Zinc Finger Protein Zfp335 Is Required for the Formation of the Naïve T Cell Compartment.” the Co-Authors on This Publication Were Shuang

Total Page:16

File Type:pdf, Size:1020Kb

Zinc Finger Protein Zfp335 Is Required for the Formation of the Naïve T Cell Compartment.” the Co-Authors on This Publication Were Shuang Copyright (2015) by Brenda Yuyuan Han ! ii! ACKNOWLEDGEMENTS My time in graduate school has been a transformative period in my life, during which I have learned and grown tremendously both as a scientist and as a person, and I would like to take this opportunity to express my heartfelt gratitude to those who have helped me along the way. First and foremost, I would like to thank my Ph.D supervisor Dr. Jason Cyster for his exceptional guidance and mentorship throughout the five years I have spent in his lab. I would be the first to admit that I started graduate school with only the haziest comprehension of how the scientific process really worked, but Jason has since taught me many invaluable lessons in being a good scientist, such as how to engage with the literature, design informative experiments, analyze and interpret data with care and rigor. From Jason, I learned the value of performing experiments iteratively, allocating time and resources efficiently, and maintaining focus and discipline in my efforts to keep moving my project forward. He has been patient, encouraging and supportive as a mentor, and for that I will always be grateful. I would also like to thank Mark Ansel and Art Weiss, who have been so generous with their time as members of my qualifying exam committee and thesis committee. I have benefitted greatly from their insightful and constructive feedback on my thesis work both during and outside of committee meetings, and I will continue to seek their counsel on career and life beyond graduate school. Various Cyster lab members, both past and present, have been an integral part of my graduate school experience and I feel fortunate to have had the opportunity to work alongside so many talented and energetic individuals. I am grateful to Lisa Kelly and Betsy Gray for sharing their senior grad student wisdom and for their kind words of encouragement back when I was still a clueless novice. In particular, I owe a huge debt of gratitude to Betsy: no matter how busy ! iii! she was, she somehow always managed to find time to help and give me advice when I needed it. Betsy’s compassionate and generous spirit, disciplined work habits, organizational skills and conscientiousness were qualities that I greatly admired, and to this day I still think of her as my role model in lab. Tim Schmidt’s irrepressible good nature, upbeat attitude and overall bold approach to science and life made him an awesome lab sibling, and I shall always cherish the memory of how we worked together to organize a wildly successful Immunology Happy Hour that decisively raised the bar for all subsequent events. I can always rely on fellow graduate students Lauren Rodda and Eric Dang for enjoyable, refreshingly uncynical conversations, and I like to think that between the three of us we have for ourselves a Cyster lab grad student support circle. Lauren has an inquiring mind and a penchant for asking questions that force me to rethink my assumptions. Eric combines a towering scientific intellect with a wicked sense of humor and a cheerful willingness to help, and I very much appreciate having him as a bay mate, co- conspirator and (occasional) singing partner. One of the best things about being in the Cyster lab is that with so many talented postdocs around, there was always someone I could go to if I needed guidance. Kazuhiro Suzuki, my rotation mentor, was a patient teacher and careful scientist who showed me the gold standard in lab technique. Oliver Bannard added a distinctly British flavor to the lab humor dynamics; he possesses a scientific acuity and passion for grappling with complexity that I truly appreciate and admire. I have the greatest respect for Tangsheng Yi, who not only was an awe-inspiring juggernaut of productivity but also an eternally cheerful dispenser of practical wisdom about work and life. Andrea Reboldi, my benchmate of five years who joined the lab at around the same time as I did, knows everything about everything and is a prolific purveyor of quality scientific advice and gossip. Francisco “Paco” Ramírez-Valle, our resident dermatologist, joined ! iv! our bay a couple years later and has been a model of medical professionalism as well as a continuing boon to lab morale ever since. Jagan Muppidi is our go-to guy for everything from Plat-E cells to iOS upgrades and these days he seems to be the lab’s token grown-up. Michael Barnes is an integral (if idiosyncratic) part of the lab’s social fabric and has been a steady source of project-specific feedback and bubble wrap-popping noises over the years. I would like to give special thanks to my co-author Shuang