The Next Great Exoplanet Hunt

Total Page:16

File Type:pdf, Size:1020Kb

The Next Great Exoplanet Hunt The Next Great Exoplanet Hunt The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Heng, Kevin, and Joshua Winn. "The Next Great Exoplanet Hunt." American Scientist 103(3) (May-June 2015): 196. As Published http://www.americanscientist.org/issues/feature/2015/3/the-next- great-exoplanet-hunt Publisher American Scientist Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/98480 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ The Next Great Exoplanet Hunt Kevin Heng University of Bern, Physics Institute, Center for Space and Habitability, Sidlerstrasse 5, CH-3012, Bern, Switzerland Joshua Winn Massachusetts Institute of Technology, Department of Physics, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, United States of America Abstract What strange new worlds will our next-generation telescopes find? Kevin Heng is an assistant professor of astrophysics at the University of Bern, Switzerland (Twitter: @KevinHeng1). He is a core science team member of the CHEOPS mission and is involved in the PLATO mission. Joshua Winn is associate professor of physics at the Massachusetts Institute of Technology, was a member of the Kepler science team, and is currently deputy science director of the TESS mission. Edited by Katie Burke. www.americanscientist.org One of the most stunning scientific advances of our gen- ships to visit the exoplanet itself, these atmospheric characteri- eration has been the discovery of planets around distant stars. zations seem the most promising—and to some, the only—way Fewer than three decades ago, astronomers could only specu- of discerning whether a given exoplanet is actually inhabited. late on the probability for a star to host a system of exoplanets. Molecular oxygen, or ozone, for example, would be circum- Now we know the Universe is teeming with exoplanets, many stantial, but not definitive, evidence for life, because there are of which have properties quite unlike the planets of our Solar plausible ways of producing it abiotically using the known laws System. This has given birth to the new field of exoplanetary of physics and chemistry. Subsurface life may exist on an ex- science, one of the most active areas of astronomy, pursued by oplanet, but we probably have no chance of detecting it with many research groups around the world. astronomical observations. Although there are many ways of detecting exoplanets, the This logical sequence of exploration is largely mirrored in most successful in recent years has been the transit method, in the series of space missions that NASA and the European Space which the exoplanet reveals itself by transiting (passing directly Agency (ESA) have planned, approved, and constructed—or in front of) its host star, causing a miniature eclipse. These will construct. Exoplanet detection is poised to make the tran- eclipses are detected by telescopes that are capable of precisely sition from cottage industry to big science, while atmospheric tracking the brightnesses of many stars at the same time. Since characterization is inexorably finding its feet. its launch in 2009, NASA’s Kepler space telescope used this technique to resounding effect, finding more than 1,000 con- Bright, Twinkling Stars firmed transiting exoplanets. The success of the Kepler mission Early efforts to detect transiting exoplanets in the early 2000s has inspired the next generation of exoplanet transit-hunting used ground-based telescopes, which face daunting obstacles. machines: a fleet of new space telescopes and complementary One obstacle is the annoying tendency of the Sun to rise ev- ground-based telescopes. They will expand our inventory of ery morning. This foils the attempt to monitor stars as con- strange new worlds and further our quest to find Earth-like ex- tinuously as possible. Transits that occur during daytime are arXiv:1504.04017v2 [astro-ph.EP] 30 Jun 2015 oplanets and search them for signs of life. missed. Another obstacle is the Earth’s atmosphere, a turbulent The long-term strategy of exoplanet hunting is easy to state: and constantly varying screen that causes apparent fluctuations find exoplanets, characterize their atmospheres and, ultimately, in starlight much stronger than the transit signals we seek to search for chemical signatures of life (biomarkers). These ef- detect. Even on a seemingly clear night, the atmosphere alters forts strive to answer questions such as: Which molecules are the passage of starlight in a manner that depends on both wave- the most abundant? What is the typical cloud coverage, tem- length and brightness, through the phenomena of extinction and perature and wind speed? Is there a solid surface beneath all scintillation. Extinction is why the setting sun is red and dim; the gas? The answers to these