11405- 11 SV11405- 12 SV11405- 13 SV11405- F 0.00 2.40 0.00 1.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.80 0.00 2.98 0.00 3.04 2.99 3.60 0.91 0.79 0.82 2.06 0.00 0.00 2.11 Al 0.00 0.00 0.22 0.00 0.43 0.18 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.15 Si 12.15 0.00 19.63 0.24 19.39 19.13 19.79 12.16 12.19 12.05 18.97 0.00 0.00 18.94 P 0.00 13.31 0.00 13.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.00 25.29 0.97 24.41 1.59 0.54 4.77 0.00 0.00 0.00 9.61 0.00 0.00 9.56 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 24.78 0.17 13.00 0.00 12.60 14.04 9.13 24.68 24.74 24.89 7.90 40.00 40.00 7.78

Spectrum Spectrum SV11405- 14 SV11405- 15 SV11405- 16 SV11405- 17 SV11405- 18 SV11405- 19 SV11405- 20 SV11405- 21 SV11405- 22 SV11405- 23 SV11405- 24 SV11405- 25 SV11405- 26 SV11405- 27 SV11405- 28 SV11405- F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.33 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 2.02 2.09 2.95 2.96 0.78 0.80 2.82 2.82 0.00 1.68 1.40 1.77 1.83 0.00 2.13 Al 0.21 0.17 0.31 0.29 0.00 0.00 0.27 0.44 0.00 0.19 0.18 0.20 0.18 0.00 0.37 Si 18.94 18.77 19.78 19.44 12.18 12.23 19.22 19.46 0.00 18.74 18.80 19.03 19.12 33.21 19.33 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.54 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 9.44 9.59 5.02 4.97 0.00 0.00 0.69 1.24 24.73 9.01 9.08 0.32 0.26 0.00 5.04 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 7.90 7.97 9.58 10.04 24.76 24.68 13.86 12.95 0.36 8.76 8.88 15.31 15.20 0.14 10.69

104 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Appendix 15. Composition in oxides in Svartliden BIF 1/2 1/2 SV11445 SV11405 SV11403-

SV10241-1 SV10241-2 SV10240-2 SV10240-1 SV10242-2 SV10231-1 SV10231-2 SV10231-3 E02 E03 E04 E05 E06 E07 E08 E09 E10 W02 W03 Wt. % Determined by ME-ICP06 SiO2 41.8 38.8 43.4 40.1 44.1 41.5 40.8 43.1 47.4 40.4 39.4 Al2O3 0.28 0.37 0.3 0.23 0.27 0.41 0.21 0.49 0.42 0.79 0.16 Fe2O3 56,00 54.8 55.3 57.5 52.8 54.9 53.2 48.4 52.3 42.3 52.2 CaO 2.19 3.17 1.26 2.41 1.78 2.65 2.66 3.32 1.08 7.49 3.46 MgO 1.63 2.93 0.96 2.82 1.43 1.4 2.6 2.46 0.66 4.75 2.82 Na2O 0.04 0.06 0.03 0.04 0.04 0.04 0.03 0.06 0.02 0.08 0.02 K2O 0.01 0.04 0.02 <0.01 0.02 0.05 <0.01 0.05 0.02 <0.01 <0.01 Cr2O3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 TiO2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.04 0.01 MnO 0.49 0.48 0.25 0.26 0.38 0.41 0.33 0.43 0.17 0.29 0.45 P2O5 1.03 1.22 0.51 0.95 0.78 1.5 1.09 1.22 0.59 1.8 0.9 SrO 0.01 0.01 <0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 BaO <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.01 <0.01 <0.01 <0.01

LOI -1.85 -0.62 -2.26 -2.37 -2.24 -1.39 -1.6 2.01 -2.61 0.14 -1.26 Total 101.64 101.27 99.78 101.96 99.38 101.5 99.34 101.58 100.08 98.1 98.17

1/2 1/2 1/2 1/2 SV10252 SV11574 SV11402 SV10256 SV10252 SV10246- SV10297- SV10246-3 SV10246-3 SV10297-3 W04 W05 W06 W07 W08 W09 W10 W11 W12 average Wt. % Determined by ME-ICP06 SiO2 36.5 46.4 42.7 38.2 42.7 41.3 41.3 41.6 39.8 41.81 Al2O3 0.16 0.13 0.48 0.19 0.33 0.24 0.93 0.33 0.65 0.44 Fe2O3 59.5 54.5 56.1 53.9 48.6 55.5 44,00 55.8 49.2 51.98 CaO 2.91 1.07 2.73 4.86 3.94 2.87 8.6 2.43 4.02 3.27 MgO 2.29 0.63 1.55 3.22 3.35 2.48 4.45 0.57 2.52 2.34 Na2O 0.02 0.01 0.07 0.03 0.04 0.03 0.1 0.04 0.08 0.05 K2O <0.01 <0.01 0.03 <0.01 0.02 0.03 0.1 0.02 0.09 0.05 Cr2O3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 0.01 TiO2 0.01 0.01 0.02 0.01 0.01 0.01 0.04 0.02 0.04 0.02 MnO 0.4 0.15 0.25 0.25 0.29 0.44 0.38 0.15 0.33 0.32 P2O5 1.4 0.61 0.69 1.47 0.85 0.88 1.22 1.39 1.51 1.05 SrO 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 BaO <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01