Wu: her biochemistry expertise and hard work were indispensable to the work presented in this thesis, and she has been a dependable teammate throughout the course of this project. Many thanks also to Robert Horton, with whom I worked closely on bioinformatics analysis. His enthusiasm and programming skills were instrumental to moving the project forward, and he was always happy to instruct me on the intricacies of R and Unix. I also owe many thanks to the people who keep the wheels of the lab turning (more-or- less) smoothly. Claire Chan, our amazing administrative assistant, takes care of everything from ordering reagents to arranging for equipment repair to printing FedEx shipping labels; were it not for her effectiveness at getting things done, I am certain that the lab would fall apart within days. Ying Xu, our molecular biology specialist, taught me how to clone my first construct and perform my first real-time PCR analysis, and I feel fortunate to be able to tap on her vast store of experience. Jinping An’s help in the mouse room has allowed me to keep both my mouse colony as well as my time spent in the bowels of LARC under control. I am also thankful for our wonderful lab assistant Bernarda Lopez, who performs most of the mundane, time-consuming lab chores so the rest of us can focus on research and never have to worry about running out of clean glassware or buffers. ! v! I would like to express my sincere thanks to Lisa Magargal, Monique Piazza, Nathan Jew, Demian Sainz and the rest of the Biomedical Sciences office staff for their excellent administrative support throughout the course of graduate school. I also wish to thank my family, whose unconditional love has endured throughout all the long years I have spent away from home and on distant shores. Lastly, mere words alone cannot convey my gratitude for Chuan- Sheng Foo, who has not only been a bedrock of emotional support and constant encouragement, but also is the best scientific collaborator one could hope for. Many of my best ideas were developed during our weekend discussion sessions and without him, this dissertation would literally have not been possible. Thank you for everything, CS. ! vi! CONTRIBUTIONS TO PRESENTED WORK All work in this dissertation was done under the direct supervision and guidance of Dr. Jason G. Cyster. Chapter 2 was published in eLife as “Zinc finger protein Zfp335 is required for the formation of the naïve T cell compartment.” The co-authors on this publication were Shuang Wu, Chuan-Sheng Foo, Robert M. Horton, Craig N. Jenne, Susan R. Watson, Belinda Whittle, Chris C. Goodnow and Jason G. Cyster. Dr. Jason Cyster and I collaboratively conceptualized and designed the research presented in this paper. The original ENU mutagenesis screen was designed and carried out by C.N. Jenne and S.R. Watson at the Australian National University under the supervision of J.G. Cyster and C.C. Goodnow. C.N. Jenne performed genetic mapping and B. Whittle coordinated exome sequencing which identified the Zfp335bloto mutation. S. Wu and I collaboratively designed the EMSA experiments in Fig. 7; all EMSA experiments in this paper were performed by S. Wu. Ying Xu designed allele-specific PCR primers for genotyping of Zfp335bloto mutant mice, cloned Zfp335 retroviral constructs, and prepared cDNA from cells I had sorted for quantitative RT-PCR analysis and Affymetrix array hybridization. R.M. Horton provided bioinformatics support for earlier analyses of ChIP-seq data leading up to the final version presented in this manuscript, which I developed in collaboration with C-S. Foo. C-S. Foo performed the motif analyses in Fig. 7C and 7D and also provided helpful discussion regarding the manuscript. I performed all other experiments, interpreted the data and generated the figures. I wrote and revised the manuscript in consultation with Dr. Jason Cyster. ! vii! Zinc finger protein Zfp335 is required for the formation of the naïve T cell compartment Brenda Yuyuan Han ABSTRACT The generation of naïve T lymphocytes is critical for immune function yet the mechanisms governing their maturation remain incompletely understood. Through ENU mutagenesis screening, we identified a mouse mutant, bloto, characterized by a deficiency in naïve T cells. The causative genetic lesion was identified as a hypomorphic mutation in the zinc finger protein Zfp335. Zfp335bloto/bloto mice had a paucity of naïve T lymphocytes due to a cell- intrinsic defect in mature thymocytes, as well as in peripheral T cells that have recently undergone thymic egress. The T cell defect in Zfp335bloto/bloto mice could not be explained by altered thymic selection, proliferation or Bcl2-dependent survival. ChIP-seq analysis revealed that Zfp335 binds primarily to promoter regions, and we identified a set of target genes in thymocytes that are enriched in categories related to protein metabolism, mitochondrial function, and transcriptional regulation.
