Appendix A The Schur Lemma

Schur’s lemma provides sufficient conditions for linear operators to be bounded on Lp. Moreover, for positive operators it provides necessary and sufficient such condi- tions. We discuss these situations.

A.1 The Classical Schur Lemma

We begin with an easy situation. Suppose that K(x,y) is a locally integrable on a product of two σ-finite measure spaces (X, μ) × (Y,ν), and let T be a linear operator given by  T( f )(x)= K(x,y) f (y)dν(y) Y when f is bounded and compactly supported. It is a simple consequence of Fubini’s theorem that for almost all x ∈ X the defining T converges absolutely. The following lemma provides a sufficient criterion for the Lp boundedness of T. Lemma. Suppose that a locally integrable function K(x,y) satisfies  sup |K(x,y)|dν(y)=A < ∞, x∈X Y sup |K(x,y)|dμ(x)=B < ∞. y∈Y X

Then the operator T extends to a from Lp(Y) to Lp(X) with − 1 1 A1 p B p for 1 ≤ p ≤ ∞.

Proof. The second condition gives that T maps L1 to L1 with bound B, while the first condition gives that T maps L∞ to L∞ with bound A. It follows by the Riesz– − 1 1 Thorin interpolation theorem that T maps Lp to Lp with bound A1 p B p .  This lemma can be improved significantly when the operators are assumed to be positive.

A.2 Schur’s Lemma for Positive Operators

We have the following necessary and sufficient condition for the Lp boundedness of positive operators.

L. Grafakos, Modern Fourier Analysis, Graduate Texts in Mathematics 250, 589 DOI 10.1007/978-1-4939-1230-8, © Springer Science+Business Media New York 2014 590 A The Schur Lemma

Lemma. Let (X, μ) and (Y,ν) be two σ-finite measure spaces, where μ and ν are positive measures, and suppose that K(x,y) is a nonnegative measurable function on X ×Y.Let1 < p < ∞ and 0 < A < ∞. Let T be the linear operator  T( f )(x)= K(x,y) f (y)dν(y) Y and T t its transpose operator  T t (g)(y)= K(x,y)g(x)dμ(x). X To avoid trivialities, we assume that there is a compactly supported, bounded, and positive ν-a.e. function h1 on Y such that T(h1) > 0 μ-a.e. Then the following are equivalent: (i) T maps Lp(Y) to Lp(X) with norm at most A. (ii) For all B > A there is a measurable function h on Y that satisfies 0 < h < ∞ ν-a.e., 0 < T(h) < ∞ μ-a.e., and such that

 p  p T t T(h) p ≤ Bp h p .

(iii) For all B > A there are measurable functions u on X and v on Y such that 0 < u < ∞ μ-a.e., 0 < v < ∞ ν-a.e., and such that

  T(up ) ≤ Bvp , T t (vp) ≤ Bup.

 Proof. First we assume (ii) and we prove (iii). Define u,v by the equations vp =  T(h) and up = Bh and observe that (iii) holds for this choice of u and v. Moreover, observe that 0 < u,v < ∞ a.e. with respect to the measures μ and ν, respectively.  Next we assume (iii) and we prove (i). For g in Lp (X) we have    v(x) u(y) T( f )(x)g(x)dμ(x)= K(x,y) f (y)g(x) dν(y)dμ(x). X X Y u(y) v(x)

We now apply Holder’s¨ inequality with exponents p and p to the functions

v(x) u(y) f (y) and g(x) u(y) v(x) with respect to the measure K(x,y)dν(y)dμ(x) on X ×Y. Since     p 1 v(x) p 1   ( )p ( , ) μ( ) ν( ) ≤ p   f y p K x y d x d y B f Lp(Y) Y X u(y) A.2 Schur’s Lemma for Positive Operators 591 and     1 p  1    u(y) p  ( )p ( , ) ν( ) μ( ) ≤ p    , g x  K x y d y d x B g Lp (X) X Y v(x)p we conclude that     1 1   +   ( )( ) ( ) μ( ) ≤ p p      .  T f x g x d x  B f Lp(Y) g Lp (X) X

 Taking the supremum over all g with Lp (X) norm 1, we obtain      ( ) ≤   . T f Lp(X) B f Lp(Y)

Since B was any number greater than A, we conclude that     ≤ , T Lp(Y)→Lp(X) A which proves (i). We finally assume (i) and we prove (ii). Without loss of generality, take here A = 1 and B > 1. Define a S : Lp(Y) → Lp(Y) by setting

   p  p S( f )(y)= T t T( f ) p p (y).

We observe two things. First, f1 ≤ f2 implies S( f1) ≤ S( f2), which is an easy con- of the fact that the same monotonicity is valid for T. Next, we observe that  f Lp ≤ 1 implies that S( f )Lp ≤ 1 as a consequence of the boundedness of T on Lp (with norm at most 1). Construct a sequence hn, n = 1,2,..., by induction as follows. Pick h1 > 0on Y as in the hypothesis of the theorem such that T(h1) > 0 μ-a.e. and such that −p p h1Lp ≤ B (B − 1). (The last condition can be obtained by multiplying h1 by a small constant.) Assuming that hn has been defined, we define 1 h + = h +  S(h ). n 1 1 Bp n

We check easily by induction that we have the monotonicity property hn ≤ hn+1 and the fact that hnLp ≤ 1. We now define

h(x)=suph (x)= lim h (x). n →∞ n n n

Fatou’s lemma gives that hLp ≤ 1, from which it follows that h < ∞ ν-a.e. Since h ≥ h1 > 0 ν-a.e., we also obtain that h > 0 ν-a.e. 592 A The Schur Lemma

Next we use the Lebesgue dominated convergence theorem to obtain that hn → h p p p in L (Y). Since T is bounded on L ,itfollowsthatT(hn) → T(h) in L (X).It p p   p t p follows that T(hn) p → T(h) p in L (X). Our hypothesis gives that T maps L (X)  p   p  p t  t  p to L (Y) with norm at most 1. It follows T T(hn) p → T T(h) p in L (Y).  p ( ) → ( ) p( ) Raising to the power p , we obtain that S hn S h in L Y . ( ) → ( ) It follows that for some subsequence nk of the integers we have S hnk S h a.e. in Y. Since the sequence S(hn) is increasing, we conclude that the entire sequence S(hn) converges almost everywhere to S(h). We use this information in conjunction 1 with hn+ = h +  S(hn). Indeed, letting n → ∞ in this identity, we obtain 1 1 Bp 1 h = h +  S(h). 1 Bp

p Since h1 > 0 ν-a.e. it follows that S(h) ≤ B h ν-a.e., which proves the required estimate in (ii). p It remains to prove that 0 < T(h) < ∞ μ-a.e. Since hLp ≤ 1 and T is L bounded, it follows that T(h)Lp ≤ 1, which implies that T(h) < ∞ μ-a.e. We also have T(h) ≥ T(h1) > 0 μ-a.e. 

A.3 An Example

Consider the Hilbert operator  ∞ f (y) T( f )(x)= dy, 0 x + y where x ∈ (0,∞). The operator T takes measurable functions on (0,∞) to measurable functions on (0,∞). We claim that T maps Lp(0,∞) to itself for 1 < p < ∞; precisely, we have the estimate  ∞ π     ( )( ) ( ) ≤      . T f x g x dx f Lp(0,∞) g Lp (0,∞) 0 sin(π/p) To see this we use Schur’s lemma. We take

− 1 u(x)=v(x)=x pp .

