Bacterial Cell Structure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation
City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College 2016 Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation Joan Petersen CUNY Queensborough Community College Susan McLaughlin CUNY Queensborough Community College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/qb_oers/16 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation By Dr. Susan McLaughlin & Dr. Joan Petersen Queensborough Community College Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation Table of Contents Preface………………………………………………………………………………………i Acknowledgments…………………………………………………………………………..ii Microbiology Lab Safety Instructions…………………………………………………...... iii Lab 1. Introduction to Microscopy and Diversity of Cell Types……………………......... 1 Lab 2. Introduction to Aseptic Techniques and Growth Media………………………...... 19 Lab 3. Preparation of Bacterial Smears and Introduction to Staining…………………...... 37 Lab 4. Acid fast and Endospore Staining……………………………………………......... 49 Lab 5. Metabolic Activities of Bacteria…………………………………………….…....... 59 Lab 6. Dichotomous Keys……………………………………………………………......... 77 Lab 7. The Effect of Physical Factors on Microbial Growth……………………………... 85 Lab 8. Chemical Control of Microbial Growth—Disinfectants and Antibiotics…………. 99 Lab 9. The Microbiology of Milk and Food………………………………………………. 111 Lab 10. The Eukaryotes………………………………………………………………........ 123 Lab 11. Clinical Microbiology I; Anaerobic pathogens; Vectors of Infectious Disease….. 141 Lab 12. Clinical Microbiology II—Immunology and the Biolog System………………… 153 Lab 13. Putting it all Together: Case Studies in Microbiology…………………………… 163 Appendix I. -
Comparison of Original Gram Stain and Its Modification in the Gingival Plaque Samples
Journal of Bacteriology & Mycology: Open Access Research Article Open Access Comparison of original gram stain and its modification in the gingival plaque samples Abstract Volume 7 Issue 1 - 2019 Aim: The aim of the study is to compare the characteristics of original gram stain and its Nirmada pukhrambam modifications in the gingival plaque samples. Department of Oral Pathology, Saveetha Dental College, India Background: The gram stain remains the most frequently used rapid diagnostic test. It is described as the corner stone of clinical laboratory. The gram stain divides bacteria Correspondence: Nirmada pukhrambam, Department of Oral Pathology, Saveetha Dental College, India, into gram positive and gram negative on the basis of their cell wall and cell membrane Email permeability. It is a very important preliminary step in the initial characterization and classification of bacteria. When properly interpreted in the light of clinical history, the gram Received: October 03, 2018 | Published: January 22, 2019 stain can provide useful, presumptive information as to the etiology of much infection. Various modifications have been made in the staining pattern for better diagnosis of the micro organisms. Materials and methods: Seven paired gingival plaque samples are collected from seven healthy individuals. One set labeled as original gram and the other set labeled as modified gram. Both the set are heat fixed and stain with two different methods and scored by two different observers who are blind to the study. Results and conclusion: 80.95% of the smear shows good Staining intensity in modified gram stain as compared to the original gram because acetone alcohol mixture gives a better decolourising agent than the normal acetone. -
Spiral and Atypical Bacteria, and Legionella. Answer Questions
Lecture 7: Spiral and atypical bacteria, and Legionella. Answer questions: 1. Name flexible and nonflexible spiral bacteria. 2. What is axial filament (endoflagella)? What are difference in the structure of flexible and nonflexible spiral bacteria? 3. Name virulence factors of flexible spiral bacteria 4. Name Leptospira species pathogenic to humans 5. What is the reservoir of Leptospira? How these bacteria are transmitted to humans? 6. Name diseases produced by Leptospira interrogans 7. Name Borrelia species associated with endemic and epidemic relapsing fever. Indicate their reservoirs and ways of transmission to humans 8. Name Borrelia species causing borreliosis (Lyme disease). What is their reservoir and how they are transmitted to humans? 9. What are vectors transmitting diseases caused by Borrelia species to humans? 