questions help establish whether scintillation is why stars twinkle. To correct for these effects, an exoplanet is potentially habitable. And unless we can detect astronomers point their telescopes at groups of stars with simi- radio broadcasts from an intelligent civilization or build star- lar colors and brightness, trusting that the atmosphere will affect them all equally—whereas a transiting exoplanet would cause only one of them to temporarily dim. Using these reference Corresponding authors: [email protected] (Kevin Heng), [email protected] (Joshua Winn) stars, exoplanet transits can be flagged and confirmed. Published in American Scientist: Volume 103, Number 3, Pages 196–203 (May-June 2015 Issue) July 1, 2015 Heng & Winn: The Next Great Exoplanet Hunt (in American Scientist) 2 probability for transits is equal to the stellar diameter divided by 1.002 the orbital diameter, which is only 0.1% for an Earth-like orbit 1.000 around a Sun-like star. For this reason, a meaningful transit sur- vey must include tens of thousands of stars, or more. Because 0.998 faint stars far outnumber bright ones in any given region of the sky, a practical strategy is to monitor a rich field of relatively 0.996 Ground−based Relative brightness 1.2m telescope (FLWO) faint stars. This is precisely what the Kepler space telescope did, staring at about 150,000 stars in a small, 115-square-degree 1.002 patch of sky in the constellations of Cygnus and Lyra. Unfortu- 1.000 nately, most of the Kepler discoveries involve stars that are too faint for the atmospheric characterization of their exoplanets. 0.998 Transiting exoplanets offer the potential for atmospheric char- 0.996 Space−based acterization. During a transit, a small portion of the starlight is Relative brightness 1.0m telescope (Kepler) filtered through the exoplanet’s atmosphere. By comparing the 0 2 4 6 8 spectrum of starlight during a transit to the starlight just before Time [hours] or after the transit, we can identify absorption features due to atoms and molecules in the exoplanet’s atmosphere. Another approach is to measure the light emitted from the exoplanet, by Figure 1: Why we need space telescopes to observe transiting exoplanets. The top panel shows a time series of brightness measurements of the exoplanet detecting the drop in brightness when the exoplanet is hidden HAT-P-11b, using an Arizona-based telescope with a 1.2-meter diameter. The behind the star, an event known as an “occultation”. dip of 0.4%, lasting a few hours, is due to the miniature eclipse of the star by an The practical value of transits and occultations depends crit- exoplanet a shade larger than Neptune. The large scatter in the measurements is due to failure to correct adequately for atmospheric effects and the interruption ically on the brightness of the star. The higher the rate of pho- just after the transit is due to morning twilight. The bottom panel shows an tons (particles of light) that a star delivers to Earth, the faster observation of the same exoplanet with the 1.0-meter Kepler space telescope. we can accumulate information about its exoplanets. This is Despite being a smaller telescope, the absence of atmospheric effects and the because many astronomical observations are limited by photon- uninterrupted observations enable a vastly improved view of the transit. It is even possible to tell that the exoplanet crossed over a dark spot on the surface counting noise. The greater the number of photons we collect, of the star (known as a “star spot”), based on the slight upward flicker that was the smaller the effects of shot noise and the higher the signal- seen in the second half of the transit (at a time coordinate of about 4.5 hours). to-noise ratio. This in turn allows us to search for smaller exo- planets, which produce smaller transit signals. To put the small- ness in perspective, an Earth-sized exoplanet transiting a Sun- From our vantage point on Earth, bright stars are rarer than like star produces a total dimming of only 84 parts per million faint ones, simply because of geometry—casting our net far- and its atmospheric signal would be smaller by at least an or- ther into space would create a celestial sphere that encompasses der of magnitude. To measure the spectrum of an exoplanetary more stars, which tend to be fainter on average because of the atmosphere, one needs to divide up the starlight according to greater distances involved. The brightest stars are distributed wavelength. In essence, a small signal must be split into even uniformly across the entire sky and are therefore widely sepa- smaller ones, an endeavour only feasible if the signal-to-noise rated in angle. Finding reference stars to confirm an exoplanet ratio is very high at the outset. And this is only possible for transit becomes harder for bright stars: the only comparable bright stars.