We have that

 1  1  ∞ − ∞ − 1  y p − 1 t p  1 −1 1 − T(up )(x)= dy = x p dt = v(x)p (1 − s) p s p 1 ds, 0 x + y 0 1 +t 0 A.3 An Example 593 where last identity follows from the change of variables s =(1 +t)−1. Now an easy calculation yields  1   1 −1 1 − π ( − ) p p 1 = 1 , 1 = , 1 s s ds B p p 0 sin(π/p) π   p→ p ≤ so the lemma in Appendix I.2 gives that T L L sin(π/p) . The sharpness of this constant follows by considering the sequence of functions

− 1+ε ( )= p χ ( ) hε t t (1,∞) t for ε > 0. To verify the last assertion notice that for x > 1 and 0 < ε < p−1wehave

 − 1+ε  − 1+ε ∞ t p 1 t p T(hε )(x)= dt − dt 0 x +t 0 x +t +ε +ε  ∞ − 1  1 − 1 − 1+ε t p − 1+ε x t p = x p dt − x p dt 0 1 +t 0 1 +t +ε  ∞ − 1  1 − 1+ε t p − 1+ε x x − 1+ε ≥ x p dt − x p t p dt 0 1 +t x + 1 0 +ε  ∞ − 1 − 1+ε t p 1 p = x p dt − . 0 1 +t x + 1 p − 1 − ε Notice that the expression directly after the ≥ sign is nonnegative, and so is the last expression. It follows that

 − 1+ε   ∞ p     t p  1  ( ε ) ≥  ε  p − . T h Lp(1,∞) dt h L (1,∞) (·)+1 Lp(1,∞) 0 1 +t p − 1 − ε

  =   = ε−1/p Dividing both sides of this inequality by hε Lp(0,∞) hε Lp(1,∞) , and letting ε → 0 we obtain

 ∞ − 1  ( ε ) p p   π T h L (0,∞) t 1 1 liminf ≥ dt = B  , = . ε→   + p p (π/ ) 0 hε Lp(0,∞) 0 1 t sin p

Since T(hε ) p π L (0,∞) ≤ limsup   (π/ ) ε→0 hε Lp(0,∞) sin p as already shown, it follows that  ( ) T hε Lp(0,∞) π lim = . ε→   (π/ ) 0 hε Lp(0,∞) sin p 594 A The Schur Lemma A.4 Historical Remarks

We make some comments related to the history of Schur’s lemma. Schur [312]first proved a matrix version of the lemma in Appendix I.1 when p = 2. Precisely, Schur’s original version was the following: If K(x,y) is a positive decreasing function in both variables and satisfies

sup∑K(m,n)+sup∑K(m,n) < ∞, m n n m then ∑∑amK(m,n)bn ≤ C{am}m2 {bn}n2 . m n Hardy–Littlewood and Polya´ [185] extended this result to Lp for 1 < p < ∞ and disposed of the condition that K be a decreasing function. Aronszajn, Mulla, and Szeptycki [6] proved that (iii) implies (i) in the lemma of Appendix I.2. Gagliardo in [149] proved the converse direction that (i) implies (iii) in the same lemma. The case p = 2 was previously obtained by Karlin [208]. Condition (ii) was introduced by Howard and Schep [197], who showed that it is equivalent to (i) and (iii). A multi- linear analogue of the lemma in Appendix I.2 was obtained by Grafakos and Torres [174]; the easy direction (iii) implies (i) was independently observed by Bekolle,´ Bonami, Peloso, and Ricci [20]. See also Cwikel and Kerman [107] for an alterna- tive multilinear formulation of the Schur lemma. The case p = p = 2 of the application in Appendix I.3 is a continuous version of Hilbert’s double series theorem. The discrete version was first proved by Hilbert in his lectures on integral equations (published by Weyl [367]) without a determination of the exact constant. This exact constant turns out to be π, as discovered by Schur [312]. The extension to other p’s (with sharp constants) is due to Hardy and M. Riesz and published by Hardy [181]. Appendix B Smoothness and Vanishing Moments

B.1 The Case of No Cancellation

Let a,b ∈ Rn, μ,ν ∈ R, and M,N > n.Set

 μn νn ( , μ, ,ν, )= 2 2 . I a M;b N μ M ν N dx Rn (1 + 2 |x − a|) (1 + 2 |x − b|) Then we have

2min(μ,ν)n I(a, μ,M;b,ν,N) ≤ C   , 0 (M,N) 1 + 2min(μ,ν)|a − b| min where   M4N N4M C = v + 0 n M − n N − n n and vn is the volume of the unit ball in R . To prove this estimate, first observe that  dx ≤ vnM . M Rn (1 + |x|) M − n

Without loss of generality, assume that ν ≤ μ. Consider the cases 2ν |a−b|≤1 and 2ν |a − b|≥1. In the case 2ν |a − b|≤1weusetheestimate

νn νn min(M,N) 2 ν 2 2 ≤ 2 n ≤ , (1 + 2ν |x − b|)N (1 + 2ν |a − b|)min(M,N) and the claimed inequality is a consequence of the estimate  νn min(M,N) μn ( , μ, ,ν, ) ≤ 2 2 2 . I a M;b N ν ( , ) μ M dx (1 + 2 |a − b|)min M N Rn (1 + 2 |x − a|)

ν In the case 2 |a−b|≥1letHa and Hb be the two half-spaces, containing the points a and b, respectively, formed by the hyperplane perpendicular to the line segment n [a,b] at its midpoint. Split the integral over R as the integral over Ha and the integral ∈ | − |≥ 1 | − | ∈ over Hb.Forx Ha use that x b 2 a b .Forx Hb use a similar inequality and the fact that 2ν |a − b|≥1 to obtain

L. Grafakos, Modern Fourier Analysis, Graduate Texts in Mathematics 250, 595 DOI 10.1007/978-1-4939-1230-8, © Springer Science+Business Media New York 2014 596 B Smoothness and Vanishing Moments

μn μn M (ν−μ)(M−n) νn 2 ≤ 2 ≤ 4 2 2 . (1 + 2μ |x − a|)M ( μ 1 | − |)M (1 + 2ν |a − b|)M 2 2 a b The claimed estimate follows.

B.2 One Function has Cancellation

Fix a,b ∈ Rn, M > 0, μ,ν ∈ R, and L ∈ Z+. Assume that ν ≥ μ and that N > L + M + n. Given a function Ψ on Rn and another function Φ ∈ C L(Rn) consider the quan- tities

M,L μ M β Kμ,a (Φ)= sup sup (1 + 2 |x − a|) |∂ Φ(x)|, |β|=L x∈Rn N (Ψ)= ( + ν | − |)N|Ψ( )| Kν,b sup 1 2 x b x x∈Rn and assume they are both finite. Suppose, moreover, that  β Ψ(x)x dx = 0 for all |β|≤L − 1. Rn

Then there is a constant CM,N,L,n such that     −νL−νn   M,L N 2 Φ( )Ψ( ) ≤ , , , μ, (Φ) (Ψ) .  x x dx CM N L n K a Kν,b μ M Rn (1 + 2 |a − b|)