10. Name most common clinical symptoms of borreliosis: dermatological, rheumatic, cardiac and neurological 11. Name pathogenic and nonpathogenic species of Treponema 12. What are bejel, yaws and pinta? 13. What is etiologic agent of syphilis? How it is transmitted to humans? What is the reservoir of the disease? 14. Name stages of syphilis and indicate how long they last? 15. Describe main clinical symptoms of each stage of syphilis 16. Why syphilis is considered devastating disease? 17. What are the main clinical syndroms of congenital syphilis? 18. What is the reservoir of Helicobacter pylori? What are virulence factors of the pathogen? How the pathogen is transmitted to humans? 19. Explain patomechanism of H. pylori infection 20. What are virulence factors of H. pylori? 21. Name diseases caused by H. pylori 22. Name Campylobacter species pathogenic to humans. What is the reservoir of these bacteria? How they are transmitted to humans? 23. -
The Puzzle of Coccoid Forms of Helicobacter Pylori: Beyond Basic Science
antibiotics Review The Puzzle of Coccoid Forms of Helicobacter pylori: Beyond Basic Science 1, , 1,2, 1 1 3 Enzo Ierardi * y , Giuseppe Losurdo y , Alessia Mileti , Rosa Paolillo , Floriana Giorgio , Mariabeatrice Principi 1 and Alfredo Di Leo 1 1 Section of Gastroenterology, Department of Emergency and Organ Transplantation, University “Aldo Moro” of Bari, 70124 Bari, Italy; [email protected] (G.L.); [email protected] (A.M.); [email protected] (R.P.); [email protected] (M.P.); [email protected] (A.D.L.) 2 Ph.D. Course in Organs and Tissues Transplantation and Cellular Therapies, Department of Emergency and Organ Transplantation, University “Aldo Moro” of Bari, 70124 Bari, Italy 3 THD S.p.A., 42015 Correggio (RE), Italy; fl[email protected] * Correspondence: [email protected]; Tel.: +39-08-05-593-452; Fax: +39-08-0559-3088 G.L. and E.I. contributed equally and are co-first Authors. y Academic Editor: Nicholas Dixon Received: 20 April 2020; Accepted: 29 May 2020; Published: 31 May 2020 Abstract: Helicobacter pylori (H. pylori) may enter a non-replicative, non-culturable, low metabolically active state, the so-called coccoid form, to survive in extreme environmental conditions. Since coccoid forms are not susceptible to antibiotics, they could represent a cause of therapy failure even in the absence of antibiotic resistance, i.e., relapse within one year. Furthermore, coccoid forms may colonize and infect the gastric mucosa in animal models and induce specific antibodies in animals and humans. Their detection is hard, since they are not culturable. Techniques, such as electron microscopy, polymerase chain reaction, loop-mediated isothermal amplification, flow cytometry and metagenomics, are promising even if current evidence is limited. -
The Molecular Phylogeny and Ecology of Spiral Bacteria from the Mouse Gastrointestinal Tract
The Molecular Phylogeny and Ecology of Spiral Bacteria from the Mouse Gastrointestinal Tract Bronwyn Ruth Robertson A thesis submitted for the degree of Doctor of Philosophy School of Microbiology and Immunology The University of New South Wales Sydney, Australia May, 1998 'Brief rejfection on test-tu.ies 'Ta~ a piece offire, a piece ofwater, a piece of ra66it or a piece of tree, or any piece ofa liuman 6eing, ~ it, slia~ it, stopper it up, k.._eep it wann, in tlie tfarl<:.i in tlie Bglit, refrigerate/, fet it stantf stifffor a wliife - yourselves far from stiff- 6ut that's tlie realjo~. Jtjter a wliife you wok.._- ~ntf it's growing, a fittfe ocean, a fittle vofcano, a fittfe tree, a fittfe lieart, a fittfe 6rain, so fittfe you don't liear it lamenting as it wants to get out, 6ut that's tlie reafjo~, not liearing it. 'Ift.engo ·antf record it, a[[ tfaslies or a[[ crosses, some witli ~famation-mar/&, a[[ nouglits antf a[[figures, some witli ~famation-marf&, antf that's tlie reafjo~, in effect a test-tu6e is a device for changing nouglits into ~famation mar/&. 'Iliat's tlie reafJo~ wliicli mak.._es you forget for a wliile tliat reaffy you yourself are In tlie test-tu6e Mirosfav !Jfo{u6 Poems 'Before arufJtfter Acknowledgements I extend my grateful thanks to the following people for their assistance and encouragement during my PhD studies. Professor Adrian Lee for giving me the opportunity to carry out my PhD in his laboratory, for his supervision and for his enthusiasm for the "other helicobacters". -
Are the View of Helicobacter Pylori Colonized in the Oral Cavity an Illusion?