Recommended publications
  • Lower Genomic Stability of Induced Pluripotent Stem Cells Reflects
    Zhang et al. Cancer Commun (2018) 38:49 https://doi.org/10.1186/s40880-018-0313-0 Cancer Communications ORIGINAL ARTICLE Open Access Lower genomic stability of induced pluripotent stem cells refects increased non‑homologous end joining Minjie Zhang1,2†, Liu Wang3†, Ke An1,2†, Jun Cai1, Guochao Li1,2, Caiyun Yang1, Huixian Liu1, Fengxia Du1, Xiao Han1,2, Zilong Zhang1,2, Zitong Zhao1,2, Duanqing Pei4, Yuan Long5, Xin Xie5, Qi Zhou3 and Yingli Sun1* Abstract Background: Induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) share many common features, including similar morphology, gene expression and in vitro diferentiation profles. However, genomic stability is much lower in iPSCs than in ESCs. In the current study, we examined whether changes in DNA damage repair in iPSCs are responsible for their greater tendency towards mutagenesis. Methods: Mouse iPSCs, ESCs and embryonic fbroblasts were exposed to ionizing radiation (4 Gy) to introduce dou- ble-strand DNA breaks. At 4 h later, fdelity of DNA damage repair was assessed using whole-genome re-sequencing. We also analyzed genomic stability in mice derived from iPSCs versus ESCs. Results: In comparison to ESCs and embryonic fbroblasts, iPSCs had lower DNA damage repair capacity, more somatic mutations and short indels after irradiation. iPSCs showed greater non-homologous end joining DNA repair and less homologous recombination DNA repair. Mice derived from iPSCs had lower DNA damage repair capacity than ESC-derived mice as well as C57 control mice. Conclusions: The relatively low genomic stability of iPSCs and their high rate of tumorigenesis in vivo appear to be due, at least in part, to low fdelity of DNA damage repair.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Intrinsic Disorder in PTEN and Its Interactome Confers Structural Plasticity and 63
    OPEN Intrinsic Disorder in PTEN and its SUBJECT AREAS: Interactome Confers Structural Plasticity CELLULAR SIGNALLING NETWORKS and Functional Versatility CANCER GENOMICS Prerna Malaney1*, Ravi Ramesh Pathak1*, Bin Xue3, Vladimir N. Uversky3,4,5 & Vrushank Dave´1,2 SYSTEMS ANALYSIS GENE REGULATORY NETWORKS 1Morsani College of Medicine, Department of Pathology and Cell Biology, 2Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, 3Department of Molecular Medicine, 4USF Health Byrd Alzheimer’s Research Institute, Received University of South Florida, Tampa, FL, 33612, USA, 5Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 11 March 2013 Pushchino, Moscow Region, Russia. Accepted 3 June 2013 IDPs, while structurally poor, are functionally rich by virtue of their flexibility and modularity. However, how mutations in IDPs elicit diseases, remain elusive. Herein, we have identified tumor suppressor PTEN as Published an intrinsically disordered protein (IDP) and elucidated the molecular principles by which its intrinsically 20 June 2013 disordered region (IDR) at the carboxyl-terminus (C-tail) executes its functions. Post-translational modifications, conserved eukaryotic linear motifs and molecular recognition features present in the C-tail IDR enhance PTEN’s protein-protein interactions that are required for its myriad cellular functions. PTEN primary and secondary interactomes are also enriched in IDPs, most being cancer related, revealing that Correspondence and PTEN functions emanate from and are nucleated by the C-tail IDR, which form pliable network-hubs. requests for materials Together, PTEN higher order functional networks operate via multiple IDP-IDP interactions facilitated by should be addressed to its C-tail IDR. Targeting PTEN IDR and its interaction hubs emerges as a new paradigm for treatment of V.D.