To prove this claim, we subtract the Taylor polynomial of order L − 1ofΦ at the point a from the function Φ using the cancellation of Ψ. Then we write        Φ(x)Ψ(x)dx Rn   γ   ∂ Φ(b) γ  =  Φ(x) − ∑ (x − b) Ψ(x)dx n γ R |γ|≤L−1 !    ∂ β Φ(ξ )   b,x β  =  ∑ (x − b) Ψ(x)dx n β R |β|=L !  | − |L ≤ M,L(Φ) N (Ψ) 1 x b 1 Kμ,a Kν,b ∑ μ ν dx β n ( + |ξ , − |)M ( + | − |)N |β|=L ! R 1 2 b x a 1 2 x b  −νL ≤ M,L(Φ) N (Ψ) 1 2 1 Kμ,a Kν,b ∑ μ ν − dx β n ( + |ξ , − |)M ( + | − |)N L |β|=L ! R 1 2 b x a 1 2 x b where ξb,x lies on the open segment joining b to x. B.3 One Function has Cancellation: An Example 597

Now since ν ≥ μ, the triangle inequality and the fact μ ≤ ν give

μ μ μ 1 + 2 |a − b|≤1 + 2 |a − ξb,x| + 2 |ξb,x − b| μ ν ≤ 1 + 2 |a − ξb,x| + 2 |x − b| μ ν ≤ (1 + 2 |ξb,x − a|)(1 + 2 |x − b|), hence + ν | − | 1 ≤ 1 2 x b . μ μ 1 + 2 |ξb,x − a| 1 + 2 |a − b| Thus we obtain the estimate        Φ(x)Ψ(x)dx n R   −νL  ≤ M,L(Φ) N (Ψ) 2 1 1 Kμ,a Kν, μ ∑ ν − − dx b ( + | − |)M β n ( + | − |)N L M 1 2 a b |β|=L ! R 1 2 x b −νn −νL M,L N 2 2 = Kμ, (Φ)Kν, (Ψ) C , , , , a b (1 + 2μ |a − b|)M M N L n since the last integral produces a constant in view of the assumption N > L+M +n.

B.3 One Function has Cancellation: An Example

Fix L ∈ Z+, A,B,M,N > 0, and a,b ∈ Rn satisfy N > M + L + n and ν ≥ μ.Let Φ ∈ C L(Rn) and Ψ be another function on Rn.Let

α A = sup sup |∂ Φ(x)|(1 + |x|)M |α|=L x∈Rn and α B = sup |∂ Ψ(x)|(1 + |x|)N x∈Rn and suppose that A + B < ∞. Suppose moreover that  β Ψ(x)x dx = 0 for all |β|≤L − 1. Rn  Then there is a constant CM,N,L,n such that     μn −(ν−μ)L  2 2  Φ −μ ( − )Ψ −ν ( − )  ≤ .  2 x a 2 x b dx CM,N,L,n AB μ M Rn (1 + 2 |a − b|) 598 B Smoothness and Vanishing Moments

In particular, we have

  μn −(ν−μ)L    2 2 (Φ −μ ∗Ψ −ν )(x) ≤ C , , , AB 2 2 M N L n (1 + 2μ |x|)M

−n −1 −n −1 −μ Let Φt (x)=t Φ(t x) and Ψs(x)=s Ψ(s x) for t,s > 0. Set 2 = t and 2−ν = s. The assumption ν ≥ μ can be equivalently stated as s ≥ t. The preceding inequalities can also be written equivalently as       t−n s L  Φ ( − )Ψ ( − )  ≤  t .  t x a s x b dx CM,N,L,n AB −1 M Rn (1 +t |a − b|) and     −n s L    t t (Φ ∗Ψ )(x) ≤ C , , , AB t s M N L n (1 + 2μ |x|)M for all x ∈ Rn. These results are easy consequences of the inequality in Appendix B.2.IfΨ has no cancellation (i.e., L = 0), then the estimate reduces to that in Appendix B.1.

B.4 Both Functions have Cancellation: An Example

Let L ∈ Z+, A,B,N > 0 and μ,ν ∈ R. Suppose that N > L + n.LetΩ,Ψ be C L functions on Rn such that

γ A = sup sup |∂ Ω(x)|(1 + |x|)N < ∞ |γ|≤L x∈Rn

γ B = sup sup |∂ Ψ(x)|(1 + |x|)N < ∞ |γ|≤L x∈Rn and moreover, for all multi-indices β with |β|≤L − 1wehave   β β Ω(x)x dx = Ψ(x)x dx = 0. Rn Rn > < − −  Then given M 0 satisfying M N L n there is a constant CN,M,L,n such that for all x,a,b ∈ Rn we have     μn νn −|ν−μ|L  min(2 ,2 )2  Ω −μ ( − )Ψ −ν ( − )  ≤ .  2 x a 2 x b dx CN,M,L,n AB μ ν M Rn (1 + min(2 ,2 )|a − b|) B.5 The Case of Three Factors with No Cancellation 599

In particular, we have

  μn νn −|ν−μ|L    min(2 ,2 )2 (Ω −μ ∗Ψ −ν )(x) ≤ C , , , AB 2 2 N M L n (1 + min(2μ ,2ν )|x|)M for all x ∈ Rn and for all μ,ν ∈ R. −n −1 −n −1 −μ Let Ωt (x)=t Ω(t x) and Ψs(x)=s Ψ(s x) for t,s > 0. Then if 2 = t and 2−ν = s, the preceding statements can also be written as     L   max(t,s)−n min s , t  Ω ( − )Ψ ( − )  ≤  t s .  t x a s x b dx CN,M,L,n AB −1 M Rn (1 + max(t,s) |a − b|) and     ( , )−n s , t L    max t s min t s (Ω ∗Ψ )(x) ≤ C , , , AB t s N M L n (1 + max(t,s)−1|x|)M for all x ∈ Rn and for all t,s > 0. These assertions follow from the results in Appendix B.3 by interchanging the roles of Ω and Ψ, noting that

γ A ≥ sup sup |∂ Ω(x)|(1 + |x|)M |γ|≤L x∈Rn

γ B ≥ sup sup |∂ Ψ(x)|(1 + |x|)M |γ|≤L x∈Rn since M < N.

B.5 The Case of Three Factors with No Cancellation

Given three numbers a,b,c we denote by med(a,b,c) the number with the property min(a,b,c) ≤ med(a,b,c) ≤ max(a,b,c). n n Let xν ,xμ ,xλ ∈ R . Suppose that ψν , ψμ , ψλ are functions defined on R such that for some N > n and some Aν ,Aμ ,Aλ < ∞ we have

νn/2 |ψ ( )|≤ 2 , ν x Aν ν (1 + 2 |x − xν |)N μn/2 |ψ ( )|≤ 2 , μ x Aμ μ (1 + 2 |x − xμ |)N λn/2 |ψ ( )|≤ 2 , λ x Aλ λ (1 + 2 |x − xλ |)N 600 B Smoothness and Vanishing Moments for all x ∈ Rn. Then the following estimate is valid:  |ψν (x)||ψμ (x)||ψλ (x)|dx Rn −max(μ,ν,λ)n/2 med(μ,ν,λ)n/2 min(μ,ν,λ)n/2 ≤ CN,n Aν Aμ Aλ 2 2 2 (ν,μ) (μ,λ) (λ,ν) ((1 + 2min |xν − xμ |)(1 + 2min |xμ − xλ |)(1 + 2min |xλ − xν |))N for some constant CN,n > 0 independent of the remaining parameters. Analogous estimates hold if some of these three factors are assumed to have cancellation and the others vanishing moments; see Grafakos and Torres [176]for precise statements and applications. Similar estimates with m factors, m ∈ Z+,are studied in Benyi´ and Tzirakis [26]. Glossary