OPEN Experimental & Molecular Medicine (2017) 49, e397; doi:10.1038/emm.2017.225 Official journal of the Korean Society for Biochemistry and Molecular Biology www.nature.com/emm REVIEW Are the view of Helicobacter pylori colonized in the oral cavity an illusion? JKC Yee Urea breath test (UBT), as a leading preferred non-invasive diagnostic technology, but may not be able to detect oral H. pylori. With negative results of UBT, the patient may have an oral infection. On the basis of the fact of success, eradication rate may increase by 21% in the 95% Cl range after the elimination of oral H. pylori, the author believes oral H. pylori does exist and the oral cavity is the second colonized site aside its primary site of the stomach. H. pylori migrated out of Africa along with its human host circa 60 000 years ago; they are not lives in stomach only. In this review article, evidence established in recent years studies with use more appropriate technology had been listed and discussed. The author considers the oral cavity is a black hole for H. pylori infection that significant effective on gastroenterology and another medical field. The role of the oral cavity as the source of H. pylori infection is so controvert in past years. It seems like a human being having a second-time face to discover H. pylori in the history. Experimental & Molecular Medicine (2017) 49, e397; doi:10.1038/emm.2017.225; published online 24 November 2017 INTRODUCTION because the majority of physicians and scientists in this field do Most scientists in this field proposed there are no living not consider oral H. -
Lecture 4 Bacteria and Their Structure Introduction of Bacteria Shapes Of
Lecture 4 Bacteria and their Structure Introduction of bacteria Bacteria are single celled prokaryotic unicellular microorganisms, usually a few micrometers in length that normally exist together in millions. The cell wall of bacteria usually contains peptidoglycan and multiplies by binary fission. The cell structure is simpler than that of other organisms as there is no nucleus or membrane bound organelles. Instead their control Centre containing the genetic information is contained in a single loop of DNA. Some bacteria have an extra circle of genetic material called a plasmid. The plasmid often contains genes that give the bacterium some advantage over other bacteria. For example it may contain a gene that makes the bacterium resistant to a certain antibiotic. Shapes of bacteria Most bacteria are 0.2 um in diameter and 2-8 um in length. The three basic bacterial shapes are coccus (spherical), bacillus (rod-shaped), and spiral (vibrio twisted), however pleomorphic bacteria can assume several shapes. Characteristic Groups These bacteria can give themselves higher Level structural organizations such as Cocci Cocci may be oval, elongated, or flattened on one side. Cocci may remain attached after cell division. These group characteristics are often used to help identify certain cocci. 1) Cocci that remain in pairs after dividing are called diplococci. 2) Cocci that remain in chains after dividing are called streptococci. 3) Cocci that divide in two planes and remain in groups of four are called tetrads. 4) Cocci that divide in three planes and remain in groups cube like groups of eight are called sarcinae. 5) Cocci that divide in multiple planes and form grape like clusters or sheets are called staphylococci. -
Functional Anatomy of Prokaryotes and Eukaryotes
FUNCTIONAL ANATOMY OF PROKARYOTES AND EUKARYOTES BY DR JAWAD NAZIR ASSISTANT PROFESSOR DEPARTMENT OF MICROBIOLOGY UNIVERSITY OF VETERINARY AND ANIMAL SCIENCES, LAHORE Prokaryotes vs Eukaryotes Prokaryote comes from the Greek words for pre-nucleus Eukaryote comes from the Greek words for true nucleus. Functional anatomy of prokaryotes Prokaryotes vs Eukaryotes Prokaryotes Eukaryotes One circular chromosome, not in Paired chromosomes, in nuclear a membrane membrane No histones Histones No organelles Organelles Peptidoglycan cell walls Polysaccharide cell walls Binary fission Mitotic spindle Functional anatomy of prokaryotes Size and shape Average size: 0.2 -1.0 µm 2 - 8 µm Basic shapes: Functional anatomy of prokaryotes Size and shape Pairs: diplococci, diplobacilli Clusters: staphylococci Chains: streptococci, streptobacilli Functional anatomy of prokaryotes Size and shape Functional anatomy of prokaryotes Size and shape Functional anatomy of prokaryotes Size and shape Unusual shapes Star-shaped Stella Square Haloarcula Most bacteria are monomorphic A few are pleomorphic Genus: Stella Genus: Haloarcula Functional anatomy of prokaryotes Bacterial cell structure Structures external to cell wall Cell wall itself Structures internal to cell wall Functional anatomy of prokaryotes Glycocalyx Outside cell wall Usually sticky A capsule is neatly organized A slime layer is unorganized & loose Extracellular polysaccharide allows cell to attach Capsules prevent phagocytosis Association with diseases B. anthracis S. pneumoniae Functional anatomy of prokaryotes Flagella Outside cell wall Filament made of chains of flagellin Attached to a protein hook Anchored to the wall and membrane by the basal body Functional anatomy of prokaryotes Flagella Arrangement Functional anatomy of prokaryotes Bacterial motility Rotate flagella to run or tumble Move toward or away from stimuli (taxis) Flagella proteins are H antigens (e.g., E. -
Bacterial Morphology: Why Have Different Shapes? Kevin D Young
Bacterial morphology: why have different shapes? Kevin D Young The fact that bacteria have different shapes is not surprising; and qualitative way. More depth, more examples, after all, we teach the concept early and often and use it in and a bit more quantitative treatment can be found in identification and classification. However, why bacteria should a recent review and the references therein [1]. Portions have a particular shape is a question that receives much less of this topic have also been discussed by Beveridge [2], attention. The answer is that morphology is just another way Dusenbery [3], Koch [4], and Mitchell [5]. microorganisms cope with their environment, another tool for gaining a competitive advantage. Recent work has established Shape has selective value that bacterial morphology has an evolutionary history and has The first issue to get settled is that the shape of a highlighted the survival value of different shapes for accessing bacterium has biological relevance. One argument favor- nutrients, moving from one place to another, and escaping ing this assertion is that even though bacteria have a wide predators. Shape may be so important in some of these variety of shapes, any one genus typically exhibits a endeavors that an organism may change its morphology to fit limited subset of morphologies, hinting that, with a uni- the circumstances. In short, if a bacterium needs to eat, divide verse of shapes to choose from, individual bacteria adopt or survive, or if it needs to attach, move or differentiate, then it only those that are adaptive. Another clue is that some can benefit from adopting an appropriate shape. -
Cell Structure and Function in the Bacteria and Archaea
4 Chapter Preview and Key Concepts 4.1 1.1 DiversityThe Beginnings among theof Microbiology Bacteria and Archaea 1.1. •The BacteriaThe are discovery classified of microorganismsinto several Cell Structure wasmajor dependent phyla. on observations made with 2. theThe microscope Archaea are currently classified into two 2. •major phyla.The emergence of experimental 4.2 Cellscience Shapes provided and Arrangements a means to test long held and Function beliefs and resolve controversies 3. Many bacterial cells have a rod, spherical, or 3. MicroInquiryspiral shape and1: Experimentation are organized into and a specific Scientificellular c arrangement. Inquiry in the Bacteria 4.31.2 AnMicroorganisms Overview to Bacterialand Disease and Transmission Archaeal 4.Cell • StructureEarly epidemiology studies suggested how diseases could be spread and 4. Bacterial and archaeal cells are organized at be controlled the cellular and molecular levels. 5. • Resistance to a disease can come and Archaea 4.4 External Cell Structures from exposure to and recovery from a mild 5.form Pili allowof (or cells a very to attach similar) to surfacesdisease or other cells. 1.3 The Classical Golden Age of Microbiology 6. Flagella provide motility. Our planet has always been in the “Age of Bacteria,” ever since the first 6. (1854-1914) 7. A glycocalyx protects against desiccation, fossils—bacteria of course—were entombed in rocks more than 3 billion 7. • The germ theory was based on the attaches cells to surfaces, and helps observations that different microorganisms years ago. On any possible, reasonable criterion, bacteria are—and always pathogens evade the immune system. have been—the dominant forms of life on Earth. -