105 M. SCIUBA - MASTER THESIS (2013)

LOI -3.53 -3.97 -4.84 -2.66 -0.07 -3.14 0.24 -2.06 1.24 Total 99.67 99.55 99.8 99.48 100.07 100.65 101.4 100.3 99.49

Appendix 16. Composition in major and trace elements in Svartliden BIF

Limit Limit SV10317 SV11445 SV10317 SV11405 SV10241-1 SV10241-1 SV10241-2 SV10240-2 SV10240-1 SV10242-2 SV10231-1 SV10231-2 SV10231-3 E01 E02 E03 E04 E05 E06 E07 E08 E09 E10 E11 W01 ppm Determined by Au-AA25 Au 0.01 0.16 9.96 0.24 4.03 0.35 0.04 0.08 2.53 2.08 0.02 0.24 0.14 Determined by ME-MS81 Ba 0.50 85.2 8.5 20.2 25.1 6.4 5.4 47.7 10.3 53.2 28.7 67.3 2.9 Ce 0.50 14.1 9.5 10.6 8.3 7.2 7,00 12.5 8.7 12,00 9.6 11.8 7.1 Cr 10.00 80.00 10.00 10.00 10.00 10.00 20.00 20.00 10.00 20.00 10.00 20.00 10.00 Cs 0.01 1.48 0.65 0.69 2.05 1.22 0.71 1.59 0.41 1.44 2.22 2.65 0.34 Dy 0.05 2.40 2.47 2.72 2.12 2.07 1.93 3.05 2.48 3.18 2.04 2.41 1.98 Er 0.03 1.50 1.56 1.69 1.29 1.35 1.20 1.90 1.57 2.04 1.21 1.56 1.26 Eu 0.03 0.63 0.64 0.70 0.5 0.55 0.49 0.85 0.6 0.77 0.57 0.63 0.55 Ga 0.10 3.50 1.30 1.70 2,00 1.2 1.3 1.5 2.3 2.8 1.6 2.4 1.3 Gd 0.05 2.55 2.59 2.88 2.27 2.14 1.98 3.37 2.62 3.46 2.23 2.37 2.08 Hf 0.20 0.9 <0.20 <0.20 <0.20 <0.20 <0.20 0.8 <0.20 <0.20 <0.20 0.6 <0.20 Ho 0.01 0.54 0.55 0.6 0.45 0.47 0.42 0.67 0.56 0.71 0.43 0.53 0.43 La 0.50 11.60 10.20 11.90 7.80 7.80 6.90 13.40 10.40 13.50 9.20 11.80 8.50 Lu 0.01 0.20 0.21 0.23 0.18 0.18 0.17 0.26 0.21 0.27 0.18 0.21 0.17 Nb 0.20 1.90 0.50 0.40 0.60 0.40 0.50 0.50 0.40 0.60 0.50 1.00 0.90 Nd 0.10 10.20 9.60 10.70 7.70 7.60 7.20 12.20 9.30 12.60 8.70 9.70 7.80 Pr 0.03 2.57 2.26 2.58 1.91 1.83 1.75 2.92 2.25 2.97 2.09 2.35 1.88 Rb 0.20 10.10 0.80 1.70 1.40 1.00 0.60 2.70 0.60 4.40 2.60 4.90 0.40 Sm 0.03 2.05 2.07 2.33 1.61 1.64 1.49 2.66 2.04 2.7 1.87 1.89 1.69 Sn 1.00 1.00 <1.00 <1.00 2.00 <1.00 <1.00 1.00 1.00 2.00 1.00 2.00 1.00 Sr 0.10 85,00 38.8 59.4 27.9 56.7 41.4 48.4 64.3 76.4 24.3 58.2 77.7 Ta 0.10 0.1 <0.10 <0.10 0.1 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 Tb 0.01 0.39 0.39 0.43 0.31 0.32 0.28 0.49 0.39 0.51 0.32 0.34 0.3 Th 0.05 1.03 0.17 0.26 0.15 0.21 0.14 0.21 0.17 0.23 0.14 0.3 0.5 Tl 0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 Tm 0.01 0.23 0.22 0.24 0.18 0.19 0.16 0.26 0.22 0.29 0.18 0.23 0.18 U 0.05 1.03 0.37 0.46 0.17 0.36 0.29 0.50 0.91 0.77 0.20 0.48 0.39 V 5,00 54.00 42.00 36.00 35.00 38.00 37.00 42.00 35.00 44.00 51.00 41.00 32.00 W 1.00 1.00 2,00 1.00 1.00 1.00 1.00 1.00 1.00 2,00 1.00 1.00 1.00 Y 0.50 16.20 19.30 21.60 12.20 16.30 12.50 23.70 20.80 25.50 14.00 17.20 16.00 Yb 0.03 1.35 1.42 1.53 1.23 1.22 1.09 1.69 1.38 1.78 1.19 1.28 1.14 Zr 20.00 .17.00 <20.00 <20.00 <20.00 <20.00 <20.00 40.00 <20.00 <20.00 <20.00 <20.00 <20.00

