On the Classification of 3–Bridge Links 115
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Borromean Rings: a Video About the New IMU Logo
The Borromean Rings: A Video about the New IMU Logo Charles Gunn and John M. Sullivan∗ Technische Universitat¨ Berlin Institut fur¨ Mathematik, MA 3–2 Str. des 17. Juni 136 10623 Berlin, Germany Email: {gunn,sullivan}@math.tu-berlin.de Abstract This paper describes our video The Borromean Rings: A new logo for the IMU, which was premiered at the opening ceremony of the last International Congress. The video explains some of the mathematics behind the logo of the In- ternational Mathematical Union, which is based on the tight configuration of the Borromean rings. This configuration has pyritohedral symmetry, so the video includes an exploration of this interesting symmetry group. Figure 1: The IMU logo depicts the tight config- Figure 2: A typical diagram for the Borromean uration of the Borromean rings. Its symmetry is rings uses three round circles, with alternating pyritohedral, as defined in Section 3. crossings. In the upper corners are diagrams for two other three-component Brunnian links. 1 The IMU Logo and the Borromean Rings In 2004, the International Mathematical Union (IMU), which had never had a logo, announced a competition to design one. The winning entry, shown in Figure 1, was designed by one of us (Sullivan) with help from Nancy Wrinkle. It depicts the Borromean rings, not in the usual diagram (Figure 2) but instead in their tight configuration, the shape they have when tied tight in thick rope. This IMU logo was unveiled at the opening ceremony of the International Congress of Mathematicians (ICM 2006) in Madrid. We were invited to produce a short video [10] about some of the mathematics behind the logo; it was shown at the opening and closing ceremonies, and can be viewed at www.isama.org/jms/Videos/imu/. -
The Khovanov Homology of Rational Tangles
The Khovanov Homology of Rational Tangles Benjamin Thompson A thesis submitted for the degree of Bachelor of Philosophy with Honours in Pure Mathematics of The Australian National University October, 2016 Dedicated to my family. Even though they’ll never read it. “To feel fulfilled, you must first have a goal that needs fulfilling.” Hidetaka Miyazaki, Edge (280) “Sleep is good. And books are better.” (Tyrion) George R. R. Martin, A Clash of Kings “Let’s love ourselves then we can’t fail to make a better situation.” Lauryn Hill, Everything is Everything iv Declaration Except where otherwise stated, this thesis is my own work prepared under the supervision of Scott Morrison. Benjamin Thompson October, 2016 v vi Acknowledgements What a ride. Above all, I would like to thank my supervisor, Scott Morrison. This thesis would not have been written without your unflagging support, sublime feedback and sage advice. My thesis would have likely consisted only of uninspired exposition had you not provided a plethora of interesting potential topics at the start, and its overall polish would have likely diminished had you not kept me on track right to the end. You went above and beyond what I expected from a supervisor, and as a result I’ve had the busiest, but also best, year of my life so far. I must also extend a huge thanks to Tony Licata for working with me throughout the year too; hopefully we can figure out what’s really going on with the bigradings! So many people to thank, so little time. I thank Joan Licata for agreeing to run a Knot Theory course all those years ago. -
A Knot-Vice's Guide to Untangling Knot Theory, Undergraduate
A Knot-vice’s Guide to Untangling Knot Theory Rebecca Hardenbrook Department of Mathematics University of Utah Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 1 / 26 What is Not a Knot? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 2 / 26 What is a Knot? 2 A knot is an embedding of the circle in the Euclidean plane (R ). 3 Also defined as a closed, non-self-intersecting curve in R . 2 Represented by knot projections in R . Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 3 / 26 Why Knots? Late nineteenth century chemists and physicists believed that a substance known as aether existed throughout all of space. Could knots represent the elements? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 4 / 26 Why Knots? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 5 / 26 Why Knots? Unfortunately, no. Nevertheless, mathematicians continued to study knots! Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 6 / 26 Current Applications Natural knotting in DNA molecules (1980s). Credit: K. Kimura et al. (1999) Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 7 / 26 Current Applications Chemical synthesis of knotted molecules – Dietrich-Buchecker and Sauvage (1988). Credit: J. Guo et al. (2010) Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 8 / 26 Current Applications Use of lattice models, e.g. the Ising model (1925), and planar projection of knots to find a knot invariant via statistical mechanics. Credit: D. Chicherin, V.P. -