Recommended publications
  • Michael Garcia Hubble Space Telescope Users Committee (STUC)
    Hubble Space Telescope Users Committee (STUC) April 16, 2015 Michael Garcia HST Program Scientist [email protected] 1 Hubble Sees Supernova Split into Four Images by Cosmic Lens 2 NASA’s Hubble Observations suggest Underground Ocean on Jupiter’s Largest Moon Ganymede file:///Users/ file:///Users/ mrgarci2/Desktop/mrgarci2/Desktop/ hs-2015-09-a-hs-2015-09-a- web.jpg web.jpg 3 NASA’s Hubble detects Distortion of Circumstellar Disk by a Planet 4 The Exoplanet Travel Bureau 5 TESS Transiting Exoplanet Survey Satellite CURRENT STATUS: • Downselected April 2013. • Major partners: - PI and science lead: MIT - Project management: NASA GSFC - Instrument: Lincoln Laboratory - Spacecraft: Orbital Science Corp • Agency launch readiness date NLT June 2018 (working launch date August 2017). • High-Earth elliptical orbit (17 x 58.7 Earth radii). Standard Explorer (EX) Mission PI: G. Ricker (MIT) • Development progressing on plan. Mission: All-Sky photometric exoplanet - Systems Requirement Review (SRR) mapping mission. successfully completed on February Science goal: Search for transiting 12-13, 2014. exoplanets around the nearby, bright stars. Instruments: Four wide field of view (24x24 - Preliminary Design Review (PDR) degrees) CCD cameras with overlapping successfully completed Sept 9-12, 2014. field of view operating in the Visible-IR - Confirmation Review, for approval to enter spectrum (0.6-1 micron). implementation phase, successfully Operations: 3-year science mission after completed October 31, 2014. launch. - Mission CDR on track for August 2015 6 JWST Hardware Progress JWST remains on track for an October 2018 launch within its replan budget guidelines 7 WFIRST / AFTA Widefield Infrared Survey Telescope with Astrophysics Focused Telescope Assets Coronagraph Technology Milestones Widefield Detector Technology Milestones 1 Shaped Pupil mask fabricated with reflectivity of 7/21/14 1 Produce, test, and analyze 2 candidate 7/31/14 -4 10 and 20 µm pixel size.
    [Show full text]
  • The Tierras Observatory: an Ultra-Precise Photometer to Characterize Nearby Terrestrial Exoplanets
    The Tierras Observatory: An ultra-precise photometer to characterize nearby terrestrial exoplanets Juliana Garc´ıa-Mej´ıaa, David Charbonneaua, Daniel Fabricanta, Jonathan M. Irwina, Robert Fataa, Joseph M. Zajaca, and Peter E. Dohertya aCenter for Astrophysics Harvard and Smithsonian, 60 Garden Street, Cambridge MA j ABSTRACT We report on the status of the Tierras Observatory, a refurbished 1.3-m ultra-precise fully-automated photometer located at the F. L. Whipple Observatory atop Mt. Hopkins, Arizona. Tierras is designed to limit systematic errors, notably precipitable water vapor (PWV), to 250 ppm, enabling the characterization of terrestrial planet transits orbiting < 0:3 R stars, as well as the potential discovery of exo-moons and exo-rings. The design choices that will enable our science goals include: a four-lens focal reducer and field-flattener to increase the field-of-view of the telescope from a 11:940 to a 0:48◦ side; a custom narrow bandpass (40:2 nm FWHM) filter centered around 863:5 nm to minimize PWV errors known to limit ground-based photometry of red dwarfs; and a deep-depletion 4K 4K CCD with a 300ke- full well and QE> 85% in our bandpass, operating in frame transfer mode. We are also× pursuing the design of a set of baffles to minimize the significant amount of scattered light reaching the image plane. Tierras will begin science operations in early 2021. Keywords: ultra-precise photometry, terrestrial planet detection, exoplanet instrumentation, transit method 1. INTRODUCTION The construction of observatories tailor-built to routinely achieve precise photometry from the ground is mo- tivated by the multitude of exoplanetary and stellar phenomena whose exploration will be enabled with high- cadence, ultra-precise time series of diverse stellar targets.