106 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

Limit E01 E02 E03 E04 E05 E06 E07 E08 E09 E10 E11 W01 Determined by ME-4ACD81 except * determined by ME-MS81 Ag 0.50 <1.00* <0.50 2.60 1.40 <0.50 1,00 <0.50 <0.50 <0.50 <0.50 <1.00* <0.50 As 5.00 82.00 1320.0 814.00 13.00 20.00 93.00 3270.00 1200.00 16.00 47.00 Cd 0.50 <0.50 0.70 <0.50 <0.50 <0.50 <0.50 <0.50 0.9 <0.50 <0.50 Co 1.00 10.40* <1.00 15.00 <1.00 <1.00 1.00 <1.00 19.00 4.00 <1.00 13.90* <1.00 Cu 1.00 70.00* 22.00 88.00 78.00 17.00 8.00 46.00 76.00 126.00 6,00 122.00* 16.00 Mo 1.00 2.00* <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 2.00* <1.00 Ni 1.00 50.00* <1.00 65.00 10.00 <1.00 <1.00 3.00 87.00 52.00 <1.00 43.00* <1.00 Pb 2,00 11.00* 11,00 12.00 4,00 8.00 3.00 10.00 9.00 9.00 5.00 <5.00* 9.00 Sc 1.00 1.00 1.00 <1.00 1,00 <1.00 1.00 1.00 1.00 1.00 <1.00 Zn 2.00 60.00* 23.00 101.00 55.00 17.00 24.00 60.00 44.00 82.00 18.00 94.00* 24.00

(Eu/Eu*) CN 0.84 0.84 0.82 0.80 0.89 0.87 0.86 0.79 0.77 0.85 0.91 0.89 (Eu/Eu*) NASC 1.25 1.25 1.22 1.17 1.32 1.28 1.28 1.17 1.14 1.27 1.35 1.33 (Ce/Ce*) NASC 0.60 0.46 0.45 0.50 0.44 0.47 0.47 0.42 0.44 0.51 0.52 0.41 (Pr/Pr*) NASC 1.19 1.25 1.28 1.30 1.30 1.30 1.26 1.31 1.27 1.23 1.20 1.31 (Gd/Gd*) NASC 1.10 1.12 1.12 1.24 1.13 1.19 1.15 1.13 1.14 1.14 1.16 1.15 (La/La*) NASC 1.22 1.45 1.39 1.15 1.29 1.16 1.41 1.38 1.45 1.34 1.49 1.36 (Pr/Yb) NASC 0.75 0.63 0.66 0.61 0.59 0.63 0.68 0.64 0.66 0.69 0.72 0.65 Y/Ho 30.00 35.09 36.00 27.11 34.68 29.76 35.37 37.14 35.91 32.56 32.45 37.21