A ⊆ BAis a subset of B (also denoted by A ⊆ B) A  BAis a proper subset of B A ⊃ BBis a proper subset of A Ac the complement of a set A

χE the characteristic function of the set E d f the distribution function of a function f f ∗ the decreasing rearrangement of a function f fn ↑ ffn increases monotonically to a function f Z the set of all integers Z+ the set of all positive integers {1,2,3,...} Zn the n-fold product of the integers R the set of real numbers R+ the set of positive real numbers Rn the Euclidean n-space Q the set of rationals Qn the set of n-tuples with rational coordinates C the set of complex numbers Cn the n-fold product of complex numbers T the unit circle identified with the [0,1] Tn the n-dimensional torus [0,1]n,

2 2 n |x| |x1| + ···+ |xn| when x =(x1,...,xn) ∈ R

L. Grafakos, Modern Fourier Analysis, Graduate Texts in Mathematics 250, 601 DOI 10.1007/978-1-4939-1230-8, © Springer Science+Business Media New York 2014 602 Glossary

Sn−1 the unit sphere {x ∈ Rn : |x| = 1} e j the vector (0,...,0,1,0,...,0) with1inthe jth entry and 0 elsewhere logt the logarithm to base e of t > 0 > = > loga t the logarithm to base a of t 0(1 a 0) log+ t max(0,logt) for t > 0 [t] the integer part of the real number t · n =( ,..., ) =( ,..., ) x y the quantity ∑ j=1 x jy j when x x1 xn and y y1 yn B(x,R) the ball of radius R centered at x in Rn n−1 ωn−1 the surface area of the unit sphere S n vn the volume of the unit ball {x ∈ R : |x| < 1} |A| the Lebesgue measure of the set A ⊆ Rn dx

1 ( ) AvgB f the average |B| B f x dx of f over the set B  , ( ) ( ) f g the real inner product Rn f x g x dx  f |g the complex inner product n f (x)g(x)dx  R u, f the action of a distribution u on a function f p the number p/(p − 1), whenever 0 < p = 1 < ∞ 1 the number ∞ ∞ the number 1 f = O(g) means | f (x)|≤M|g(x)| for some M for x near x0 −1 f = o(g) means | f (x)||g(x)| → 0asx → x0 At the transpose of the matrix A A∗ the conjugate transpose of a complex matrix A A−1 the inverse of the matrix A O(n) the space of real matrices satisfying A−1 = At

TX→Y the norm of the (bounded) operator T : X → Y ≈ > −1 ≤ B ≤ A B means that there exists a c 0 such that c A c

|α| indicates the size |α1| + ···+ |αn| of a multi-index α =(α1,...,αn) ∂ m ( ,..., ) j f the mth partial of f x1 xn with respect to x j α ∂ α ∂ 1 ···∂ αn f 1 n f Glossary 603

C k the space of functions f with ∂ α f continuous for all |α|≤k

C0 space of continuous functions with compact

C00 the space of continuous functions that vanish at infinity C ∞ 0 the space of smooth functions with compact support D the space of smooth functions with compact support S the space of Schwartz functions  C ∞ ∞ C k the space of smooth functions k=1 D(Rn) the space of distributions on Rn S (Rn) the space of tempered distributions on Rn E (Rn) the space of distributions with compact support on Rn P the set of all complex-valued polynomials of n real variables S (Rn)/P the space of tempered distributions on Rn modulo polynomials (Q) the side length of a cube Q in Rn ∂Q the boundary of a cube Q in Rn Lp(X, μ) the Lebesgue space over the measure space (X, μ) Lp(Rn) the space Lp(Rn,|·|) Lp,q(X, μ) the Lorentz space over the measure space (X, μ) p ( n) p( ) n Lloc R the space of functions that lie in L K for any compact set K in R |dμ| the total variation of a finite Borel measure μ on Rn M (Rn) the space of all finite Borel measures on Rn n p Mp(R ) the space of L Fourier multipliers, 1 ≤ p ≤ ∞ M p,q(Rn) the space of translation-invariant operators that map Lp(Rn) to Lq(Rn)   μ | μ| μ n M Rn d the norm of a finite Borel measure on R M the centered Hardy–Littlewood maximal operator with respect to balls M the uncentered Hardy–Littlewood maximal operator with respect to balls

Mc the centered Hardy–Littlewood maximal operator with respect to cubes

Mc the uncentered Hardy–Littlewood maximal operator with respect to cubes

Mμ the centered maximal operator with respect to a measure μ

Mμ the uncentered maximal operator with respect to a measure μ 604 Glossary

Ms the strong maximal operator

Md the dyadic maximal operator M# the sharp maximal operator M the grand maximal operator p n p Ls (R ) the inhomogeneous L p n p L˙ s (R ) the homogeneous L Sobolev space

Λα (Rn) the inhomogeneous Lipschitz space

Λ˙α (Rn) the homogeneous Lipschitz space H p(Rn) the real on Rn p n n Bs,q(R ) the inhomogeneous on R p n n B˙s,q(R ) the homogeneous Besov space on R p n n B˙s,q(R ) the homogeneous Besov space on R p n n Fs,q(R ) the inhomogeneous Triebel–Lizorkin space on R p n n F˙s,q(R ) the homogeneous Triebel–Lizorkin space on R BMO(Rn) the space of functions of bounded mean oscillation on Rn References

1. Adams, D. R., A note on Riesz potentials, Duke Math. J. 42 (1975), no. 4, 765–778. 2. Adams, R. A., Sobolev Spaces, Pure and Applied Mathematics, Vol. 65, Academic Press, New York–London, 1975. 3. Alexopoulos, G., La conjecture de Kato pour les operateurs´ differentiels´ elliptiques acoeffi-` cients periodiques´ ,C.R.Acad.Sci.ParisSer.´ I Math. 312 (1991), no. 2, 263–266. 4. Antonov, N. Yu., Convergence of Fourier series, Proceedings of the XX Workshop on Func- tion Theory (Moscow, 1995), East J. Approx. 2 (1996) no. 2, 187–196. 5. Arias de Reyna, J., Pointwise Convergence of Fourier Series, Lecture Notes in Mathematics, 1785, Springer-Verlag, Berlin, 2002. 6. Aronszajn, N., Mulla, F., Szeptycki, P., On spaces of potentials connected with Lp-classes, Ann. Inst. Fourier (Grenoble) 12 (1963), 211–306. 7. Aronszajn, N., Smith, K. T., Theory of Bessel potentials, I, Ann. Inst. Fourier (Grenoble) 11 (1961), 385–475. 8. Auscher, P., Hofmann, S., Lacey, M., McIntosh, A., Tchamitchian, P., The solution of the Kato square root problem for second order elliptic operators on Rn, Ann. of Math. (2nd Ser.) 156 (2002), no. 2, 633–654. 9. Auscher, P., Hofmann, S., Lewis, J. L., Tchamitchian, P., Extrapolation of Carleson measures and the analyticity of Kato’s square-root operators, Acta Math. 187 (2001), no. 2, 161–190. 10. Auscher, P., Hofmann, S., Muscalu, C., Tao, T., Thiele, C., Carleson measures, trees, extrap- olation and Tb theorems,Publ.Mat.46 (2002), no. 2, 257–325. 11. Auscher, P., McIntosh, A., Nahmod, A., Holomorphic functional calculi of operators, quadratic estimates, and interpolation, Indiana Univ. Math. J. 46 (1997), no. 2, 375–403. 12. Auscher, P., Tchamitchian, P., Square root problem for divergence operators and related top- ics,Asterisque´ No. 249, Societ´ eMath´ ematique´ de France, 1998. 13. Bae, H., Biswas, A., Gevrey regularity for a class of dissipative equations with analytic nonlinearity, to appear. 14. Baernstein, A., II, Sawyer, E. T., Embedding and multiplier theorems for H p(Rn),Mem. Amer. Math. Soc. 53 (1985), no. 318. 15. Bak, J.-G., An interpolation theorem and a sharp form of a multilinear fractional integration theorem, Proc. Amer. Math. Soc. 120 (1994), no. 2, 435–441. 16. Barcelo,´ B., On the restriction of the Fourier transform to a conical surface,Trans.Amer. Math. Soc. 292 (1985), no. 1, 321–333. 17. Barcelo,´ B., The restriction of the Fourier transform to some and surfaces, Studia Math. 84 (1986), no. 1, 39–69. 18. Barrionuevo, J., A note on the Kakeya maximal operator, Math. Res. Lett. 3 (1996), no. 1, 61–65. 19. Beckner, W., Carbery, A., Semmes, S., Soria, F., A note on restriction of the Fourier transform to spheres, Bull. London Math. Soc. 21 (1989), no. 4, 394–398.

