MIMO-Aware Medium Access Control in IEEE 802.11 Networks

Total Page:16

File Type:pdf, Size:1020Kb

MIMO-Aware Medium Access Control in IEEE 802.11 Networks MIMO-aware Medium Access Control in IEEE 802.11 Networks by Abduladhim Mabruk Ashtaiwi A thesis submitted to the Department of Electrical and Computer Engineering in conformity with the requirements for the degree of Doctor of Philosophy Queen’s University Kingston, Ontario, Canada January 2009 Copyright c Abduladhim Mabruk Ashtaiwi, 2009 ISBN:978-0-494-48492-0 Abstract Wireless Mesh Networks (WMNs) are dynamically self-organized and self-configured, where the nodes in the network automatically establish an ad hoc network and main- tain mesh connectivity. These properties make WMNs a key technology for next- generation wireless networking. However, supporting Quality of Service (QoS) to enable multimedia services is still one of the major issues in next-generation WMNs. In distributed systems like WMNs, the Medium Access Control (MAC) layer is considered very important in the IEEE 802.11-based wireless networks, as it supports many crucial operational functions. Hence, QoS support in WMNs can be enhanced through the efficient cross-layer design of MAC protocols that utilizes advanced phys- ical layer technologies viz Multiple-Input Multiple-Output (MIMO) with its multiple spatial channels that are capable of simultaneous receive or transmit streams. MIMO has become a very attractive technology in providing support for different QoS re- quirements. In this thesis we propose a novel QoS MIMO-aware MAC Protocol (QMMP). QMMP is a MAC protocol framework that exploits the MIMO system gains to boost QoS support. The proposed MAC framework includes the following components. The first component enables concurrent sharing of the increased MIMO bandwidth, i.e., instead of allocating all the spatial channels to one connection, connections can i concurrently share the increase bandwidth via splitting the spatial channels. The second component reduces the medium access collisions problem. In distributed sys- tems like WMNs, medium access collisions have a noticeably negative impact on resource (bandwidth) utilization as they leave the bandwidth unutilized for a long time. To address this problem, we propose a spatial channels sharing scheme during medium contention period. The third component boosts the bandwidth utilization during data transmission. We propose resource management schemes that adapt the physical data rate and the aggregation frame length according to the instantaneous channel quality. Then we propose a QoS-aware bandwidth provisioning mechanism that performs effective bandwidth distribution to further boost QoS support. ii Dedication I wish to dedicate this thesis to the memory of my mother, Fatma. She was a constant source of inspiration in my life. Although she is not here to give me strength and support, I always feel her presence, urging me to strive to achieve my goals in life. May Almighty Allah reward her good deeds. To my father, Mabruk, who taught me that even the largest task can be accomplished if it is done one step at a time. To my wife, who stood beside me and encouraged me constantly. To my children, Saja, Sara, and Nada for giving me happiness. iii Acknowledgments First of all I would like to express my countless Praise to ALLAH for His graciousness and guidance, without which I could never have made it to the end. I would like to express my sincere gratitude to my supervisor Dr. Hossam S. Hassanein, for his patience and guidance throughout the course of this work. Special thanks to the external examiner, Dr. Wessam Ajib for his constructive and useful comments that helped improve the quality of this thesis. I would also like to thank the members of the examination committee, Dr. M. Ibnkahla, Dr. M.H. Rahman, Dr. P.K. Jain, and Dr. G.K. Takahara, for their valuable remarks and recommendations. Thanks are due to my colleagues Bader Manthari, Ashraf Ali Bourawy, Waleed Alsalih, Afzal Mawji, Khaled Ali, and Hassan Ahmad for their valuable