Knots: a Handout for Mathcircles
Knots: a handout for mathcircles Mladen Bestvina February 2003 1 Knots Informally, a knot is a knotted loop of string. You can create one easily enough in one of the following ways: • Take an extension cord, tie a knot in it, and then plug one end into the other. • Let your cat play with a ball of yarn for a while. Then find the two ends (good luck!) and tie them together. This is usually a very complicated knot. • Draw a diagram such as those pictured below. Such a diagram is a called a knot diagram or a knot projection. Trefoil and the figure 8 knot 1 The above two knots are the world's simplest knots. At the end of the handout you can see many more pictures of knots (from Robert Scharein's web site). The same picture contains many links as well. A link consists of several loops of string. Some links are so famous that they have names. For 2 2 3 example, 21 is the Hopf link, 51 is the Whitehead link, and 62 are the Bor- romean rings. They have the feature that individual strings (or components in mathematical parlance) are untangled (or unknotted) but you can't pull the strings apart without cutting. A bit of terminology: A crossing is a place where the knot crosses itself. The first number in knot's \name" is the number of crossings. Can you figure out the meaning of the other number(s)? 2 Reidemeister moves There are many knot diagrams representing the same knot. For example, both diagrams below represent the unknot. -
Forming the Borromean Rings out of Polygonal Unknots
Forming the Borromean Rings out of polygonal unknots Hugh Howards 1 Introduction The Borromean Rings in Figure 1 appear to be made out of circles, but a result of Freedman and Skora shows that this is an optical illusion (see [F] or [H]). The Borromean Rings are a special type of Brunninan Link: a link of n components is one which is not an unlink, but for which every sublink of n − 1 components is an unlink. There are an infinite number of distinct Brunnian links of n components for n ≥ 3, but the Borromean Rings are the most famous example. This fact that the Borromean Rings cannot be formed from circles often comes as a surprise, but then we come to the contrasting result that although it cannot be built out of circles, the Borromean Rings can be built out of convex curves, for example, one can form it from two circles and an ellipse. Although it is only one out of an infinite number of Brunnian links of three Figure 1: The Borromean Rings. 1 components, it is the only one which can be built out of convex compo- nents [H]. The convexity result is, in fact a bit stronger and shows that no 4 component Brunnian link can be made out of convex components and Davis generalizes this result to 5 components in [D]. While this shows it is in some sense hard to form most Brunnian links out of certain shapes, the Borromean Rings leave some flexibility. This leads to the question of what shapes can be used to form the Borromean Rings and the following surprising conjecture of Matthew Cook at the California Institute of Technology. -
Hyperbolic Structures from Link Diagrams
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2012 Hyperbolic Structures from Link Diagrams Anastasiia Tsvietkova [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Geometry and Topology Commons Recommended Citation Tsvietkova, Anastasiia, "Hyperbolic Structures from Link Diagrams. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1361 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Anastasiia Tsvietkova entitled "Hyperbolic Structures from Link Diagrams." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Mathematics. Morwen B. Thistlethwaite, Major Professor We have read this dissertation and recommend its acceptance: Conrad P. Plaut, James Conant, Michael Berry Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Hyperbolic Structures from Link Diagrams A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Anastasiia Tsvietkova May 2012 Copyright ©2012 by Anastasiia Tsvietkova. All rights reserved. ii Acknowledgements I am deeply thankful to Morwen Thistlethwaite, whose thoughtful guidance and generous advice made this research possible. -
Rock-Paper-Scissors Meets Borromean Rings