107 M. SCIUBA - MASTER THESIS (2013)

SV10405 SV10252 SV11574 SV11402 SV10256 SV10252 SV10246-3 SV10246-3 SV10297-3 SV11403-1/2 SV11403-1/2 SV10246-1/2 SV10297-1/2 W02 W03 W04 W05 W06 W07 W08 W09 W10 W11 W12 ppm Determined by Au-AA25 Au 1.29 0.84 0.07 0.02 16.2 0.11 14.5 0.07 0.58 0.88 0.93 Determined by ME-MS81 Ba 17.30 2.50 3.50 6.8 38.4 4.5 21.40 15.90 115.50 8.10 31.00 Ce 13.80 8.20 10.80 9.90 13.70 12.00 10.10 6.60 12.30 9.60 15.60 Cr 40.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 100.00 10.00 40.00 Cs 0.52 2.51 0.10 0.18 0.41 0.07 0.36 0.56 0.66 0.74 1.21 Dy 3.40 2.38 3.22 2.79 2.54 3.18 2.57 1.98 2.84 3.64 3.42 Er 2.17 1.53 2.04 1.68 1.53 1.95 1.65 1.29 1.82 2.57 2.07 Eu 0.90 0.58 0.82 0.6 0.66 0.79 0.64 0.49 0.81 0.81 0.87 Ga 2.20 1.50 1.40 1.20 2.20 1.20 1.60 1.30 2.50 2.00 2.00 Gd 3.61 2.48 3.45 2.97 2.85 3.38 2.57 1.98 3.01 3.4 3.72 Hf 1.3 <0.20 <0.20 <0.20 0.2 <0.20 <0.20 <0.20 0.3 <0.20 0.2 Ho 0.74 0.54 0.71 0.61 0.54 0.7 0.57 0.45 0.63 0.88 0.75 La 11.80 9.40 12.20 10.40 13.40 13.50 10.70 7.40 11.90 10.20 17.20 Lu 0.26 0.21 0.26 0.20 0.22 0.25 0.22 0.18 0.25 0.32 0.27 Nb 0.80 0.40 0.50 0.50 0.60 0.40 0.40 0.40 1.30 0.50 0.80 Nd 13.50 8.80 11.70 10.70 12.10 12.70 9.80 6.90 11.30 9.80 14.60 Pr 3.11 2.12 2.7 2.54 2.98 3.00 2.30 1.63 2.71 2.29 3.53 Rb 1.50 1.40 0.30 0.40 1.30 0.30 0.80 1.90 3.40 1.80 3.80 Sm 2.88 1.95 2.61 2.34 2.45 2.73 2.16 1.54 2.52 2.29 3.07 Sn 2.00 2.00 <1.00 <1.00 5.00 1.00 2.00 <1.00 <1.00 1.00 1.00 Sr 168.00 52.70 72.70 29.00 66.80 70.00 59.10 46.20 141.50 43.00 81.40 Ta <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 0.1 <0.10 <0.10 Tb 0.54 0.38 0.5 0.44 0.41 0.51 0.39 0.3 0.45 0.53 0.54 Th 0.35 0.15 0.14 0.15 0.26 0.19 0.21 0.16 0.64 0.11 0.32 Tl <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 Tm 0.31 0.21 0.28 0.24 0.22 0.27 0.24 0.19 0.26 0.35 0.29 U 1.00 0.44 0.50 0.26 0.31 0.8 0.75 0.38 2.36 0.65 0.58 V 41.00 41.00 36.00 44.00 51.00 37.00 36.00 40.00 46.00 56.00 45.00 W <1.00 1.00 1.00 <1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Y 25.20 19.20 27.10 20.30 17.40 25.00 21.40 16.60 23.30 34.80 27.50 Yb 1.86 1.36 1.74 1.43 1.41 1.67 1.48 1.19 1.62 2.07 1.80 Zr 60.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00

108 BADED IRO -FORMATIO I THE SVARTLIDE MIE , GOLD LIE

W02 W03 W04 W05 W06 W07 W08 W09 W10 W11 W12 Determined by ME-4ACD81 exept * determined by ME-MS81 Ag 1.2 <0.50 <0.50 <0.50 2.5 <0.50 1.1 <0.50 <0.50 <0.50 <0.50 As 44.00 193.00 6.00 <5.00 1580.00 29.00 928.00 7.00 234.00 237.00 119.00 Cd <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 Co <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 Cu 82.00 37.00 3.00 14,00 103.00 19.00 90.00 6.00 163.00 17.00 190.00 Mo <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 Ni 7.00 9.00 <1.00 <1.00 42.00 <1.00 4.00 <1.00 36.00 <1.00 27.00 Pb 3.00 9.00 10.00 6.00 9,00 10.00 8.00 13.00 6.00 8.00 9.00 Sc 2.00 <1.00 1.00 <1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Zn 57.00 75.00 27.00 14.00 130.00 17.00 41.00 17.00 53.00 19.00 41.00

(Eu/Eu*) CN 0.85 0.80 0.83 0.69 0.76 0.79 0.83 0.85 0.90 0.88 0.78 (Eu/Eu*) NASC 1.26 1.19 1.23 1.03 1.13 1.18 1.23 1.27 1.33 1.29 1.17 (Ce/Ce*) NASC 0.53 0.43 0.44 0.45 0.51 0.44 0.48 0.44 0.50 0.46 0.47 (Pr/Pr*) NASC 1.21 1.30 1.25 1.29 1.25 1.27 1.23 1.27 1.23 1.24 1.25 (Gd/Gd*) NASC 1.12 1.11 1.16 1.13 1.13 1.11 1.09 1.12 1.11 1.14 1.14 (La/La*) NASC 1.29 1.34 1.53 1.28 1.28 1.43 1.50 1.44 1.34 1.46 1.4 (Pr/Yb) NASC 0.66 0.61 0.61 0.70 0.83 0.71 0.61 0.54 0.66 0.43 0.77 Y/Ho 34.05 35.55 38.17 33.28 32.22 35.71 37.54 36.89 36.98 39.54 36.67

109