Interpolation of Bilinear Operators and Compactness

Total Page:16

File Type:pdf, Size:1020Kb

Interpolation of Bilinear Operators and Compactness INTERPOLATION OF BILINEAR OPERATORS AND COMPACTNESS E. BRANDANI DA SILVA1 and D. L. FERNANDEZ2 1Universidade Estadual de Maring´a- UEM, Departamento de Matem´atica - Av. Colombo 5790, Maring´a- PR, Brazil - 87020-900 email: [email protected] 2Universidade Estadual de Campinas - Unicamp, Instituto de Matem´atica - Caixa Postal 6065, Campinas - SP, Brazil - 13083-859 email: [email protected] Abstract. The behavior of bilinear operators acting on interpolation of Banach spaces for the ρ method in relation to the compactness is analyzed. Similar results of Lions-Peetre, Hayakawa and Person’s compactness theorems are obtained for the bilinear case and the ρ method. ——————————– Key words and phrases: interpolation, Banach spaces, bilinear operators, compactness 2000 Mathematics subject classification: 46B70, 46B50, 46M35 1 Introduction The study of compactness of multilinear operators for interpolation spaces goes back to A.P.Calder´on [4, pp.119-120]. Under an approximation hy- pothesis, Calder´on established an one-side type general result, but re- stricted to complex interpolation spaces. arXiv:1206.0017v1 [math.FA] 31 May 2012 For the real method, if E = (E0, E1), F = (F0, F1) and G = (G0, G1) are Banach couples, a classical result by Lions-Peetre assures that if T is a bounded bilinear operator from (E0 + E1) × (F0 + F1) into G0 + G1, whose restrictions T |Ek × Fk (k = 0, 1) are also bounded from Ek × Fk into 1 Gk (k = 0, 1) , then T is bounded from Eθ,p;J × Fθ,q;J into Gθ,r;J , where 0 <θ< 1 and 1/r = 1/p + 1/q − 1 . Lately several authors have obtained new and more general results for interpolation of bilinear and multilinear operators, for example see [9], [12] and [13]. On the other hand, the behaviour of compact multilinear operators under real interpolation functors or more general functors does not seem to have been yet investigated. This is our main subject in this work. After some preliminaries on interpolation of linear and bilinear operators, generalizations of Lions-Peetre compactness theorems [11, Theorem V.2.1] (the one with the same departure spaces) and [11, Theorem V.2.2] (the one with the same arriving spaces) will be stated. The proof of the first one is an adaptation of the original proof, but the later requires an involved argument. Thereafter, a two-side result for general interpolation functors of type ρ, with the additional cost of an approximation hypothesis on the departure Banach couples, will be then given. Thus, a theorem of Hayakawa type (i.e. a two-side result without approximation hypothesis) will be obtained. The point at this issue is that the Hayakawa type theorem is nothing but a corollary of the result with approximation hypothesis. Consequently, an one-side result holds for ordered Banach couples. Finally, as a consequence of the second Lemma of Lions-Peetre type, a compactness theorem of Persson type is obtained. To avoid ponderous notations we have restricted ourselves to the bilinear case. A generalization for the ρ method of the Lions-Peetre’s bilinear theorem will be also provided in this work. This work was published at ”Nonlinear Analysis: Theory, Methods and Applications, Volume 73, Issue 2, 2010, Pages 526-537”. Since there are some gaps in the original proof of Theorem 4.3, we give a new proof. For this, we change the Lemma 4.2. 