collaboration and assistance during the course of this work. My deepest gratitude goes to my family for their unflagging love and support throughout my life. Finally, my sincere thanks to my friends and colleagues at the Telecommunication Research Lab (TRL) at Queen’s University for their guidance and friendship. I am also grateful to the numerous individuals who have directly or indirectly contributed to the completion of this work. iv Contents Abstract i Dedication iii Acknowledgments iv Contents v List of Tables viii List of Figures ix List of Acronyms xi List of Symbols xvi 1 Introduction 1 1.1 Motivation and Objectives . 3 1.2 Thesis Contributions . 6 1.2.1 QoS MIMO-aware MAC Protocol . 7 1.2.2 MIMO-aware Collision Avoidance Enhancements . 8 1.2.3 MIMO-aware Bandwidth Utilization and QoS Support . 8 1.3 Thesis outline . 9 2 Background and Framework Overview 10 2.1 IEEE 802.11 Standard–Wireless Local Area Networks . 11 2.2 IEEE 802.11 Amendment Activities . 13 2.3 IEEE 802.11e–MAC Quality of Service Enhancements . 15 2.4 Multiple Input Multiple Output (MIMO) . 17 2.5 IEEE 802.11n–Enhancements for Higher Throughput . 18 2.6 IEEE 802.11s–Wireless Mesh Networks . 20 2.7 Proposed Framework and Related Work . 22 v 2.7.1 MIMO-aware MAC Protocol . 23 2.7.2 MIMO-aware Collision Avoidance . 28 2.7.3 MIMO-aware Bandwidth Utilization . 33 2.8 Summary . 35 3 QoS MIMO-aware MAC Protocol 37 3.1 Introduction . 37 3.2 Motivation and Problem Formulation . 38 3.3 MIMO Channel Interference Model . 40 3.4 QoS MIMO-aware MAC Protocol (QMMP) . 44 3.4.1 TXOP Scheduling and Broadcasting . 51 3.5 QMMP Properties . 58 3.6 Discussion of other QMMP Advantages . 60 3.7 Performance Evaluation . 66 3.7.1 Simulation Model . 66 3.7.2 Traffic Model . 69 3.7.3 Simulation Parameters . 69 3.7.4 Performance Metrics . 70 3.7.5 Simulation Results . 70 3.8 Summary . 78 4 MIMO-aware Medium Access Collision Avoidance 80 4.1 Introduction . 80 4.2 Enhancements to the IEEE 802.11e EDCF Collision Avoidance Mech- anism . 82 4.3 Performance Evaluation . 91 4.3.1 Simulation Model . 91 4.3.2 Network Topology . 92 4.3.3 Simulation Parameters . 92 4.3.4 Performance Metrics . 93 4.4 Simulation Results–Single-hop Network . 93 4.5 Adaptive γ ................................ 99 4.6 Simulation Results–Multi-hop network . 110 4.7 Summary . 112 5 MIMO-aware Bandwidth Utilization 114 5.1 Introduction . 114 5.2 IEEE 802.11n MAC-Layer Frames . 116 5.2.1 A-MSDU Aggregation Frame Structure . 116 5.2.2 A-MPDU Aggregation Frame Structure . 117 5.2.3 A-MSDU and A-MPDU Two-level Frame Aggregation Structure 118 vi 5.3 Exploiting 802.11n Capabilities to Support QoS in IEEE 802.11s . 119 5.3.1 Link Adaptation . 120 5.3.2 Aggregation Frame Length Adaptation . 122 5.3.3 Bandwidth Provisioning Scheme . 124 5.4 Performance Evaluation . 126 5.4.1 Simulation Model . 126 5.4.2 Network Topology . 127 5.4.3 Traffic Model . 128 5.4.4 Performance Metrics . 128 5.4.5 Simulation Results . 129 5.5 Summary . 136 6 Conclusions and Future Work 138 6.1 Summary of Contributions . 139 6.2 Future Research Directions . 143 Bibliography 146 vii List of Tables 2.1 VoIP Codecs . 23 3.1 The physical and MAC configuration attributes of the IEEE 802.11n and traffic specifications . 39 3.2 IEEE 802.11n configurations . 69 5.1 Channel modulation parameters . 121 5.2 Traffic specifications . 128 viii List of Figures 1.1 Wireless mesh network evolution . 2 2.1 Snapshot of 802.11 physical and MAC standardization activities . 14 2.2 The structure of the sounding frame . 20 2.3 Wireless mesh network’s components and hierarchy structure . 21 2.4 The basic structure and operation of the proposed MAC in [50] . 25 3.1 Average medium access delay versus transmission delay comparison of different access classes. 40 3.2 Interference channel model . 41 3.3 Stage 1: depiction of the QMMP main phases, deferral, and concurrent transmissions . 46 3.4 Stage 2: depiction of the QMMP main phases, deferral, and concurrent transmissions . 47 3.5 The QMMP scheme under hidden node problem . 49 3.6 Finding a slot in case there exist previously reserved slots . 