    [Show full text]
  • HD 97658 and Its Super-Earth Spitzer & MOST Transit Analysis and Seismic Modeling of the Host Star
    The space photometry revolution CoRoT3-KASC7 joint meeting HD 97658 and its super-Earth Spitzer & MOST transit analysis and seismic modeling of the host star Valerie Van Grootel (University of Liege, Belgium) M. Gillon (U. Liege), D. Valencia (U. Toronto), N. Madhusudhan (U. Cambridge), D. Dragomir (UC Santa Barbara), and the Spitzer team 1. Introducing HD 97658 and its super-Earth The second brightest star harboring a transiting super-Earth HD 97658 (V=7.7, K=5.7) HD 97658 b, a transiting super-Earth • • Teff = 5170 ± 50 K (Howard et al. 2011) Discovery by Howard et al. (2011) from Keck- Hires RVs: • [Fe/H] = -0.23 ± 0.03 ~ Z - M sin i = 8.2 ± 1.2 M • d = 21.11 ± 0.33 pc ; from Hipparcos P earth - P = 9.494 ± 0.005 d (Van Leeuwen 2007) orb • Transits discovered by Dragomir et al. (2013) with MOST: RP = 2.34 ± 0.18 Rearth From Howard et al. (2011) From Dragomir et al. (2013) Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse 2 2. Modeling the host star HD 97658 Rp α R* 2/3 Mp α M* Radial velocities Transits + the age of the star is the best proxy for the age of its planets (Sun: 4.57 Gyr, Earth: 4.54 Gyr) • With Asteroseismology: T. Campante, V. Van Eylen’s talks • Without Asteroseismology: stellar evolution modeling Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse 3 2. Modeling the host star HD 97658 • d = 21.11 ± 0.33 pc, V = 7.7 L* = 0.355 ± 0.018 Lsun • +Teff from spectroscopy: R* = 0.74 ± 0.03 Rsun • Stellar evolution code CLES (Scuflaire et al.
    [Show full text]
  • Epo in a Multinational Context
    →EPO IN A MULTINATIONAL CONTEXT Heidelberg, June 2013 ESA FACTS AND FIGURES • Over 40 years of experience • 20 Member States • Six establishments in Europe, about 2200 staff • 4 billion Euro budget (2013) • Over 70 satellites designed, tested and operated in flight • 17 scientific satellites in operation • Six types of launcher developed • Celebrated the 200th launch of Ariane in February 2011 2 ACTIVITIES ESA is one of the few space agencies in the world to combine responsibility in nearly all areas of space activity. • Space science • Navigation • Human spaceflight • Telecommunications • Exploration • Technology • Earth observation • Operations • Launchers 3 →SCIENCE & ROBOTIC EXPLORATION TODAY’S SCIENCE MISSIONS (1) • XMM-Newton (1999– ) X-ray telescope • Cluster (2000– ) four spacecraft studying the solar wind • Integral (2002– ) observing objects in gamma and X-rays • Hubble (1990– ) orbiting observatory for ultraviolet, visible and infrared astronomy (with NASA) • SOHO (1995– ) studying our Sun and its environment (with NASA) 5 TODAY’S SCIENCE MISSIONS (2) • Mars Express (2003– ) studying Mars, its moons and atmosphere from orbit • Rosetta (2004– ) the first long-term mission to study and land on a comet • Venus Express (2005– ) studying Venus and its atmosphere from orbit • Herschel (2009– ) far-infrared and submillimetre wavelength observatory • Planck (2009– ) studying relic radiation from the Big Bang 6 UPCOMING MISSIONS (1) • Gaia (2013) mapping a thousand million stars in our galaxy • LISA Pathfinder (2015) testing technologies
    [Show full text]
  • Space Missions for Exoplanet
    Space missions for exoplanet January 3, 2020 Source: The Hindu Manifest pedagogy: As a part of science & technology and geography, questions related to space have been asked both at prelims and mains stage. Finding life in other celestial bodies had always been a human curiosity. Origin of the solar system, exoplanets as prospective resources zone, finding life etc are key objectives of NASA and other space programs. In news: European Space Agency (ESA) has launched CHEOPS exoplanet mission Placing it in syllabus: Exoplanet space missions Static dimensions: What are exoplanets? Current dimensions: Exoplanet missions by NASA Exoplanet missions by ESA and CHEOPS mission Content: What are Exoplanets? The worlds orbiting other stars are called “exoplanets”. They vary in sizes, from gas giants larger than Jupiter to small, rocky planets about as big around as Earth. They can be hot enough to boil metal or locked in deep freeze. They can orbit two suns at once. Some exoplanets are sunless, wandering through the galaxy in permanent darkness. The first exoplanet invented was 51 Pegasi b, a “hot Jupiter” in 1995 which is 50 light-years away that is locked in a four-day orbit around its star. ((The discoverers Didier Queloz and Michel Mayor of 51 Pegasi b shared the 2019 Nobel Prize in Physics for their breakthrough finding)). And a system of three “pulsar planets” had been detected, beginning in 1992. The circumstellar habitable zone (CHZ) also called the Goldilocks zone is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure.