2 Preliminaries on Interpolation 2.1 Interpolation functors. A pair of Banach spaces E = (E0, E1) is said to be a Banach couple if E0 and E1 are continuously embedded in some Hausdorff linear topological space E. Then we can form their intersection E0 ∩ E1 and sum E0 + E1; it can be seen that E0 ∩ E1 and E0 + E1 become 2 Banach spaces when endowed with the norms || x ||E0∩E1 = max{ ||x||E0 , ||x||E1 }, and || x ||E0+E1 = inf {||x0||E0 + ||x1||E1 }, x=x0+x1 respectively. We shall say that a Banach space is an intermediate space in respect to a Banach couple E = (E0, E1) if .E0 ∩ E1 ֒→ E ֒→ E0 + E1 .(The hookarrow ֒→ denotes bounded embeddings) Let E = (E0, E1) and F = (F0, F1) be Banach couples. We shall denote by L(E, F) the set of all linear mappings from E0 + E1 into F0 + F1 such that T |EK is bounded from Ek into Fk, k = 0, 1. By an interpolation functor F we shall mean a functor which to each Banach couple E = (E0, E1) associates an intermediate space F(E0, E1) between E0 and E1, and such that T |F(E0,E1) ∈ L(F(E0, E1), F(F0, F1)), for all T ∈ L(E, F). The interpolation functors which we shall consider depend on function parameters. 2.2 The function parameters. By a function parameter ρ we shall mean a continuous and positive function on R+. We shall say that a function parameter ρ belongs to the class B, if it satisfies the following conditions: (1) ρ(1) = 1, and ρ(st) (2) ρ(s) = sup < +∞, s> 0. t>0 ρ(t) Also, we shall say that a function parameter ρ ∈ B belongs to the class B+− if it satisfies ∞ 1 dt (3) min(1, )ρ(t) < +∞. t t Z0 3 From (1)-(3) we see that B+− is contained in Peetre‘s class P+−, i.e. the class of pseudo-concave function parameters which satisfies (4) ρ(t)= o(max(1,t)). (See Gustavsson [6] and Gustavsson-Peetre [7].) θ The function parameter ρθ(t) = t , 0 ≤ θ ≤ 1, belongs to B. It corre- +− sponds to the usual parameter θ. Further, ρθ ∈ B if 0 <θ< 1, but ρ0, +− ρ1 6∈ B . To control function parameters we shall need to recall the Boyd indices (see Boyd [2], [3] and Maligranda [12]). 2.3 The Boyd indices. Given a function parameter ρ ∈B, the Boyd in- dices αρ and βρ of the submultiplicative function ρ are defined, respectively, by log ρ(t) (5) αρ = sup , 1<t<∞ log t and log ρ(t) (6) βρ = sup . 0<t<1 log t The indices αρ and βρ are real numbers with the followings properties ∞ dt (7) α < 0 ⇐⇒ ρ(t) < +∞, ρ t Z1 and 1 dt (8) β > 0 ⇐⇒ ρ(t) < +∞. ρ t Z0 For the above mentioned function parameters ρ0 and ρ1 we have αρ0 < 0 θ and βρ1 > 0, respectively. For the function parameter ρθ(t)= t , 0 <θ< 1, we have αρθ = βρθ = θ. It can be proved that for all ρ ∈B, with βρ > 0 (αρ < 0, respectively) there exists an increasing (decreasing, respectively) function parameter ρ+ +− (ρ−, respectively) equivalent to ρ. Hence, if ρ ∈B it can be considered an increasing parameter, and ρ(t)/t a decreasing parameter. Furthermore, ρ can be considered non-decreasing, and ρ(t)/t non-increasing. Consequently, if ρ ∈B+− and 0 <q ≤∞, we have 4 −1 q ||ρ (t) min(1,t) ||L∗ < ∞. 