54 3.7 Some functional aspects of the QMMP MAC protocol . 63 3.8 Instantaneous signal decode-ability with ϕ=4 . 68 3.10 Achievable throughput as a function of communication and interference distance . 72 3.11 Medium access delay for different ranges . 73 3.12 Throughput for different ranges of requested rates . 74 3.13 Medium access delay for different values of D . 75 3.14 Throughput for different values of D . 75 3.15 Wireless mesh network model . 76 3.16 performance comparison between the IEEE 802.11 DCF and QMMP MAC protocol . 77 3.17 Comparison of requested and achieved rates . 78 4.1 The sounding frames transmission window . 83 4.2 The synchronization of the sounding frames transmission windows . 85 4.3 Medium contention at transmitters . 87 ix 4.4 Medium contention at receivers . 90 4.5 Hidden node network topology . 92 4.6 Mean number of attempts per packet for different γ and network loads. 94 4.7 M-EDCF MAC delay for different γ and network loads. 95 4.8 Channel utilization for different γ and network loads. 96 4.9 Throughput for different γ and network loads. 97 4.10 Actuating versus silencing the selection and termination properties . 98 4.11 The effect of changing γ ......................... 100 4.12 Virtual transmission period. 103 4.13 γ variability . 104 4.14 The success probability as function of different values of γ and β .
Recommended publications
  • November, 2006 Doc.: IEEE 802.11-06/1740R0 IEEE P802.11 Wireless Lans Tentative
    November, 2006 doc.: IEEE 802.11-06/1740r0 IEEE P802.11 Wireless LANs Tentative Minutes of the IEEE P802.11 Full Working Group Date: 2006-11-13 Author(s): Name Company Address Phone Email Tim Godfrey Freescale +1-913-814-7883 Abstract Minutes of the 802.11 full working group. Notice: This document has been prepared to assist IEEE 802.11. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.11. Patent Policy and Procedures: The contributor is familiar with the IEEE 802 Patent Policy and Procedures <http:// ieee802.org/guides/bylaws/sb-bylaws.pdf>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication.
    [Show full text]
  • 2.4/5 Ghz Dual-Band 1X1 Wi-Fi 5 (802.11Ac) and Bluetooth 5.2 Solution Rev
    88W8987_SDS 2.4/5 GHz Dual-band 1x1 Wi-Fi 5 (802.11ac) and Bluetooth 5.2 Solution Rev. 2 — 21 May 2021 Product short data sheet 1 Product overview The 88W8987 is a highly integrated Wi-Fi (2.4/5 GHz) and Bluetooth single-chip solution, specifically designed to support the speed, reliability, and quality requirements of next generation Very High Throughput (VHT) products. The System-on-Chip (SoC) provides both simultaneous and independent operation of the following: • IEEE 802.11ac (Wave 2), 1x1 with data rates up to MCS9 (433 Mbit/s) • Bluetooth 5.2 (includes Bluetooth Low Energy (LE)) The SoC also provides: • Bluetooth Classic and Bluetooth LE dual (Smart Ready) operation • Wi-Fi indoor location positioning (802.11mc) For security, the device supports high performance 802.11i security standards through implementation of the Advanced Encryption Standard (AES)/Counter Mode CBC- MAC Protocol (CCMP), AES/Galois/Counter Mode Protocol (GCMP), Wired Equivalent Privacy (WEP) with Temporal Key Integrity Protocol (TKIP), AES/Cipher-Based Message Authentication Code (CMAC), and WLAN Authentication and Privacy Infrastructure (WAPI) security mechanisms. For video, voice, and multimedia applications, 802.11e Quality of Service (QoS) is supported. The device also supports 802.11h Dynamic Frequency Selection (DFS) for detecting radar pulses when operating in the 5 GHz range. Host interfaces include SDIO 3.0 and high-speed UART interfaces for connecting Wi-Fi and Bluetooth technologies to the host processor. The device is designed with two front-end configurations to accommodate Wi-Fi and Bluetooth on either separate or shared paths: • 2-antenna configuration—1x1 Wi-Fi and Bluetooth on separate paths (QFN) • 1-antenna configuration—1x1 Wi-Fi and Bluetooth on shared paths (eWLP) The following figures show the application diagrams for each package option.