Lecture 1 ― INTRODUCTION INTO MICROBIOLOGY
МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ» Кафедра микробиологии, вирусологии и иммунологии А. И. КОЗЛОВА, Д. В. ТАПАЛЬСКИЙ МИКРОБИОЛОГИЯ, ВИРУСОЛОГИЯ И ИММУНОЛОГИЯ Учебно-методическое пособие для студентов 2 и 3 курсов факультета по подготовке специалистов для зарубежных стран медицинских вузов MICROBIOLOGY, VIROLOGY AND IMMUNOLOGY Teaching workbook for 2 and 3 year students of the Faculty on preparation of experts for foreign countries of medical higher educational institutions Гомель ГомГМУ 2015 УДК 579+578+612.017.1(072)=111 ББК 28.4+28.3+28.073(2Англ)я73 К 59 Рецензенты: доктор медицинских наук, профессор, заведующий кафедрой клинической микробиологии Витебского государственного ордена Дружбы народов медицинского университета И. И. Генералов; кандидат медицинских наук, доцент, доцент кафедры эпидемиологии и микробиологии Белорусской медицинской академии последипломного образования О. В. Тонко Козлова, А. И. К 59 Микробиология, вирусология и иммунология: учеб.-метод. пособие для студентов 2 и 3 курсов факультета по подготовке специалистов для зарубежных стран медицинских вузов = Microbiology, virology and immunology: teaching workbook for 2 and 3 year students of the Faculty on preparation of experts for foreign countries of medical higher educa- tional institutions / А. И. Козлова, Д. В. Тапальский. — Гомель: Гом- ГМУ, 2015. — 240 с. ISBN 978-985-506-698-0 В учебно-методическом пособии представлены тезисы лекций по микробиоло- гии, вирусологии и иммунологии, рассмотрены вопросы морфологии, физиологии и генетики микроорганизмов, приведены сведения об общих механизмах функциони- рования системы иммунитета и современных иммунологических методах диагности- ки инфекционных и неинфекционных заболеваний. Приведены сведения об этиоло- гии, патогенезе, микробиологической диагностике и профилактике основных бакте- риальных и вирусных инфекционных заболеваний человека. Может быть использовано для закрепления материала, изученного в курсе микро- биологии, вирусологии, иммунологии. -
Chemical Probes to Visualize Bacterial Cell Structure and Physiology
molecules Review From Differential Stains to Next Generation Physiology: Chemical Probes to Visualize Bacterial Cell Structure and Physiology Jonathan Hira 1, Md. Jalal Uddin 1 , Marius M. Haugland 2 and Christian S. Lentz 1,* 1 Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; [email protected] (J.H.); [email protected] (M.J.U.) 2 Department of Chemistry and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; [email protected] * Correspondence: [email protected] Academic Editor: Steven Verhelst Received: 30 September 2020; Accepted: 23 October 2020; Published: 26 October 2020 Abstract: Chemical probes have been instrumental in microbiology since its birth as a discipline in the 19th century when chemical dyes were used to visualize structural features of bacterial cells for the first time. In this review article we will illustrate the evolving design of chemical probes in modern chemical biology and their diverse applications in bacterial imaging and phenotypic analysis. We will introduce and discuss a variety of different probe types including fluorogenic substrates and activity-based probes that visualize metabolic and specific enzyme activities, metabolic labeling strategies to visualize structural features of bacterial cells, antibiotic-based probes as well as fluorescent conjugates to probe biomolecular uptake pathways. Keywords: activity-based probe; antibiotic conjugate; bacterial imaging; bacterial uptake; fluorogenic substrate; metabolic labeling; phenotypic heterogeneity 1. Introduction—From 19th Century Microbiology to Modern Day Chemical Biology If chemical biology can be defined as the ‘interrogation of biological systems with chemical approaches’ [1], we must acknowledge some of the first microbiologists as chemical biologists.