2.4 Interpolation with function parameters. Let {E0, E1} and {F0, F1} be Banach couples and let L({E0, E1}, {F0, F1}) be the family of all linear maps T : E0 + E1 → F0 + F1 such that T |Ek is bounded from Ek to Fk, k = 0, 1. If E and F are intermediate spaces with respect to {E0, E1} and {F0, F1}, respectively, we say that E and F are interpolation spaces of +− type ρ where ρ ∈ P if given any T ∈ L({E0, E1}, {F0, F1}) we have ||T || ||T || ≤ C||T || ρ 1 , L(E,F ) 0 ||T || 0 for all T ∈ L({E0, E1)}, {F0, F1}), where ||T ||k = ||T ||L(Ek,Fk), (k = 0, 1) and C > 0 is a constant. Let {E0, E1} be a Banach couple. The J and K functionals are defined by J(t,x)= J(t,x; E) = max{||x||E0 , t ||x||E1 }, x ∈ E0 ∩ E1, K(t,x)= K(t,x; E)= inf {||x0||E0 + t ||x1||E1 }, x=x0+x1 respectively, where in K(t,x), x0 ∈ E0 and x1 ∈ E1. Then, we can define the following interpolation spaces. The space (E0, E1)ρ,q,K, ρ ∈ B and 0 < q ≤ +∞, consists of all x ∈ E0 + E1 which norm n −1 n ||x||ρ,q;K = ||( ρ(2 ) K(2 ,x; E) )n∈Z||ℓq (Z) is finite. The space (E0, E1)ρ,q;J , consists of all x ∈ E0 + E1, which it has a ∞ representation x = n=−∞ un where (un) ∈ E0 ∩ E1 and converges in E + E , which norm 0 1 P n −1 n ||x||ρ,q;J = inf ||( ρ(2 ) J(2 , un; E) )n∈Z||ℓq (Z), is finite, where the infimum is taken over all representations x = un. Besides, we have for the interpolation space (E , E ) that if x ∈ E ∩E 0 1 ρ,q,J P0 1 then ||x|| ||x|| ≤ C||x|| ρ 1 . E 0 ||x|| 0 5 For 0 <q ≤ +∞, the Equivalence Theorem between the J and K method holds, that is, (E0, E1)ρ,q;J = (E0, E1)ρ,q;K. 2.5. The spaces of class Jρ and Kρ. Let E be an intermediate space +− respect to a Banach couple E = (E0, E1) and ρ ∈ B . We say that E is an intermediate space of class Jρ(E0, E1) if the following embedding holds ,E0, E1)ρ,1;J ֒→ E) (9) and we say that E is an intermediate space of class Kρ(E0, E1) if the fol- lowing embedding holds .E ֒→ (E0, E1)ρ,∞;K (10) We note that E is of class Jθ(E0, E1) if and only if for all x ∈ E0 ∩ E1, it holds ||x|| (11) ||x|| ≤ C||x|| ρ E1 .
Recommended publications
  • On the Von Neumann Rule in Quantization
    On the von Neumann rule in quantization Olaf M¨uller∗ June 25, 2019 Abstract We show that any linear quantization map into the space of self-adjoint operators in a Hilbert space violates the von Neumann rule on post- composition with real functions. 1 Introduction and main results Physics today has the ambition to be entirely mathematically derivable from two fundamental theories: gravity and the standard model of parti- cle physics. Whereas the former is a classical field theory with only mildly paradoxical features such as black holes, the latter is not so much a closed theory as rather a toolbox full of complex algorithms and ill-defined objects. Moreover, as it uses a form of canonical quantization, the non-mathematical, interpretational subtleties of quantum mechanics, such as the measurement problem, can also be found in the standard model. Despite of these prob- lems, the standard model is very successful if used by experts inasfar as its predictions are in accordance with a large class of experiments to an un- precedented precision. Its canonical quantization uses a quantization map 0 arXiv:1903.10494v3 [math-ph] 22 Jun 2019 Q : G LSA(H) from some nonempty subset G C (C) of classical → ⊂ observables, where C is the classical phase space, usually diffeomorphic to the space of solutions, and LSA(H) is the space of linear self-adjoint (s.-a.) maps of a Hilbert space to itself.1 There is a widely accepted list of desirable properties for a quantization map going back to Weyl, von Neumann and Dirac ([24], [18], [6]): ∗Humboldt-Universit¨at, Institut f¨ur Mathematik, Unter den Linden 6, 10099 Berlin 1More exactly, the image of Q consists of essentially s.-a.