    [Show full text]
  • Methods in and Applications of the Sequencing of Short Non-Coding Rnas" (2013)
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2013 Methods in and Applications of the Sequencing of Short Non- Coding RNAs Paul Ryvkin University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, Genetics Commons, and the Molecular Biology Commons Recommended Citation Ryvkin, Paul, "Methods in and Applications of the Sequencing of Short Non-Coding RNAs" (2013). Publicly Accessible Penn Dissertations. 922. https://repository.upenn.edu/edissertations/922 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/922 For more information, please contact [email protected]. Methods in and Applications of the Sequencing of Short Non-Coding RNAs Abstract Short non-coding RNAs are important for all domains of life. With the advent of modern molecular biology their applicability to medicine has become apparent in settings ranging from diagonistic biomarkers to therapeutics and fields angingr from oncology to neurology. In addition, a critical, recent technological development is high-throughput sequencing of nucleic acids. The convergence of modern biotechnology with developments in RNA biology presents opportunities in both basic research and medical settings. Here I present two novel methods for leveraging high-throughput sequencing in the study of short non- coding RNAs, as well as a study in which they are applied to Alzheimer's Disease (AD). The computational methods presented here include High-throughput Annotation of Modified Ribonucleotides (HAMR), which enables researchers to detect post-transcriptional covalent modifications ot RNAs in a high-throughput manner. In addition, I describe Classification of RNAs by Analysis of Length (CoRAL), a computational method that allows researchers to characterize the pathways responsible for short non-coding RNA biogenesis.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • The Centriole Protein CEP76 Negatively Regulates PLK1 Activity in the Cytoplasm for Proper Mitotic Progression
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs241281. doi:10.1242/jcs.241281 RESEARCH ARTICLE The centriole protein CEP76 negatively regulates PLK1 activity in the cytoplasm for proper mitotic progression Yutaka Takeda, Kaho Yamazaki, Kaho Hashimoto, Koki Watanabe, Takumi Chinen*,‡ and Daiju Kitagawa*,‡ ABSTRACT are important for accurate mitotic progression (Golsteyn, 1995; Polo-like kinase 1 (PLK1) dynamically changes its localization and Schmucker and Sumara, 2014). Several factors regulate PLK1 plays important roles in proper mitotic progression. In particular, strict localization during mitosis. PLK1 is recruited to centrosomes in a control of cytoplasmic PLK1 is needed to prevent mitotic defects. CDK1-dependent manner (Lee et al., 2014). The initial recruitment However, the regulation of cytoplasmic PLK1 is not fully understood. In of PLK1 to kinetochores is mediated by its interaction with PBIP1 this study, we show that CEP76, a centriolar protein, physically (also known as CENPU; Kang et al., 2006). During anaphase, PLK1 interacts with PLK1 and tightly controls the activation of cytoplasmic binds to PRC1 and changes its localization to the midbody (Hu et al., PLK1 during mitosis in human cells. We found that removal of 2012). In addition, strict control of PLK1 in the cytoplasm is needed centrosomes induced ectopic aggregation of PLK1, which is highly to prevent its aggregation and mitotic defects (Mukhopadhyay and phosphorylated, in the cytoplasm during mitosis. Importantly, a Dasso, 2010; Schmit et al., 2012; Zhao et al., 2016). However, the targeted RNAi screen revealed that depletion of CEP76 resulted in a detailed mechanisms through which the localization, expression and similar phenotype.
    [Show full text]
  • Is Cep70, a Centrosomal Protein with New Roles in Breast Cancer Dissemination and Metastasis, a Facilitator of Epithelial-Mesenchymal Transition?