    [Show full text]
  • Time-Sensitive Networking Technologies for Industrial Automation in Wireless Communication Systems
    energies Review Time-Sensitive Networking Technologies for Industrial Automation in Wireless Communication Systems Yoohwa Kang 1 , Sunwoo Lee 2, Songi Gwak 2 , Taekyeong Kim 2 and Donghyeok An 2,* 1 Electronics and Telecommunications Research Institute, Daejeon 34129, Korea; [email protected] 2 Department of Computer Engineering, Changwon National University, Changwon 51140, Korea; [email protected] (S.L.); [email protected] (S.G.); infi[email protected] (T.K.) * Correspondence: [email protected]; Tel.: +82-55-213-3814 Abstract: The fourth industrial revolution is accelerating industrial automation. In industrial net- works, manufacturing processes require hard real-time communication where the latency is less than 1ms. Time-sensitive networking (TSN) technology over Ethernet already supports deterministic de- livery for real-time communication. However, TSN technologies over wireless networks are currently in their initial development stage. Therefore, this study presents an overview of TSN research trends in wireless communications. This paper focuses on 5G networks and IEEE 802.11. We summarize standardization trends for TSN in 5G networks and introduce the TSN technologies for 802.11-based WLAN. Then, we introduce the integration scenario of 5GS with WLAN. This study provides insights into wireless communication technologies for wireless TSN. Keywords: time-sensitive networking (TSN); 5G; 802.11; low latency; reliability; industrial automation Citation: Kang, Y.; Lee, S.; Gwak, S.; Kim, T.; An, D. Time-Sensitive Networking Technologies for 1. Introduction Industrial Automation in Wireless Industrial automation is a representative system attracting attention in the fourth Communication Systems. Energies industrial revolution. In the industrial automation system, data and controls are exchanged 2021, 14, 4497.
    [Show full text]
  • Balance De Tráfico Y Provisión De Qos En Redes IEEE 802.11
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio Universidad de Zaragoza Trabajo Fin de Grado Balance de tráfico y provisión de QoS en redes IEEE 802.11 Autor Javier García Fortún Director Ángela Hernández Solana Escuela de Ingeniería y Arquitectura 2015 Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es Balance de tráfico y provisión de QoS en redes IEEE 802.11 RESUMEN El espectro radioeléctrico empleado por los dispositivos que funcionan bajo los estándares IEEE 802.11, englobados baja la marca comercial Wi-Fi, es un medio compartido con otros estándares como Bluetooth o ZigBee y con otros equipos del mismo sistema de forma que los recursos disponibles son muy limitados y se encuentran saturados. Además, los despliegues de redes Wi-Fi en edificios y entornos públicos y privados para proporcionar un servicio de acceso a internet a clientes y usuarios son cada vez más habituales. En estos despliegues planificados en modo infraestructura, la gestión de los recursos radio a través de una adecuada planificación de frecuencias, pero también de mecanismos lo más eficientes posibles de ajuste/reajuste de cobertura, selección inteligente de puntos de acceso, algoritmos de balanceo de carga lo más efectivos posibles y de adaptación de tasa en función del estado de la red, se antoja fundamental para conseguir satisfacer las elevadas exigencias que los usuarios presentan en la actualidad. Por otra parte, la demanda de servicios con mayores tasas de descarga y de transmisión para servicios best-effort y de servicios de bajo retardo (VoIP o videojuegos en línea) es cada vez más habitual.