    [Show full text]
  • An Introduction to Pseudo-Differential Operators
    An introduction to pseudo-differential operators Jean-Marc Bouclet1 Universit´ede Toulouse 3 Institut de Math´ematiquesde Toulouse [email protected] 2 Contents 1 Background on analysis on manifolds 7 2 The Weyl law: statement of the problem 13 3 Pseudodifferential calculus 19 3.1 The Fourier transform . 19 3.2 Definition of pseudo-differential operators . 21 3.3 Symbolic calculus . 24 3.4 Proofs . 27 4 Some tools of spectral theory 41 4.1 Hilbert-Schmidt operators . 41 4.2 Trace class operators . 44 4.3 Functional calculus via the Helffer-Sj¨ostrandformula . 50 5 L2 bounds for pseudo-differential operators 55 5.1 L2 estimates . 55 5.2 Hilbert-Schmidt estimates . 60 5.3 Trace class estimates . 61 6 Elliptic parametrix and applications 65 n 6.1 Parametrix on R ................................ 65 6.2 Localization of the parametrix . 71 7 Proof of the Weyl law 75 7.1 The resolvent of the Laplacian on a compact manifold . 75 7.2 Diagonalization of ∆g .............................. 78 7.3 Proof of the Weyl law . 81 A Proof of the Peetre Theorem 85 3 4 CONTENTS Introduction The spirit of these notes is to use the famous Weyl law (on the asymptotic distribution of eigenvalues of the Laplace operator on a compact manifold) as a case study to introduce and illustrate one of the many applications of the pseudo-differential calculus. The material presented here corresponds to a 24 hours course taught in Toulouse in 2012 and 2013. We introduce all tools required to give a complete proof of the Weyl law, mainly the semiclassical pseudo-differential calculus, and then of course prove it! The price to pay is that we avoid presenting many classical concepts or results which are not necessary for our purpose (such as Borel summations, principal symbols, invariance by diffeomorphism or the G˚ardinginequality).
    [Show full text]
  • Properties of Field Functionals and Characterization of Local Functionals
    This is a repository copy of Properties of field functionals and characterization of local functionals. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/126454/ Version: Accepted Version Article: Brouder, Christian, Dang, Nguyen Viet, Laurent-Gengoux, Camille et al. (1 more author) (2018) Properties of field functionals and characterization of local functionals. Journal of Mathematical Physics. ISSN 0022-2488 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Properties of field functionals and characterization of local functionals Christian Brouder,1, a) Nguyen Viet Dang,2 Camille Laurent-Gengoux,3 and Kasia Rejzner4 1)Sorbonne Universit´es, UPMC Univ. Paris 06, UMR CNRS 7590, Institut de Min´eralogie, de Physique des Mat´eriaux et de Cosmochimie, Mus´eum National d’Histoire Naturelle, IRD UMR 206, 4 place Jussieu, F-75005 Paris, France. 2)Institut Camille Jordan (UMR CNRS 5208) Universit´eClaude Bernard Lyon 1, Bˆat.
    [Show full text]
  • Covariant Schrödinger Semigroups on Riemannian Manifolds1
    Covariant Schr¨odinger semigroups on Riemannian manifolds1 Batu G¨uneysu Humboldt-Universit¨at zu Berlin arXiv:1801.01335v2 [math.DG] 23 Apr 2018 1This is a shortened version (the Chapters VII - XIII have been removed). The full version has appeared in December 2017 as a monograph in the Birkh¨auser series Operator Theory: Advances and Applications, and only the latter version should be cited. The full version can be obtained on: http://www.springer.com/de/book/9783319689029 For my daughter Elena ♥ Contents Introduction 5 Chapter I. Sobolev spaces on vector bundles 16 1. Differential operators with smooth coefficients and weak derivatives on vector bundles 16 2. Some remarks on covariant derivatives 25 3. Generalized Sobolev spaces and Meyers-Serrin theorems 28 Chapter II. Smooth heat kernels on vector bundles 35 Chapter III. Basic differential operators in Riemannian manifolds 40 1. Preleminaries from Riemannian geometry 40 2. Riemannian Sobolev spaces and Meyers-Serrin theorems 49 3. The Friedrichs realization of † /2 59 ∇ ∇ Chapter IV. Some specific results for the minimal heat kernel 62 Chapter V. Wiener measure and Brownian motion on Riemannian manifolds 84 1. Introduction 84 2. Path spaces as measurable spaces 85 3. The Wiener measure on Riemannian manifolds 89 Chapter VI. Contractive Dynkin and Kato potentials 98 1. Generally valid results 98 2. Specific results under some control on the geometry 112 Chapter VII. Foundations of covariant Schr¨odinger semigroups 115 1. Notation and preleminaries 115 2. Scalar Schr¨odinger semigroups and the Feynman-Kac (FK) formula 118 3. Kato-Simon inequality 118 1 Chapter VIII. Compactness of V (H∇ + 1)− 119 Chapter IX.