    Is Cep70, a centrosomal protein with new roles in breast cancer dissemination and metastasis, a facilitator of epithelial-mesenchymal transition? Pedro A. Lazo 1,2 1 Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain 2 Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain Running title: Cep70 and EMT Disclosures: None declared. Contact address: [email protected] 1 Introduction Microtubules are driving mechanisms of chromosomes, intracellular organelle movement, and cell shape and motility. Microtubules are organized on centrosomes, which are assembled in microtubule-organizing centers (MTOC). In mitosis there is no nuclear envelope and centromeres associated to microtubules are mainly involved in chromosome redistribution into daughter cells. In differentiated cells the microtubule- organizing centers are dispersed in the cytoplasm (non centrosomal (ncMTOC)) and interact with the minus end of microtubules through γ-tubulin. 1 However, it is not known if the microtubule contribution to tumor biology is only by facilitating tumor aneuploidy. During tumor dissemination, a process not linked to cell division, important changes take place in cell shape and motility. Microtubules are very dynamic because of their inherent structural instability, and this plasticity facilitates their reorganization during the epithelial-mesenchymal
    [Show full text]
  • The Genome of Schmidtea Mediterranea and the Evolution Of
    OPEN ArtICLE doi:10.1038/nature25473 The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms Markus Alexander Grohme1*, Siegfried Schloissnig2*, Andrei Rozanski1, Martin Pippel2, George Robert Young3, Sylke Winkler1, Holger Brandl1, Ian Henry1, Andreas Dahl4, Sean Powell2, Michael Hiller1,5, Eugene Myers1 & Jochen Christian Rink1 The planarian Schmidtea mediterranea is an important model for stem cell research and regeneration, but adequate genome resources for this species have been lacking. Here we report a highly contiguous genome assembly of S. mediterranea, using long-read sequencing and a de novo assembler (MARVEL) enhanced for low-complexity reads. The S. mediterranea genome is highly polymorphic and repetitive, and harbours a novel class of giant retroelements. Furthermore, the genome assembly lacks a number of highly conserved genes, including critical components of the mitotic spindle assembly checkpoint, but planarians maintain checkpoint function. Our genome assembly provides a key model system resource that will be useful for studying regeneration and the evolutionary plasticity of core cell biological mechanisms. Rapid regeneration from tiny pieces of tissue makes planarians a prime De novo long read assembly of the planarian genome model system for regeneration. Abundant adult pluripotent stem cells, In preparation for genome sequencing, we inbred the sexual strain termed neoblasts, power regeneration and the continuous turnover of S. mediterranea (Fig. 1a) for more than 17 successive sib- mating of all cell types1–3, and transplantation of a single neoblast can rescue generations in the hope of decreasing heterozygosity. We also developed a lethally irradiated animal4. Planarians therefore also constitute a a new DNA isolation protocol that meets the purity and high molecular prime model system for stem cell pluripotency and its evolutionary weight requirements of PacBio long-read sequencing12 (Extended Data underpinnings5.
    [Show full text]
  • N6-Methyladenosine (M6a) Is an Endogenous A3 Adenosine Receptor Ligand
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.21.391136; this version posted November 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. N6-methyladenosine (m6A) is an endogenous A3 adenosine receptor ligand Akiko Ogawa,1, 2, 3 Chisae Nagiri,4, 13 Wataru Shihoya,4, 13 Asuka Inoue,5, 6, 7, 13 Kouki Kawakami,5 Suzune Hiratsuka,5 Junken Aoki,7, 8 Yasuhiro Ito,3 Takeo Suzuki,9 Tsutomu Suzuki,9 Toshihiro Inoue,3 Osamu Nureki,4 Hidenobu Tanihara,10 Kazuhito Tomizawa,2, 11 Fan-Yan Wei1, 2, 12, 14 1Department of Modomics Biology & Medicine, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan. 2Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan. 3Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan. 4Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.21.391136; this version posted November 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 5Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Download Tool
    by Submitted in partial satisfaction of the requirements for degree of in in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, SAN FRANCISCO Approved: ______________________________________________________________________________ Chair ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ Committee Members Copyright 2019 by Adolfo Cuesta ii Acknowledgements For me, completing a doctoral dissertation was a huge undertaking that was only possible with the support of many people along the way. First, I would like to thank my PhD advisor, Jack Taunton. He always gave me the space to pursue my own ideas and interests, while providing thoughtful guidance. Nearly every aspect of this project required a technique that was completely new to me. He trusted that I was up to the challenge, supported me throughout, helped me find outside resources when necessary. I remain impressed with his voracious appetite for the literature, and ability to recall some of the most subtle, yet most important details in a paper. Most of all, I am thankful that Jack has always been so generous with his time, both in person, and remotely. I’ve enjoyed our many conversations and hope that they will continue. I’d also like to thank my thesis committee, Kevan Shokat and David Agard for their valuable support, insight, and encouragement throughout this project. My lab mates in the Taunton lab made this such a pleasant experience, even on the days when things weren’t working well. I worked very closely with Tangpo Yang on the mass spectrometry aspects of this project. Xiaobo Wan taught me almost everything I know about protein crystallography. Thank you as well to Geoff Smith, Jordan Carelli, Pat Sharp, Yazmin Carassco, Keely Oltion, Nicole Wenzell, Haoyuan Wang, Steve Sethofer, and Shyam Krishnan, Shawn Ouyang and Qian Zhao.
    [Show full text]