    [Show full text]
  • Uv Astronomy with Small Satellites
    UV ASTRONOMY WITH SMALL SATELLITES Pol Ribes-Pleguezuelo(1), Fanny Keller(1), Matteo Taccola(1) (1) ESA-ESTEC, Keplerlaan 1, 2201AZ Noordwijk, Netherlands, [email protected], [email protected], [email protected] ABSTRACT Small satellite platforms with high performance avionics are becoming more affordable. So far, with a few exceptions, small satellites have been mainly dedicated to earth observation. However, astronomy is a fascinating field with a history of large missions and a future of promising large mission candidates. This prompts many questions; can the recent affordability of small satellites change the landscape of space astronomy? What are the potential applications and scientific topics of interest, where small satellites could be instrumental for astronomy? What are the requirements and objectives that need to be fulfilled to successfully address the astronomical investigations of interest? Which kind of instrumentation suits the small platforms and the scientific use cases best? This paper discusses possible scientific use cases that can be achievable with a relatively small telescope aperture of 36 cm, as an example. The result of this survey points to a specific niche market -astronomy observation in the UV spectral range. UV astronomy is a research field which has had valuable scientific impact. It is, however, not the focus of many current or past astronomical investigations. UV astronomy measurements cannot be made from earth, due to atmospheric absorption in this spectral range. Only a few current space missions, such as the Hubble and Gaia, cover the UV spectral range, some of them only in the near-UV (NUV). The research field is currently sparsely addressed but of scientific interest for a large community.
    [Show full text]
  • Will the Real Monster Black Hole Please Stand Up? 8 January 2015
    Will the real monster black hole please stand up? 8 January 2015 how the merging of galaxies can trigger black holes to start feeding, an important step in the evolution of galaxies. "When galaxies collide, gas is sloshed around and driven into their respective nuclei, fueling the growth of black holes and the formation of stars," said Andrew Ptak of NASA's Goddard Space Flight Center in Greenbelt, Maryland, lead author of a The real monster black hole is revealed in this new new study accepted for publication in the image from NASA's Nuclear Spectroscopic Telescope Astrophysical Journal. "We want to understand the Array of colliding galaxies Arp 299. In the center panel, mechanisms that trigger the black holes to turn on the NuSTAR high-energy X-ray data appear in various and start consuming the gas." colors overlaid on a visible-light image from NASA's Hubble Space Telescope. The panel on the left shows NuSTAR is the first telescope capable of the NuSTAR data alone, while the visible-light image is pinpointing where high-energy X-rays are coming on the far right. Before NuSTAR, astronomers knew that the each of the two galaxies in Arp 299 held a from in the tangled galaxies of Arp 299. Previous supermassive black hole at its heart, but they weren't observations from other telescopes, including sure if one or both were actively chomping on gas in a NASA's Chandra X-ray Observatory and the process called accretion. The new high-energy X-ray European Space Agency's XMM-Newton, which data reveal that the supermassive black hole in the detect lower-energy X-rays, had indicated the galaxy on the right is indeed the hungry one, releasing presence of active supermassive black holes in Arp energetic X-rays as it consumes gas.