    [Show full text]
  • Some Aspects of Differential Theories Respectfully Dedicated to the Memory of Serge Lang
    Handbook of Global Analysis 1071 Demeter Krupka and David Saunders c 2007 Elsevier All rights reserved Some aspects of differential theories Respectfully dedicated to the memory of Serge Lang Jozsef´ Szilasi and Rezso˝ L. Lovas Contents Introduction 1 Background 2 Calculus in topological vector spaces and beyond 3 The Chern-Rund derivative Introduction Global analysis is a particular amalgamation of topology, geometry and analysis, with strong physical motivations in its roots, its development and its perspectives. To formulate a problem in global analysis exactly, we need (1) a base manifold, (2) suitable fibre bundles over the base manifold, (3) a differential operator between the topological vector spaces consisting of the sec- tions of the chosen bundles. In quantum physical applications, the base manifold plays the role of space-time; its points represent the location of the particles. The particles obey the laws of quantum physics, which are encoded in the vector space structure attached to the particles in the mathematical model. A particle carries this vector space structure with itself as it moves. Thus we arrive at the intuitive notion of vector bundle, which had arisen as the ‘repere` mobile’ in Elie´ Cartan’s works a few years before quantum theory was discovered. To describe a system (e.g. in quantum physics) in the geometric framework of vector bundles effectively, we need a suitably flexible differential calculus. We have to differen- tiate vectors which change smoothly together with the vector space carrying them. The primitive idea of differentiating the coordinates of the vector in a fixed basis is obviously not satisfactory, since there is no intrinsic coordinate system which could guarantee the invariance of the results.
    [Show full text]
  • The Schur Lemma
    Appendix A The Schur Lemma Schur’s lemma provides sufficient conditions for linear operators to be bounded on Lp. Moreover, for positive operators it provides necessary and sufficient such condi- tions. We discuss these situations. A.1 The Classical Schur Lemma We begin with an easy situation. Suppose that K(x,y) is a locally integrable function on a product of two σ-finite measure spaces (X, μ) × (Y,ν), and let T be a linear operator given by T( f )(x)= K(x,y) f (y)dν(y) Y when f is bounded and compactly supported. It is a simple consequence of Fubini’s theorem that for almost all x ∈ X the integral defining T converges absolutely. The following lemma provides a sufficient criterion for the Lp boundedness of T. Lemma. Suppose that a locally integrable function K(x,y) satisfies sup |K(x,y)|dν(y)=A < ∞, x∈X Y sup |K(x,y)|dμ(x)=B < ∞. y∈Y X Then the operator T extends to a bounded operator from Lp(Y) to Lp(X) with norm − 1 1 A1 p B p for 1 ≤ p ≤ ∞. Proof. The second condition gives that T maps L1 to L1 with bound B, while the first condition gives that T maps L∞ to L∞ with bound A. It follows by the Riesz– − 1 1 Thorin interpolation theorem that T maps Lp to Lp with bound A1 p B p . This lemma can be improved significantly when the operators are assumed to be positive. A.2 Schur’s Lemma for Positive Operators We have the following necessary and sufficient condition for the Lp boundedness of positive operators.
    [Show full text]
  • Peetre's Theorem
    Humboldt-Universität zu Berlin Institut für Mathematik Wintersemester 2011/2012 Peetre's Theorem Bodo Graumann April 3, 2014 Contents 1 Basics 2 2 Peetre's Theorem 5 References 7 cba This document was published on http://bodograumann.de/studium. It is pro- vided under the Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) license. X TE EX The code was written in gvim with the help of vim-latex and compiled with xelatex, all on Gentoo Linux. Thanks to the free software community and to the fellow TEX users on TEX.SX for their great help and advice. If you want to make any comments or suggest corrections to this script, please con- tact me! You can either email me directly or use the contact form on my website. 1 Peetre’s Theorem 1 Basics Page 2 In 1959 Jaak Peetre first published his astonishing result, that any local (i.e. support-non- increasing) operator is a differential operator, [Pee59]. Unfortunately his proof contained an error and so in 1960 he had to publish a correction, [Pee60]. There, instead of just patching the error of the previous paper, he proposed a more general version of his theorem using distribution theory. We will take this second approach as it seems more natural. So before we can proof Peetre’s Theorem we need to introduce the necessary results of distribution theory. Most of those are taken from [Hö90]. For a more abstract context [RR73] is a good source. 1 Basics Choose any open set 훺 ⊂ ℝ푛 and a field 핂 ∈ {ℝ, ℂ}.