L. Grafakos, Modern Fourier Analysis, Graduate Texts in Mathematics 250, 605 DOI 10.1007/978-1-4939-1230-8, © Springer Science+Business Media New York 2014 606 References

20. Bekolle,´ D., Bonami, A., Peloso, M., Ricci, F., Boundedness of Bergman projections on tube domains over light cones,Math.Z.237 (2001), no. 1, 31–59. 21. Bennett, C., DeVore, R. A., Sharpley, R., Weak L∞ and BMO, Ann. of Math. (2nd Ser.) 113 (1981), no. 3, 601–611. 22. Benyi,´ A.,´ Bilinear operators, smooth atoms and molecules, J. Fourier Anal. Appl. 9 (2003), no. 3, 301–319. 23. Benyi,´ A.,Demeter,C.,Nahmod,A.,Thiele,C.,Torres,R.H.,Villaroya,P.,´ Modulation invariant bilinear T(1) theorem, J. Anal. Math. 109 (2009), 279–352. 24. Benyi,´ A.,´ Maldonado, D., Nahmod, A., Torres, R. H., Bilinear paraproducts revisited,Math. Nachr. 283 (2010), no. 9, 1257–1276. 25. Benyi,´ A.,´ Maldonado, D., Naibo, V., What is a paraproduct? Notices Amer. Math. Soc. 57 (2010), no. 7, 858–860. 26. Benyi,´ A.,´ Tzirakis, N., Multilinear almost diagonal estimates and applications, Studia Math. 164 (2004), no. 1, 75–89. 27. Bergh, J., Lofstr¨ om,¨ J., Interpolation Spaces, An Introduction, Grundlehren der Mathematis- chen Wissenschaften, 223, Springer-Verlag, Berlin–New York, 1976. 28. Bernicot, F., Uniform estimates for paraproducts and related multilinear operators,Revista Mat. Iberoamer. 25 (2009), no. 3, 1055–1088. 29. Bernicot, F., Lp estimates for non-smooth bilinear Littlewood-Paley square functions on R, Math. Ann. 351 (2011), no. 1, 1–49. 30. Bernicot, F., Germain, P., Boundedness of bilinear multipliers whose symbols have a narrow support, J. Anal. Math. 119 (2013), 165–212. 31. Bernicot, F., Maldonado, D., Moen, K., Naibo, V., Bilinear Sobolev-Poincare´ inequalities and Leibniz-type rules, J. Geom. Anal. 24 (2014), no. 2, 1144–1180. 32. Bernicot, F., Shrivastava, S., Boundedness of smooth bilinear square functions and applica- tions to some bilinear pseudo-differential operators, Indiana Univ. Math. J. 60 (2011), no. 1, 233–268. 33. Besicovitch, A., On Kakeya’s problem and a similar one,Math.Z.27 (1928), no. 1, 312–320. 34. Besov,O.V.,On some families of function spaces. Imbedding and extension theorems (Rus- sian), Dokl. Akad. Nauk SSSR 126 (1959), 1163–1165. 35. Besov, O. V., Investigation of a class of function spaces in connection with imbeddings and extension theorems (Russian), Trudy Mat. Inst. Steklov. 60 (1961), 42–81. 36. Bilyk, D., Grafakos, L., Interplay between distributional estimates and boundedness in har- monic analysis, Bull. London Math. Soc. 37 (2005), no. 3, 427–434. 37. Bilyk, D., Grafakos, L., Distributional estimates for the bilinear Hilbert transforms,J.Geom. Anal. 16 (2006), no. 4, 563–584. 38. Bilyk, D., Lacey, M., Li, X., Wick, B., Composition of Haar paraproducts: the random case, Anal. Math. 35 (2009), 1–13. 39. Birnbaum, Z. W., Orlicz, W., Uber¨ die Verallgemeinerung des Begriffes der Zueinander kon- jugierten Potenzen, Studia Math. 3 (1931), 1–67; reprinted in W. Orlicz, “Collected Papers,” pp. 133–199, PWN, Warsaw, 1988. 40. Bochner, S., Summation of multiple Fourier series by spherical means, Trans. Amer. Math. Soc. 40 (1936), no. 2, 175–207. 41. Bony, J. M., Calcul symbolique et propagation des singularites´ pour les equations´ aux deriv´ ees´ partielles non lineaires´ , Ann. Sci. Ecole´ Norm. Sup. (4) 14 (1981), no. 2, 209–246. 42. Bourgain, J., Besicovitch type maximal operators and applications to Fourier analysis, Geom. Funct. Anal. 1 (1991), no. 2, 147–187. 43. Bourgain, J., On the restriction and multiplier problems in R3, Geometric Aspects of Func- tional Analysis (1989–90), pp. 179–191, Lecture Notes in Math. 1469, Springer, Berlin, 1991. 44. Bourgain, J., Some new estimates on oscillatory , Essays on Fourier Analysis in Honor of Elias M. Stein (Princeton, NJ, 1991) pp. 83-112, Princeton Math. Ser. 42, Princeton Univ. Press, Princeton, NJ, 1995. 45. Bourgain, J., On the of Kakeya sets and related maximal inequalities,Geom. Funct. Anal. 9 (1999), no. 2, 256–282. References 607