    [Show full text]
  • 802.11 Arbitration
    802.11 Arbitration White Paper September 2009 Version 1.00 Author: Marcus Burton, CWNE #78 CWNP, Inc. [email protected] Technical Reviewer: GT Hill, CWNE #21 [email protected] Copyright 2009 CWNP, Inc. www.cwnp.com Page 1 Table of Contents TABLE OF CONTENTS ............................................................................................................................... 2 EXECUTIVE SUMMARY ............................................................................................................................. 3 Approach / Intent ................................................................................................................................... 3 INTRODUCTION TO 802.11 CHANNEL ACCESS ................................................................................... 4 802.11 MAC CHANNEL ACCESS ARCHITECTURE ............................................................................... 5 Distributed Coordination Function (DCF) ............................................................................................. 5 Point Coordination Function (PCF) ...................................................................................................... 6 Hybrid Coordination Function (HCF) .................................................................................................... 6 Summary ................................................................................................................................................ 7 802.11 CHANNEL ACCESS MECHANISMS ...........................................................................................
    [Show full text]
  • Escuela Politécnica De Ingeniería De Gijón
    ESCUELA POLITÉCNICA DE INGENIERÍA DE GIJÓN MÁSTER UNIVERSITARIO EN INGENIERÍA DE TELECOMUNICACIÓN TRABAJO FIN DE MÁSTER Nº 202008 EVALUACIÓN E IMPLEMENTACIÓN DE LTE-A/5G-NR PARA APLICACIONES INDUSTRIALES TIME-CRITICAL GUILLERMO LACALLE MARCOS TUTORES: RAFAEL GONZÁLEZ AYESTARÁN IÑAKI VAL BEITIA JULIO 2020 AGRADECIMIENTOS: A la EPI de Gijón y en especial a Rafael González Ayestarán mi tutor de este TFM y a Samuel Ver Hoeye, por sus conocimientos, por su ayuda y por la formación recibida. A Ikerlan y a todo su personal por la acogida y la enorme oportunidad de integrarme en la Empresa. Mil gracias. Muy especialmente a Iñaki y a Óscar que siempre han estado ahí e hicieron que todo fluyera con naturalidad, por su disposición constante y por todo lo que me enseñaron y me apoyaron. No hay palabras para expresar este agradecimiento. A mi madre y a mi padre. UNIVERSIDAD DE OVIEDO Escuela Politécnica de Ingeniería de Gijón Índice 1 Introducción.................................................................................................. 1 1.1. Motivación ......................................................................................................... 1 1.2. Estado del arte ................................................................................................... 2 1.2.1. La primera generación (1G) ......................................................................... 3 1.2.2. La segunda generación (2G) ........................................................................ 3 1.2.3. La tercera generación (3G) .........................................................................
    [Show full text]
  • 802.11N for Enterprise Wireless Lans
    WHITE PAPER 802.11n for Enterprise Wireless LANs www.extricom.com [email protected] Copyright © 2010, Extricom Ltd. All rights reserved. Extricom, TrueReuse, UltraThin and the Extricom logo are trademarks of Extricom Ltd. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, photocopying, recording or otherwise, without prior written consent of Extricom Ltd. No patent liability is assumed with respect to the use of the information contained herein. While every precaution has been taken in the preparation of this publication, Extricom Ltd. assumes no responsibility for errors or omissions. The information contained in this publication and features described herein are subject to change without notice. Extricom Ltd. reserves the right at any time and without notice, to make changes in the product. -- i Table of Contents EXECUTIVE SUMMARY............................................................................................................................... 1 EVOLUTION OF THE IEEE 802.11 STANDARD ......................................................................................... 2 NEW FEATURES OF 802.11N ........................................................................................................................ 3 Physical Layer Improvements................................................................................................................ 3 Higher Modulation Rates – from 54 Mbps to 58.5 Mbps ..................................................................