    [Show full text]
  • Lecture 15 1 Nov, 2016
    18.155 LECTURE 15 1 NOV, 2016 RICHARD MELROSE Abstract. Notes before and after lecture. 1. Before lecture • Schwartz' kernel theorem. • Smoothing operators • Locality (Peetre's Theorem) • Proper supports • Pseudolocality 2. After lecture • Fixed the confusion between φ and in the notes below (I hope). 1 −∞ 0 • I also described the transpose of an operator L : Cc (Ω) −! C (Ω ) as t 1 0 −∞ t the operator L : Cc (Ω ) −! C (Ω) with kernel K (x; y) = K(y; x) if K is the kernel of L: Notice that it satisfies the identity (1) hL ; φi = h ; Ltφi in terms of the real pairing extending the integral. t −∞ • If L and L both restrict and extend to define operators Cc (Ω) −! 1 0 −∞ 0 1 t C (Ω ) and Cc (Ω ) −! C (Ω) then L (and of course L ) is called a smoothing operator. This is equivalent to the condition K 2 C1(Ω0 × Ω): Having talked about operators on Hilbert space we now want to consider more general operators. The most general type of linear map that arises here is from a `small' space { a space of test functions { to a `large' space { a space of distributions. To be concrete let's consider linear maps of two types 1 −∞ 0 n 0 N L : Cc (Ω) −! C (Ω ); Ω ⊂ R ; Ω ⊂ R open (2) n 0 N L : S(R ) −! S (R ): In fact we will come to an understanding of the first type through the second. So consider a linear map of the second type in (2). We need to make some assumptions of continuity.
    [Show full text]
  • Elliptic Problems with Boundary Operators of Higher Orders in H
    ELLIPTIC PROBLEMS WITH BOUNDARY OPERATORS OF HIGHER ORDERS IN HORMANDER–ROITBERG¨ SPACES TETIANA KASIRENKO AND ALEKSANDR MURACH Abstract. We investigate elliptic boundary-value problems for which the maxi- mum of the orders of the boundary operators is equal to or greater than the order of the elliptic differential equation. We prove that the operator corresponding to an arbitrary problem of this kind is bounded and Fredholm between appropriate Hilbert spaces which form certain two-sided scales and are built on the base of isotropic H¨ormander spaces. The differentiation order for these spaces is given by an arbitrary real number and positive function which varies slowly at infinity in the sense of Karamata. We establish a local a priori estimate for the generalized solutions to the problem and investigate their local regularity (up to the bound- ary) on these scales. As an application, we find sufficient conditions under which the solutions have continuous classical derivatives of a given order. 1. Introduction Among elliptic boundary-value problems occur problems with boundary condi- tions whose orders are equal to or greater than the order of the elliptic differential equation for which the problem is posed. Such problems appear specifically in acoustic, hydrodynamics, and the theory of stochastic processes [26, 73, 74]. The known Ventcel’ elliptic boundary-value problem [73] apparently was the first such a problem arisen in applications. It consists of an elliptic differential equation of the second order and a boundary condition of the same order and was applied ini- tially to investigation of diffusion processes. A number of papers are devoted to this problem; see, e.g.