    [Show full text]
  • Elements of Astronomy and Cosmology Outline 1
    ELEMENTS OF ASTRONOMY AND COSMOLOGY OUTLINE 1. The Solar System The Four Inner Planets The Asteroid Belt The Giant Planets The Kuiper Belt 2. The Milky Way Galaxy Neighborhood of the Solar System Exoplanets Star Terminology 3. The Early Universe Twentieth Century Progress Recent Progress 4. Observation Telescopes Ground-Based Telescopes Space-Based Telescopes Exploration of Space 1 – The Solar System The Solar System - 4.6 billion years old - Planet formation lasted 100s millions years - Four rocky planets (Mercury Venus, Earth and Mars) - Four gas giants (Jupiter, Saturn, Uranus and Neptune) Figure 2-2: Schematics of the Solar System The Solar System - Asteroid belt (meteorites) - Kuiper belt (comets) Figure 2-3: Circular orbits of the planets in the solar system The Sun - Contains mostly hydrogen and helium plasma - Sustained nuclear fusion - Temperatures ~ 15 million K - Elements up to Fe form - Is some 5 billion years old - Will last another 5 billion years Figure 2-4: Photo of the sun showing highly textured plasma, dark sunspots, bright active regions, coronal mass ejections at the surface and the sun’s atmosphere. The Sun - Dynamo effect - Magnetic storms - 11-year cycle - Solar wind (energetic protons) Figure 2-5: Close up of dark spots on the sun surface Probe Sent to Observe the Sun - Distance Sun-Earth = 1 AU - 1 AU = 150 million km - Light from the Sun takes 8 minutes to reach Earth - The solar wind takes 4 days to reach Earth Figure 5-11: Space probe used to monitor the sun Venus - Brightest planet at night - 0.7 AU from the
    [Show full text]
  • Exoplanetary Transits As Seen by Gaia
    Highlights of Spanish Astrophysics VII, Proceedings of the X Scientific Meeting of the Spanish Astronomical Society held on July 9 - 13, 2012, in Valencia, Spain. J. C. Guirado, L.M. Lara, V. Quilis, and J. Gorgas (eds.) Exoplanetary transits as seen by Gaia H. Voss1;2, C. Jordi1;2;3, C. Fabricius1;2, J. M. Carrasco1;2, E. Masana1;2, and X. Luri1;2;3 1 IEEC: Institut d'Estudis Espacials de Catalunya 2 ICC-UB: Institut de Ci`encesdel Cosmos de la Universitat de Barcelona 3 UB: Departament d'Astronomia i Meteorologia, Universitat de Barcelona Abstract The ESA cornerstone mission Gaia will be launched in 2013 to begin a scan of about one billion sources in the Milky Way and beyond. During the mission time of 5 years (+ one year extension) repeated astrometric, photometric and spectroscopic observations of the entire sky down to magnitude 20 will be recorded. Therefore, Gaia as an All-Sky survey has enormous potential for discovery in almost all fields of astronomy and astrophysics. Thus, 50 to 200 epoch observations will be collected during the mission for about 1 billion sources. Gaia will also be a nearly unbiased survey for transiting extrasolar planets. Based on latest detection probabilities derived from the very successful NASA Kepler mis- sion, our knowledge about the expected photometric precision of Gaia in the white-light G band and the implications due to the Gaia scanning law, we have analysed how many transiting exoplanets candidates Gaia will be able to detect. We include the entire range of stellar types in the parameter space for our analysis as potential host stars, as they will be observed by Gaia.
    [Show full text]
  • The Most Dangerous Ieos in STEREO
    EPSC Abstracts Vol. 6, EPSC-DPS2011-682, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 The most dangerous IEOs in STEREO C. Fuentes (1), D. Trilling (1) and M. Knight (2) (1) Northern Arizona University, Arizona, USA, (2) Lowell Observatory, Arizona, USA ([email protected]) Abstract (STEREO-B) which view the Sun-Earth line using a suite of telescopes. Each spacecraft moves away 1 from the Earth at a rate of 22.5◦ year− (Figure 1). IEOs (inner Earth objects or interior Earth objects) are ∼ potentially the most dangerous near Earth small body Our search for IEOs utilizes the Heliospheric Imager population. Their study is complicated by the fact the 1 instruments on each spacecraft (HI1A and HI1B). population spends all of its time inside the orbit of The HI1s are centered 13.98◦ from the Sun along the the Earth, giving ground-based telescopes a small win- Earth-Sun line with a square field of view 20 ◦ wide, 1 dow to observe them. We introduce STEREO (Solar a resolution of 70 arcsec pixel− , and a bandpass of TErrestrial RElations Observatory) and its 5 years of 630—730 nm [3]. Images are taken every 40 minutes, archival data as our best chance of studying the IEO providing a nearly continuous view of the inner solar population and discovering possible impactor threats system since early 2007. The nominal visual limit- ing magnitude of HI1 is 13, although the sensitivity to Earth. ∼ We show that in our current search for IEOs in varies somewhat with solar elongation, and asteroids STEREO data we are capable of detecting and char- fainter than 13 can be seen near the outer edges.