ROCK-PAPER-SCISSORS MEETS BORROMEAN RINGS MARC CHAMBERLAND AND EUGENE A. HERMAN 1. Introduction Directed graphs with an odd number of vertices n, where each vertex has both (n − 1)/2 incoming and outgoing edges, have a rich structure. We were lead to their study by both the Borromean rings and the game rock- paper-scissors. An interesting interplay between groups, graphs, topological links, and matrices reveals the structure of these objects, and for larger values of n, extensive computation produces some surprises. Perhaps most surprising is how few of the larger graphs have any symmetry and those with symmetry possess very little. In the final section, we dramatically sped up the computation by first computing a “profile” for each graph. 2. Three Weapons Let’s start with the two-player game rock-paper-scissors or RPS(3). The players simultaneously put their hands in one of three positions: rock (fist), paper (flat palm), or scissors (fist with the index and middle fingers sticking out). The winner of the game is decided as follows: paper covers rock, rock smashes scissors, and scissors cut paper. Mathematically, this game is referred to as a balanced tournament: with an odd number n of weapons, each weapon beats (n−1)/2 weapons and loses to the same number. This mutual dominance/submission connects RPS(3) with a seemingly disparate object: Borromean rings. Figure 1. Borromean Rings. 1 2 MARCCHAMBERLANDANDEUGENEA.HERMAN The Borromean rings in Figure 1 consist of three unknots in which the red ring lies on top of the blue ring, the blue on top of the green, and the green on top of the red. -
Knot Cobordisms, Bridge Index, and Torsion in Floer Homology
KNOT COBORDISMS, BRIDGE INDEX, AND TORSION IN FLOER HOMOLOGY ANDRAS´ JUHASZ,´ MAGGIE MILLER AND IAN ZEMKE Abstract. Given a connected cobordism between two knots in the 3-sphere, our main result is an inequality involving torsion orders of the knot Floer homology of the knots, and the number of local maxima and the genus of the cobordism. This has several topological applications: The torsion order gives lower bounds on the bridge index and the band-unlinking number of a knot, the fusion number of a ribbon knot, and the number of minima appearing in a slice disk of a knot. It also gives a lower bound on the number of bands appearing in a ribbon concordance between two knots. Our bounds on the bridge index and fusion number are sharp for Tp;q and Tp;q#T p;q, respectively. We also show that the bridge index of Tp;q is minimal within its concordance class. The torsion order bounds a refinement of the cobordism distance on knots, which is a metric. As a special case, we can bound the number of band moves required to get from one knot to the other. We show knot Floer homology also gives a lower bound on Sarkar's ribbon distance, and exhibit examples of ribbon knots with arbitrarily large ribbon distance from the unknot. 1. Introduction The slice-ribbon conjecture is one of the key open problems in knot theory. It states that every slice knot is ribbon; i.e., admits a slice disk on which the radial function of the 4-ball induces no local maxima. -
Preprint of an Article Published in Journal of Knot Theory and Its Ramifications, 26 (10), 1750055 (2017)
Preprint of an article published in Journal of Knot Theory and Its Ramifications, 26 (10), 1750055 (2017) https://doi.org/10.1142/S0218216517500559 © World Scientific Publishing Company https://www.worldscientific.com/worldscinet/jktr INFINITE FAMILIES OF HYPERBOLIC PRIME KNOTS WITH ALTERNATION NUMBER 1 AND DEALTERNATING NUMBER n MARIA´ DE LOS ANGELES GUEVARA HERNANDEZ´ Abstract For each positive integer n we will construct a family of infinitely many hyperbolic prime knots with alternation number 1, dealternating number equal to n, braid index equal to n + 3 and Turaev genus equal to n. 1 Introduction After the proof of the Tait flype conjecture on alternating links given by Menasco and Thistlethwaite in [25], it became an important question to ask how a non-alternating link is “close to” alternating links [15]. Moreover, recently Greene [11] and Howie [13], inde- pendently, gave a characterization of alternating links. Such a characterization shows that being alternating is a topological property of the knot exterior and not just a property of the diagrams, answering an old question of Ralph Fox “What is an alternating knot? ”. Kawauchi in [15] introduced the concept of alternation number. The alternation num- ber of a link diagram D is the minimum number of crossing changes necessary to transform D into some (possibly non-alternating) diagram of an alternating link. The alternation num- ber of a link L, denoted alt(L), is the minimum alternation number of any diagram of L. He constructed infinitely many hyperbolic links with Gordian distance far from the set of (possibly, splittable) alternating links in the concordance class of every link. -
TANGLES for KNOTS and LINKS 1. Introduction It Is