    [Show full text]
  • Spectral Theory of Elliptic Differential Operators
    Spectral theory of elliptic differential operators 802628S Lecture Notes 1st Edition Second printing Valeriy Serov University of Oulu 2009 Edited by Markus Harju Contents 1 Inner product spaces and Hilbert spaces 1 2 Symmetric operators in the Hilbert space 11 3 J. von Neumann’s spectral theorem 20 4 Spectrum of self-adjoint operators 33 5 Quadratic forms. Friedrichs extension. 48 6 Elliptic differential operators 52 7 Spectral function 61 8 Fundamental solution 64 9 Fractional powers of self-adjoint operators 85 Index 106 i 1 Inner product spaces and Hilbert spaces A collection of elements is called a complex (real) vector space (linear space) H if the following axioms are satisfied: 1) To every pair x, y H there corresponds a vector x + y, called the sum, with the properties: ∈ a) x + y = y + x b) x +(y + z)=(x + y)+ z x + y + z ≡ c) there exists unique 0 H such that x +0= x ∈ d) for every x H there exists unique y1 H such that x+y1 = 0. We denote y := x. ∈ ∈ 1 − 2) For every x H and every λ,µ C there corresponds a vector λ x such that ∈ ∈ · a) λ(µx)=(λµ)x λµx ≡ b) (λ + µ)x = λx + µx c) λ(x + y)= λx + λy d) 1 x = x. · Definition. For a linear space H every mapping ( , ) : H H C is called an inner product or a scalar product if · · × → 1) (x, x) 0 and (x, x) = 0 if and only if x = 0 ≥ 2) (x, y + z)=(x, y)+(x, z) 3) (λx, y)= λ(x, y) 4) (x, y)= (y, x) for every x, y, z H and λ C.
    [Show full text]
  • Peetre Theorem for Nonlinear Operators
    Ann. Global Anal. Geom. Vol. 6, No. 3 (1988), 273-283 Peetre Theorem for Nonlinear Operators JAN SLOVAK Some generalizations of the well-known Peetre theorem on the locally finite order of support non-increasing R-linear operators, [9, 11], has become a useful tool for various geometrical considerations, see e.g. [1, 5]. A nonlinear version of Peetre theorem came into question during author's investigations of the order of natural operators between natural bundles,'see [12]. However, the ideas used there have turned out to be efficient even for the study of the order of natural bundles and this originated the present paper. Since the obtained general results might also be of an independent interest, they are formulated in a pure analytical form. Some possible applications are discussed at the end of the paper. In particular, we sketch an alternative proof of the well-known result on the finiteness of the order of natural bundles, [4, 10], see Remark 4. We also give countre-examples showing that our results are the best possible in such a general setting. The author is greatful to Prof. I. Kolii for his encouragement and to Prof. P. W. Michor for several valuable discussions. 1. Preliminaries Let us first formulate a general concept of local operators transforming continuous maps between topological spaces. We write C(X, Y) for the set of all continuous maps f: X- Y. Definition 1. Let X, Y, Z, W be topological spaces, it e C(Z, X). A mapping A defined on a subset 9 c C(X, Y) with values in C(Z, W) is called a r-local operator if for any map f and any point x E X the restriction Af 7r-'(x) depends on the germ off in the point x only.
    [Show full text]
  • Variational Problems on Supermanifolds
    Institut f¨ur Mathematik Arbeitsgruppe Geometrie Variational Problems on Supermanifolds Dissertation zur Erlangung des akademischen Grades “doctor rerum naturalium” (Dr. rer. nat.) in der Wissenschaftsdisziplin Mathematik/Differentialgeometrie eingereicht an der Mathematisch-Naturwissenschaftlichen Fakult¨at der Universit¨at Potsdam von Florian Hanisch Potsdam, den 21.09.2011 This work is licensed under a Creative Commons License: Attribution - Noncommercial - Share Alike 3.0 Germany To view a copy of this license visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/ Published online at the Institutional Repository of the University of Potsdam: URL http://opus.kobv.de/ubp/volltexte/2012/5975/ URN urn:nbn:de:kobv:517-opus-59757 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59757 Abstract In this thesis, we discuss the formulation of variational problems on supermanifolds. Super- manifolds incorporate bosonic as well as fermionic degrees of freedom. Fermionic fields take values in the odd part of an appropriate Grassmann algebra and are thus showing an anti- commutative behaviour. However, a systematic treatment of these Grassmann parameters requires a description of spaces as functors, e.g. from the category of Grassmann algberas into the category of sets (or topological spaces, manifolds,. ). After an introduction to the general ideas of this approach, we use it to give a description of the resulting supermanifolds of fields/maps. We show that each map is uniquely characterized by a family of differential operators of appropriate order. Moreover, we demonstrate that each of this maps is uniquely characterized by its component fields, i.e. by the coefficients in a Taylor expansion w.r.t.
    [Show full text]