    [Show full text]
  • Space News Update – May 2019
    Space News Update – May 2019 By Pat Williams IN THIS EDITION: • India aims to be 1st country to land rover on Moon's south pole. • Jeff Bezos says Blue Origin will land humans on moon by 2024. • China's Chang'e-4 probe resumes work for sixth lunar day. • NASA awards Artemis contract for lunar gateway power. • From airport to spaceport as UK targets horizontal spaceflight. • Russian space sector plagued by astronomical corruption. • Links to other space and astronomy news published in May 2019. Disclaimer - I claim no authorship for the printed material; except where noted (PW). INDIA AIMS TO BE 1ST COUNTRY TO LAND ROVER ON MOON'S SOUTH POLE India will become the first country to land a rover on the Moon's the south pole if the country's space agency "Indian Space Research Organisation (ISRO)" successfully achieves the feat during the country's second Moon mission "Chandrayaan-2" later this year. "This is a place where nobody has gone. All the ISRO missions till now to the Moon have landed near the Moon's equator. Chandrayaan-2, India’s second lunar mission, has three modules namely Orbiter, Lander (Vikram) & Rover (Pragyan). The Orbiter and Lander modules will be interfaced mechanically and stacked together as an integrated module and accommodated inside the GSLV MK-III launch vehicle. The Rover is housed inside the Lander. After launch into earth bound orbit by GSLV MK-III, the integrated module will reach Moon orbit using Orbiter propulsion module. Subsequently, Lander will separate from the Orbiter and soft land at the predetermined site close to lunar South Pole.
    [Show full text]
  • NASA Program & Budget Update
    NASA Update AAAC Meeting | June 15, 2020 Paul Hertz Director, Astrophysics Division Science Mission Directorate @PHertzNASA Outline • Celebrate Accomplishments § Science Highlights § Mission Milestones • Committed to Improving § Inspiring Future Leaders, Fellowships § R&A Initiative: Dual Anonymous Peer Review • Research Program Update § Research & Analysis § ROSES-2020 Updates, including COVID-19 impacts • Missions Program Update § COVID-19 impact § Operating Missions § Webb, Roman, Explorers • Planning for the Future § FY21 Budget Request § Project Artemis § Creating the Future 2 NASA Astrophysics Celebrate Accomplishments 3 SCIENCE Exoplanet Apparently Disappears HIGHLIGHT in the Latest Hubble Observations Released: April 20, 2020 • What do astronomers do when a planet they are studying suddenly seems to disappear from sight? o A team of researchers believe a full-grown planet never existed in the first place. o The missing-in-action planet was last seen orbiting the star Fomalhaut, just 25 light-years away. • Instead, researchers concluded that the Hubble Space Telescope was looking at an expanding cloud of very fine dust particles from two icy bodies that smashed into each other. • Hubble came along too late to witness the suspected collision, but may have captured its aftermath. o This happened in 2008, when astronomers announced that Hubble took its first image of a planet orbiting another star. Caption o The diminutive-looking object appeared as a dot next to a vast ring of icy debris encircling Fomalhaut. • Unlike other directly imaged exoplanets, however, nagging Credit: NASA, ESA, and A. Gáspár and G. Rieke (University of Arizona) puzzles arose with Fomalhaut b early on. Caption: This diagram simulates what astronomers, studying Hubble Space o The object was unusually bright in visible light, but did not Telescope observations, taken over several years, consider evidence for the have any detectable infrared heat signature.
    [Show full text]