    [Show full text]
  • 2.4 Ghz/5 Ghz Dual-Band 1X1 Wi-Fi 4 and Bluetooth 5.2 Combo Soc Rev
    88W8977_SDS 2.4 GHz/5 GHz Dual-band 1x1 Wi-Fi 4 and Bluetooth 5.2 Combo SoC Rev. 3 — 13 May 2021 Product short data sheet 1 Product overview The 88W8977 System-on-Chip (SoC) is a highly integrated single-chip solution that incorporates both Wi-Fi® (2.4/5 GHz) and Bluetooth® technology. The System-on-Chip (SoC) provides both simultaneous and independent operation of the following: • IEEE 802.11n compliant, 1x1 spatial stream with data rates up to MCS7 (150 Mbps) • Bluetooth 5.2 (includes Bluetooth Low Energy (LE)) The SoC also provides 3-way coexistence for Wi-Fi, Bluetooth, and ZigBee operation, and indoor location and navigation (802.11mc). The internal coexistence arbitration and a Mobile Wireless Systems (MWS) serial transport interface provide the functionality for connecting an external Long Term Evolution (LTE) or ZigBee device. The device also supports a coexistence interface for co-located Bluetooth/Wi-Fi device arbitration. For security, the device supports high performance 802.11i security standards through the implementation of the Advanced Encryption Standard (AES)/Counter Mode CBC- MAC Protocol (CCMP), Wired Equivalent Privacy (WEP) with Temporal Key Integrity Protocol (TKIP), AES/Cipher-Based Message Authentication Code (CMAC), WPA (AES), and Wi-Fi Authentication and Privacy Infrastructure (WAPI) security mechanisms. For video, voice, and multimedia applications, 802.11e Quality of Service (QoS) is supported. The device also features 802.11h Dynamic Frequency Selection (DFS) for detecting radar pulses when operating in the 5 GHz range. Host interfaces include SDIO 3.0 and high-speed UART interfaces for connecting Wi-Fi and Bluetooth technologies to the host processor.
    [Show full text]
  • Cisco Embedded Wireless Controller on Catalyst Access Points Configuration Guide, IOS XE Amsterdam 17.3.X
    Cisco Embedded Wireless Controller on Catalyst Access Points Configuration Guide, IOS XE Amsterdam 17.3.x First Published: 2020-08-03 Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
    [Show full text]
  • Studies on Communication Quality Improvement Technology in Media Access Control Scheme for Wireless Local Area Network Systems
    Studies on Communication Quality Improvement Technology in Media Access Control Scheme for Wireless Local Area Network Systems 著者 岸田 朗 year 2015 その他のタイトル 無線LANシステムにおける通信品質改善のためのメ ディアアクセス制御方式に関する研究 学位授与大学 筑波大学 (University of Tsukuba) 学位授与年度 2014 報告番号 12102甲第7308号 URL http://hdl.handle.net/2241/00129334 Studies on Communication Quality Improvement Technology in Media Access Control Scheme for Wireless Local Area Network Systems Graduate School of Systems and Information Engineering University of Tsukuba March 2015 Akira Kishida Abstract This dissertation presented research results regarding techniques of improvement on communication quality in Media Access Control (MAC) protocol for Wireless Local Area Network (WLAN) systems. A wide variety of devices including mobile devices such as smartphones, tablet PCs, mobile routers, gaming machines, and sensor devices utilizes WLAN systems in these days and applications used in those devices have been diversified. Furthermore, the utilization of WLAN systems will also increase rapidly because of traffic offloading from mobile communication systems. Therefore, the demands for the communication quality improvement and high speed transmission of WLAN system are increasing. However, these demands to WLAN systems resulted in the increase of congested situations with many WLAN stations, i.e., wireless dense environments. In the wireless dense environments, shortage of bandwidth resource is caused and sufficient communication quality is not ensured by mechanism of contention based MAC protocol of WLAN systems. WLAN systems employ the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) as their MAC protocol. The CSMA/CA shares the same wireless medium for communications and each station segregates its transmission timing by random access manner. In the CSMA, Stations (STAs) autonomously decide the transmission timing and this mechanism causes simultaneous transmission among multiple STAs.