46. Bourgain, J., Li D., On an endpoint Kato-Ponce inequality, to appear. 47. Bownik, M., Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc. 164 (2003), no. 781. 48. Bownik, M., Boundedness of operators on Hardy spaces via atomic decompositions,Proc. Amer. Math. Soc. 133 (2005), no. 12, 3535–3542. 49. Bownik, M., Li, B., Yang, D., Zhou, Y., Weighted anisotropic Hardy spaces and their ap- plications in boundedness of sublinear operators, Indiana Univ. Math. J. 57 (2008), no. 7, 3065–3100. 50. Bui, H. Q., Some aspects of weighted and non-weighted Hardy spaces,Kokyˆ urokuˆ Res. Inst. Math. Sci. 383 (1980), 38–56. 51. Bui, T. A., Duong, X. T., Weighted norm inequalities for multilinear operators and applica- tions to multilinear Fourier multipliers, Bull. Sci. Math. 137 (2013), no. 1, 63–75. 52. Burkholder, D. L., Gundy, R. F., Silverstein, M. L., A maximal characterization of the class H p, Trans. Amer. Math. Soc. 157 (1971), 137–153. 53. Calderon,´ A. P., Lebesgue spaces of differentiable functions and distributions, Proc. Sympos. Pure Math. 4 (1961), 33–49, Amer. Math. Soc., Providence, RI. 54. Calderon,´ A. P., Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1092–1099. 55. Calderon,´ A. P., Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 4, 1324–1327. 56. Calderon,´ A. P., An atomic decomposition of distributions in parabolic H p spaces, Advances in Math. 25 (1977), no. 3, 216–225. 57. Calderon,´ A. P., Zygmund, A., A note on the interpolation of linear operations, Studia Math. 12 (1951), 194–204. 58. Calderon,´ A. P., Torchinsky, A., Parabolic maximal functions associated with a distribution, Advances in Math. 16 (1975), 1–64. 59. Calderon,´ A. P., Torchinsky, A., Parabolic maximal functions associated with a distribution, II, Advances in Math. 24 (1977), no. 2, 101–171. 60. Calderon,´ A. P., Vaillancourt, R., A class of bounded pseudo-differential operators,Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 1185–1187. 61. Calderon,´ A. P., Zygmund, A., Singular integrals and periodic functions, Studia Math. 14 (1954), 249–271. 62. Campanato, S., Proprietadih` olderianit¨ a` di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 175–188. 63. Campanato, S., Proprieta` di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa (3) 18 (1964), 137–160. 64. Carbery, A., The boundedness of the maximal Bochner–Riesz operator on L4(R2),Duke Math. J. 50 (1983), no. 2, 409–416. 65. Carbery, A., Hernandez,´ E., Soria, F., Estimates for the Kakeya maximal operator on radial functions in Rn, (Sendai, 1990), pp. 41–50, Springer, Tokyo, 1991. 66. Carbery, A., Rubio de Francia, J.-L., Vega, L., Almost everywhere summability of Fourier integrals, J. London Math. Soc. (2) 38 (1988), no. 3, 513–524. 67. Carleson, L., An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921–930. 68. Carleson, L., Interpolation by bounded analytic functions and the corona problem, Ann. of Math. (2nd Ser.) 76 (1962), no. 3, 547–559. 69. Carleson, L., On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), no. 1, 135–157. 70. Carleson, L., On the Littlewood–Paley Theorem, Mittag-Leffler Institute Report, Djurs- holm, Sweden 1967. 71. Carleson, L., Two remarks on H1 and B.M.O, Advances in Math. 22 (1976), no. 3, 269–277. 72. Carleson, L., Sjolin,¨ P., Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44 (1972), 287–299. 73. Chang, D.-C., Krantz, S. G., Stein, E. M., H p theory on a smooth domain in RN and elliptic boundary value problems, J. Funct. Anal. 114 (1993), no. 2, 286–347. 608 References

74. Chiarenza, F., Frasca, M., Morrey spaces and Hardy–Littlewood maximal function, Rend. Mat. Appl. Series 7, 7 (1987), no. 3–4, 273–279. 75. Christ, M., Estimates for the k-plane transform, Indiana Univ. Math. J. 33 (1984), no. 6, 891–910. 76. Christ, M., On the restriction of the Fourier transform to curves: endpoint results and the degenerate case,Trans.Amer.Math.Soc.287 (1985), no. 1, 223–238. 77. Christ, M., On almost everywhere convergence of Bochner–Riesz means in higher dimen- sions, Proc. Amer. Math. Soc. 95 (1985), no. 1, 16–20. 78. Christ, M., Weak type endpoint bounds for Bochner–Riesz multipliers, Rev. Mat. Iberoamer- icana 3 (1987), no. 1, 25–31. 79. Christ, M., Weak type (1,1) bounds for rough operators, Ann. of Math. (2nd Ser.) 128 (1988), no. 1, 19–42. 80. Christ, M., AT(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), no. 2, 601–628. 81. Christ, M., Lectures on singular integral operators, CBMS Regional Conference Series in Mathematics, 77, American Mathematical Society, Providence, RI, 1990. 82. Christ, M., On certain elementary trilinear operators, Math. Res. Lett. 8 (2001), no. 1–2, 43–56. 83. Christ, M., Duoandikoetxea, J., Rubio de Francia, J.-L., Maximal operators related to the Radon transform and the Calderon–Zygmund´ method of rotations, Duke Math. J. 53 (1986), no. 1, 189–209. 84. Christ, M., Journe,´ J.-L., Polynomial growth estimates for multilinear singular integral oper- ators, Acta Math. 159 (1987), no. 1–2, 51–80. 85. Christ, M., Weinstein, M., Dispersion of small-amplitude solutions of the generalized Korteweg-de Vries equation,J.Funct.Anal.(1991),100, no. 1, 87–109. 86. Coifman, R. R., A real variable characterization of H p, Studia Math. 51 (1974), 269–274. 87. Coifman, R. R., Deng, D. G., Meyer, Y., Domaine de la racine caree´ de certaines operateurs´ differentiels´ acretifs´ , Ann. Inst. Fourier (Grenoble) 33 (1983), no. 2, 123–134. 88. Coifman, R. R., Jones, P., Semmes, S., Two elementary proofs of the L2 boundedness of Cauchy integrals on Lipschitz curves,J.Amer.Math.Soc.2 (1989), no. 3, 553–564. 89. Coifman, R. R., Lions, P. L., Meyer, Y., Semmes, S., Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 (1993), no. 3, 247–286. 90. Coifman, R. R., McIntosh, A., Meyer, Y., L’ integrale´ de Cauchy definit´ un operateur´ borne´ sur L2 pour les courbes lipschitziennes, Ann. of Math. (2nd Ser.) 116 (1982), no. 2, 361–387. 91. Coifman, R. R., Meyer, Y., On commutators of singular integral and bilinear singular inte- grals,Trans.Amer.Math.Soc.212 (1975), 315–331. 92. Coifman, R. R., Meyer, Y., Commutateurs d’ integrales´ singulieres` et operateurs´ multi- lineaires´ , Ann. Inst. Fourier (Grenoble) 28 (1978), no. 3, 177–202. 93. Coifman, R. R., Meyer, Y., Au del´ adesop` erateurs´ pseudo-differentiels´ ,Asterisque´ No. 57, Societe´ Mathematique de France, 1979. 94. Coifman, R. R., Meyer, Y., A simple proof of a theorem by G. David and J.-L. Journeon´ singular integral operators, Probability Theory and Harmonic Analysis, (Cleveland, Ohio, 1983) pp. 61–65, Monogr. Textbooks Pure Appl. Math., 98 Dekker, New York, 1986. 95. Coifman, R. R., Meyer, Y., Stein, E. M., Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62 (1985), no. 2, 304–335. 96. Coifman, R. R., Rochberg, R., Weiss, G., Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2nd Ser.) 103 (1976), no. 3, 611–635. 97.Coifman,R.R.,Weiss,G.,Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645. 98. Colzani, L., Translation invariant operators on Lorentz spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 2, 257–276. 99. Colzani, L., Travaglini, G., Vignati, M., Bochner–Riesz means of functions in weak-Lp, Monatsh. Math. 115 (1993), no. 1–2, 35–45. 100. Cordero, E., Zucco, D., Strichartz estimates for the vibrating plate equation, J. Evol. Equ. 11 (2011), 827–845. References 609