TANGLES FOR KNOTS AND LINKS ZACHARY ABEL 1. Introduction It is often useful to discuss only small \pieces" of a link or a link diagram while disregarding everything else. For example, the Reidemeister moves describe manipulations surrounding at most 3 crossings, and the skein relations for the Jones and Conway polynomials discuss modifications on one crossing at a time. Tangles may be thought of as small pieces or a local pictures of knots or links, and they provide a useful language to describe the above manipulations. But the power of tangles in knot and link theory extends far beyond simple diagrammatic convenience, and this article provides a short survey of some of these applications. 2. Tangles As Used in Knot Theory Formally, we define a tangle as follows (in this article, everything is in the PL category): Definition 1. A tangle is a pair (A; t) where A =∼ B3 is a closed 3-ball and t is a proper 1-submanifold with @t 6= ;. Note that t may be disconnected and may contain closed loops in the interior of A. We consider two tangles (A; t) and (B; u) equivalent if they are isotopic as pairs of embedded manifolds. An n-string tangle consists of exactly n arcs and 2n boundary points (and no closed loops), and the trivial n-string 2 tangle is the tangle (B ; fp1; : : : ; png) × [0; 1] consisting of n parallel, unintertwined segments. See Figure 1 for examples of tangles. Note that with an appropriate isotopy any tangle (A; t) may be transformed into an equivalent tangle so that A is the unit ball in R3, @t = A \ t lies on the great circle in the xy-plane, and the projection (x; y; z) 7! (x; y) is a regular projection for t; thus, tangle diagrams as shown in Figure 1 are justified for all tangles. -
Knot and Link Tricolorability Danielle Brushaber Mckenzie Hennen Molly Petersen Faculty Mentor: Carolyn Otto University of Wisconsin-Eau Claire
Knot and Link Tricolorability Danielle Brushaber McKenzie Hennen Molly Petersen Faculty Mentor: Carolyn Otto University of Wisconsin-Eau Claire Problem & Importance Colorability Tables of Characteristics Theorem: For WH 51 with n twists, WH 5 is tricolorable when Knot Theory, a field of Topology, can be used to model Original Knot The unknot is not tricolorable, therefore anything that is tri- 1 colorable cannot be the unknot. The prime factors of the and understand how enzymes (called topoisomerases) work n = 3k + 1 where k ∈ N ∪ {0}. in DNA processes to untangle or repair strands of DNA. In a determinant of the knot or link provides the colorability. For human cell nucleus, the DNA is linear, so the knots can slip off example, if a knot’s determinant is 21, it is 3-colorable (tricol- orable), and 7-colorable. This is known by the theorem that Proof the end, and it is difficult to recognize what the enzymes do. Consider WH 5 where n is the number of the determinant of a knot is 0 mod n if and only if the knot 1 However, the DNA in mitochon- full positive twists. n is n-colorable. dria is circular, along with prokary- Link Colorability Det(L) Unknot/Link (n = 1...n = k) otic cells (bacteria), so the enzyme L Number Theorem: If det(L) = 0, then L is WOLOG, let WH 51 be colored in this way, processes are more noticeable in 3 3 3 1 n 1 n-colorable for all n. excluding coloring the twist component. knots in this type of DNA. -
An Introduction to the Theory of Knots
An Introduction to the Theory of Knots Giovanni De Santi December 11, 2002 Figure 1: Escher’s Knots, 1965 1 1 Knot Theory Knot theory is an appealing subject because the objects studied are familiar in everyday physical space. Although the subject matter of knot theory is familiar to everyone and its problems are easily stated, arising not only in many branches of mathematics but also in such diverse fields as biology, chemistry, and physics, it is often unclear how to apply mathematical techniques even to the most basic problems. We proceed to present these mathematical techniques. 1.1 Knots The intuitive notion of a knot is that of a knotted loop of rope. This notion leads naturally to the definition of a knot as a continuous simple closed curve in R3. Such a curve consists of a continuous function f : [0, 1] → R3 with f(0) = f(1) and with f(x) = f(y) implying one of three possibilities: 1. x = y 2. x = 0 and y = 1 3. x = 1 and y = 0 Unfortunately this definition admits pathological or so called wild knots into our studies. The remedies are either to introduce the concept of differentiability or to use polygonal curves instead of differentiable ones in the definition. The simplest definitions in knot theory are based on the latter approach. Definition 1.1 (knot) A knot is a simple closed polygonal curve in R3. The ordered set (p1, p2, . , pn) defines a knot; the knot being the union of the line segments [p1, p2], [p2, p3],..., [pn−1, pn], and [pn, p1].