FRAMED KNOT CONTACT HOMOLOGY 1. Introduction This
FRAMED KNOT CONTACT HOMOLOGY LENHARD NG Abstract. We extend knot contact homology to a theory over the ring ±1 ±1 Z[λ ; µ ], with the invariant given topologically and combinatorially. The improved invariant, which is defined for framed knots in S3 and can be generalized to knots in arbitrary manifolds, distinguishes the unknot and can distinguish mutants. It contains the Alexander polynomial and naturally produces a two-variable polynomial knot invariant which is related to the A-polynomial. 1. Introduction This may be viewed as the third in a series of papers on knot contact homology, following [15, 16]. In this paper, we extend the knot invariants of [15, 16], which were defined over the base ring Z, to invariants over the ±1 ±1 3 larger ring Z[λ ; µ ]. The new invariants, defined both for knots in S 3 or R and for more general knots, contain a large amount of information not contained in the original formulation of knot contact homology, which corresponds to specifying λ = µ = 1. We will recapitulate definitions from the previous papers where necessary, so that the results from this paper can hopefully be understood independently of [15, 16], although some proofs rely heavily on the previous papers. The motivation for the invariant given by knot contact homology comes from symplectic geometry and in particular the Symplectic Field Theory of Eliashberg, Givental, and Hofer [8]. Our approach in this paper and its pre- decessors is to view the invariant topologically and combinatorially, without using the language of symplectic topology. Work is currently in progress to show that the invariant defined here does actually give the \Legendrian con- tact homology" of a certain canonically defined object.
[Show full text]