101. Cordoba,´ A., The Kakeya maximal function and the spherical summation multipliers,Amer. J. Math. 99 (1977), no. 1, 1–22. 102. Cordoba,´ A., A note on Bochner–Rise operators, Duke Math. J. 46 (1979), no. 3, 505–511. 103. Cordoba,´ A., Multipliers of F(Lp), Euclidean harmonic analysis (Proc. Sem., Univ. Mary- land, College Park, MD, 1979), pp. 162–177, Lecture Notes in Math., 779, Springer, Berlin, 1980. 104. Cordoba,´ A., Fefferman, R., On differentiation of integrals, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 6, 2211–2213. 105. Cotlar, M., A combinatorial inequality and its applications to L2 spaces, Rev. Mat. Cuyana, 1 (1955), 41–55. 106. Cunningham, F., The Kakeya problem for simply connected and for star-shaped sets,Amer. Math. Monthly 78 (1971), 114–129. 107. Cwikel, M., Kerman, R., Positive multilinear operators acting on weighted Lp spaces, J. Funct. Anal. 106 (1992), no. 1, 130–144. 108. Dafni, G., Hardy spaces on some pseudoconvex domains, J. Geom. Anal. 4 (1994), no. 3, 273–316. 109. Dafni, G., Local VMO and weak convergence in h1, Canad. Math. Bull. 45 (2002), no. 1, 46–59. 110. David, G., Operateurs´ integraux´ singuliers sur certains courbes du plan complexe, Ann. Sci. Ecole´ Norm. Sup. (4) 17 (1984), no. 1, 157–189. 111. David, G., Journe,´ J.-L., A boundedness criterion for generalized Calderon–Zygmund´ oper- ators, Ann. of Math. (2nd Ser.) 120 (1984), no. 2, 371–397. 112. David, G., Journe,´ J.-L., Semmes, S., Operateurs´ de Calderon–Zygmund,´ fonctions para- accretives´ et interpolation, Rev. Math. Iberoamericana 1 (1985), no. 4, 1–56. 113. David, G., Semmes, S., Singular integrals and rectifiable sets in Rn: Beyond Lipschitz graphs, Asterisque´ No. 193, Societe´ Mathematique de France, 1991. 114. Davis, K. M., Chang, Y. C., Lectures on Bochner–Riesz Means, London Mathematical Soci- ety Lecture Notes Series, 114, Cambridge University Press, Cambridge, 1987. 115. De Carli, L., Iosevich, A., A restriction theorem for flat of codimension two, Illinois J. Math. 39 (1995), no. 4, 576–585. 116. De Carli, L., Iosevich, A., Some sharp restriction theorems for homogeneous manifolds, J. Fourier Anal. Appl. 4 (1998), no. 1, 105–128. 117. Demeter, C., Divergence of combinatorial averages and the unboundedness of the trilinear , Ergodic Theory Dynam. Systems 28 (2008), no. 5, 1453–1464. 118. Demeter, C., Tao, T., Thiele, C., Maximal multilinear operators, Trans. Amer. Math. Soc. 360 (2008), no. 9, 4989–5042. 119. Diestel, G., Some remarks on bilinear Littlewood-Paley theory, J. Math. Anal. Appl. 307 (2005), no. 1, 102–119. 120. Diestel, G., Grafakos, L., Unboundedness of the ball bilinear multiplier operator,Nagoya Math. J. 185 (2007), 151–159. 121. Drury, S. W., Lp estimates for the X-ray transform, Illinois J. Math. 27 (1983), no. 1, 125–129. 122. Drury, S. W., Restrictions of Fourier transforms to curves, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 1, 117–123. 123. Drury, S. W., Guo, K., Some remarks on the restriction of the Fourier transform to surfaces, Math. Proc. Cambridge Philos. Soc. 113 (1993), no. 1, 153–159. 124. Drury, S. W., Marshall, B. P., Fourier restriction theorems for curves with affine and Euclidean arclengths, Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 1, 111–125. 125. Drury, S. W., Marshall, B. P., Fourier restriction theorems for degenerate curves, Math. Proc. Cambridge Philos. Soc. 101 (1987), no. 3, 541–553. 126. Duong, X. T., Grafakos, L., Yan, L., Multilinear operators with non-smooth kernels and commutators of singular integrals, Trans. Amer. Math. Soc. 362 (2010), no. 4, 2089–2113. 127. Duren, P. L., Theory of H p Spaces, Dover Publications Inc., New York, 2000. 128. Duren, P. L., Romberg, B. W., Shields, A. L., Linear functionals on H p spaces with 0 < p < 1, J. Reine Angew. Math. 238 (1969), 32–60. 610 References

129. Fabes, E., Jerison, D., Kenig, C., Multilinear Littlewood–Paley estimates with applications to partial differential equations, Proc. Nat. Acad. Sci. U.S.A. 79 (1982), no. 18, 5746–5750. 130. Fabes, E., Jerison, D., Kenig, C., Multilinear square functions and partial differential equa- tions, Amer. J. Math. 107 (1985), no. 6, 1325–1367. 131. Fabes, E., Mitrea, I., Mitrea, M., On the boundedness of singular integrals, Pacific J. Math. 189 (1999), no. 1, 21–29. 132. Fefferman, C., Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), no. 1, 9–36. 133. Fefferman, C., Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 587–588. 134. Fefferman, C., The multiplier problem for the ball, Ann. of Math. (2nd Ser.) 94 (1971), no. 2, 330–336. 135. Fefferman, C., Pointwise convergence of Fourier series, Ann. of Math. (2nd Ser.) 98 (1973), no. 3, 551–571. 136. Fefferman, C., A note on spherical summation multipliers, Israel J. Math. 15 (1973), 44–52. 137. Fefferman, C., Riviere, N., Sagher, Y., Interpolation between H p spaces: The real method, Trans. Amer. Math. Soc. 191 (1974), 75–81. 138. Fefferman, C., Stein, E. M., Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. 139. Fefferman, C., Stein, E. M., H p spaces of several variables, Acta Math. 129 (1972), no. 3–4, 137–193. 140. Flett, T. M., Lipschitz spaces of functions on the circle and the disc, J. Math. Anal. Appl. 39 (1972), 125–158. 141. Folland, G. B., Stein, E. M., Estimates for the ∂ b complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522. 142. Folland, G. B., Stein, E. M., Hardy Spaces on Homogeneous Groups, Mathematical Notes 28, Princeton University Press, Princeton, NJ, 1982. 143. Frazier, M., Jawerth, B., Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), no. 4, 777–799. 144. Frazier, M., Jawerth, B., A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), no. 1, 34–170. 145. Frazier, M., Jawerth, B., Applications of the ϕ and wavelet transforms to the theory of func- tion spaces, Wavelets and Their Applications, pp. 377–417, Jones and Bartlett, Boston, MA, 1992. 146. Frazier, M., Jawerth, B., Weiss, G., Littlewood–Paley Theory and the Study of Function Spaces, CBMS Regional Conference Series in Mathematics, 79, American Mathematical Society, Providence, RI, 1991. 147. Fujita, M., Tomita, N., Weighted norm inequalities for multilinear Fourier multipliers Trans. Amer. Math. Soc. 364 (2012), no. 12, 6335–6353. 148. Gagliardo, E., Proprieta` di alcune classi di funzioni in piu` variabili, Ricerche Mat. 7 (1958), 102–137. 149. Gagliardo, E., On integral transformations with positive kernel, Proc. Amer. Math. Soc. 16 (1965), 429–434. 150. Garc´ıa-Cuerva, J., Rubio de Francia, J.-L., Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies, 116, North-Holland Publishing Co., Amsterdam, 1985. 151. Garnett, J., Bounded Analytic Functions, Pure and Applied Mathematics, 96, Academic Press, Inc., New York–London, 1981. 152. Garnett, J., Jones, P., The distance in BMO to L∞, Ann. of Math. (2nd Ser.) 108 (1978), no. 2, 373–393. 153. Garnett, J., Jones, P., BMO from dyadic BMO, Pacific J. Math. 99 (1982), no. 2, 351–371. 154. Gilbert, J. E., Nahmod, A. R., Bilinear operators with non-smooth symbol, I, J. Fourier Anal. Appl. 7 (2001), no. 5, 435–467. 155. Goldberg, D., A local version of real Hardy spaces, Duke Math. J. 46 (1979), no. 1, 27–42. 156. Grafakos, L., Classical Fourier Analysis, Third edition, Graduate Texts in Math. 249, Springer, New York, 2014. References 611