    [Show full text]
  • Marketing Fragment 6 X 10.5.T65
    Cambridge University Press 978-0-521-89584-2 - Emerging Technologies in Wireless LANs: Theory, Design, and Deployment Edited by Benny Bing Index More information Index 802.1d 41,86,347 Adjacent Channel Interference (ACI) 31 802.1x 21,134,137,151,337,595 Admission Control 49 802.11a 1,25,181,224,318,539,609 Advanced Encryption Standard (AES) 21,49, 802.11b 1,25,66,220,318,539,609,695 137,149 802.11d 25 Advanced Television Standards Committee 802.11e 39,63,338,367 (ATSC) 496 802.11g 1,25,181,228,318,539,551,695 Aggregators 626 802.11h 25,609 Analog-to-Digital Converter (ADC) 552 802.11i 20,135 Angle of Arrival 664 802.11j 25 Anomaly Analysis 171 802.11k 6,517 Antenna Design 563,818 802.11n 4,14,153,179,351,501,547 Antenna Q 567 802.11p 7,245 Application Layer Gateway (ALG) 376 802.11r 8,154,247 Arbitration Interframe Space (AIFS) 45,86,92, 802.11s 8,57,154,249,342 333 802.11T 9 Association 18,154,358 802.11u 10 Attenuation 541 802.11v 10 Authentication 18,151,265,284,355,443,595,607 802.11w 11,157 Authenticator 150 802.11y 11,351 Authorization 265,284,355,443,596 802.15.3 768 Automatic Power Save Delivery (APSD) 52 802.15.4 488,725 802.16d 618 Basic Service Set (BSS) 17,285,522 802.16e 618 Beamforming 2,188,197 802.16h 478 Billing 599 802.19 480 Binary Convolutional Code (BCC) 186 802.22 491 Bit Error Rate (BER) 106,725 3G 331,805 Block Acknowledgment (BA) 5 3GPP 354,430,446 Bluetooth 89,340,351,480,501,635 3GPP2 353,446 Bootstrapping 433 4G 441,814 Box Chart 580,582,585 1xEV-DO 419,572,805 Breakout Gateway Control Function (BGCF) 446 1xRTT
    [Show full text]
  • Digital Design of a Forward Error Correction System for IEEE 802.15.7
    Mateus Gonçalves Silva Digital Design of a Forward Error Correction System for IEEE 802.15.7 Belo Horizonte 2020 Mateus Gonçalves Silva Digital Design of a Forward Error Correction System for IEEE 802.15.7 Dissertation submitted to the Graduate Pro- gram in Electrical Engineering at Universi- dade Federal de Minas Gerais, in partial ful- fillment of the requirements for the degree of Master in Electrical Engineering. Supervisor: Prof. Dr. Ricardo de Oliveira Duarte Belo Horizonte 2020 Silva, Mateus Gonçalves. S586d Digital design of a forward error correction system for IEEE 802.15.7 [recurso eletrônico] / Mateus Gonçalves Silva. – 2020. 1 recurso online (149 f. : il., color.) : pdf. Orientador: Ricardo de Oliveira Duarte. Dissertação (mestrado) Universidade Federal de Minas Gerais, Escola de Engenharia. Anexos: f. 127-149. Bibliografia: f. 121-126. Exigências do sistema: Adobe Acrobat Reader. 1. Engenharia elétrica - Teses. 2. Sistemas digitais - Teses. 3. Propriedade intelectual - Teses. I. Duarte, Ricardo de Oliveira. II. Universidade Federal de Minas Gerais. Escola de Engenharia. III. Título. CDU: 621.3(043) Ficha catalográfica: Biblioteca Profº Mário Werneck, Escola de Engenharia da UFMG. Agradecimentos Esta dissertação de mestrado é um resultado de um processo de formação acadêmica e cidadã fornecido pela Universidade Federal de Minas Gerais (UFMG), iniciado nos tempos de graduação. Por isso sou grato à UFMG pelo suporte dado durante esses anos e aos seus membros que acreditam em um ensino público, de qualidade e inclusivo. Em especial, agradeço ao Prof. Dr. Ricardo de Oliveira Duarte, que me acompanhou durante a maior parte deste processo como professor, orientador e amigo. Também agradeço aos alunos de iniciação científica Elisa Santos Bacelar e Gabriel Ricardo Thomaz de Araújo pelo esforço e dedicação empenhados na pesquisa e pela contribuição fundamental para este trabalho.
    [Show full text]