157. Grafakos, L., Kalton, N., Some remarks on multilinear maps and interpolation, Math. Ann. 319 (2001), no. 1, 151–180. 158. Grafakos, L., Kalton, N. J., The Marcinkiewicz multiplier condition for bilinear operators, Studia Math. 146 (2001), no. 2, 115–156. 159. Grafakos, L., Kalton, N. J., Multilinear Calderon–Zygmund´ operators on Hardy spaces, Collect. Math. 52 (2001), no. 2, 169–179. 160. Grafakos, L., Li, X., Uniform bounds for the bilinear Hilbert transforms I, Ann. of Math. (2nd Ser.) 159 (2004), no. 3, 889–933. 161. Grafakos, L., Li, X., The disc as a bilinear multiplier, Amer. J. Math. 128 (2006), no. 1, 91–119. 162. Grafakos, L., Liu, L., Lu, S., Zhao, F., The multilinear Marcinkiewicz interpolation theorem revisited: the behavior of the constant J. Funct. Anal. 262 (2012), no. 5, 2289–2313. 163. Grafakos, L., Liu L., Maldonado, D., Yang, D., Multilinear analysis on metric spaces,Dis- sertationes Math. (Rozprawy Mat.) 497 (2014), 121 pp. 164. Grafakos, L., Maldonado, D., Naibo, V., A remark on an endpoint Kato-Ponce inequality, Differential and Integral Equations, 27, no. 5–6 (2014), 415–424. 165. Grafakos, L., Martell, J. M., Extrapolation of weighted norm inequalities for multivariable operators and applications J. Geom. Anal. 14 (2004), no. 1, 19–46. 166. Grafakos, L., Martell, J. M., Soria, F., Weighted norm inequalities for maximally modulated singular integral operators, Math. Ann. 331 (2005), no. 2, 359–394. 167. Grafakos, L., Mastyło, M., Analytic families of multilinear operators, Nonlinear Anal. 107 (2014), 47–62. 168. Grafakos, L., Miyachi, A., Tomita, N., On Multilinear Fourier Multipliers of Limited Smooth- ness, Canad. J. Math. 65 (2013), no. 2, 299–330. 169. Grafakos, L., Oh, S., The Kato Ponce inequality, Comm. in PDE, Comm. Partial Differential Equations 39 (2014), no. 6, 1128–1157. 170. Grafakos, L., Si, Z., The Hormander¨ multiplier theorem for multilinear operators,J.Reine Angew. Math. 668 (2012), 133–147. 171. Grafakos, L., Soria, J., Translation-invariant bilinear operators with positive kernels,Integral Equations Operator Theory 66 (2010), no. 2, 253–264. 172. Grafakos, L., Tao, T., Multilinear interpolation between adjoint operators,J.Funct.Anal. 199 (2003), no. 2, 379–385. 173. Grafakos, L., Tao, T., Terwilleger, E., Lp bounds for a maximal dyadic sum operator,Math. Z. 246 (2004), no. 1–2, 321–337. 174. Grafakos, L., Torres, R., A multilinear Schur test and multiplier operators,J.Funct.Anal. 187 (2001), no. 1, 1–24. 175. Grafakos, L., Torres, R., Maximal operator and weighted norm inequalities for multilinear singular integrals, Indiana Univ. Math. J. 51 (2002), no. 5, 1261–1276. 176. Grafakos, L., Torres, R., Discrete decompositions for bilinear operators and almost diagonal conditions, Trans. Amer. Math. Soc. 354 (2002), no. 3, 1153–1176. 177. Grafakos, L., Torres, R. H., Multilinear Calderon–Zygmund´ theory, Adv. Math. 165 (2002), no. 1, 124–164. 178. Greenleaf, A., Principal curvature and harmonic analysis, Indiana Univ. Math. J. 30 (1981), no. 4, 519–537. 179. Gulisashvili, A., Kon, M., Exact smoothing properties of Schrdinger semigroups Amer. J. Math. 118 (1996), no. 6, 1215–1248. 180. Hardy, G. H., The mean value of the modulus of an analytic function, Proc. London Math. Soc. 14 (1915), 269–277. 181. Hardy, G. H., Note on a theorem of Hilbert concerning series of positive terms, Proc. London Math. Soc. 23 (1925), Records of Proc. XLV–XLVI. 182. Hardy, G. H., Littlewood, J. E., Some properties of fractional integrals I,Math.Z.27 (1927), no. 1, 565–606. 183. Hardy, G. H., Littlewood, J. E., Some properties of fractional integrals II,Math.Z.34 (1932), no. 1, 403–439. 612 References

184. Hardy, G. H., Littlewood, J. E., Generalizations of a theorem of Paley, Quarterly Jour. 8 (1937), 161–171. 185. Hardy, G. H., Littlewood, J. E. , Polya,´ G., The maximum of a certain bilinear form,Proc. London Math. Soc. S2-25 (1926), no. 1, 265–282. 186. Hart, J., A new proof of the bilinear T(1) theorem, Proc. Amer. Math. Soc. 142 (2014), no. 9, 3169–3181. 187. He, D., Square function characterization of weak Hardy spaces, J. Fourier Anal. Appl. 20 (2014), no. 5, 1083–1110. 188. Hedberg, L., On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505–510. 189. Herz, C., On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 996–999. 190. Hewitt, E., Stromberg, K., Real and Abstract Analysis Springer-Verlag, New York, 1965. 191. Hofmann, S., Lacey, M., McIntosh, A., The solution of the Kato problem for divergence form elliptic operators with Gaussian bounds, Ann. of Math. (2nd Ser.) 156 (2002), no. 2, 623–631. 192. Hofmann, S., McIntosh, A., The solution of the Kato problem in two , Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), pp. 143–160, Publ. Mat. 2002, Vol. Extra. 193. Hormander,¨ L., Estimates for translation invariant operators in Lp spaces, Acta Math. 104 (1960), no. 1–2, 93–140. 194. Hormander,¨ L., Linear Partial Differential Operators, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin–Gottingen–Heidelberg,¨ 1963. 195. Hormander,¨ L., Oscillatory integrals and multipliers on FLp,Ark.Mat.11 (1973), 1–11. 196. Hormander,¨ L., The Analysis of Linear Partial Differential Operators I, Distribution theory and Fourier Analysis, Second edition, Springer-Verlag, Berlin, 1990. 197. Howard, R., Schep, A. R., Norms of positive operators on Lp spaces, Proc. Amer Math. Soc. 109 (1990), no. 1, 135–146. 198. Hu, G., Weighted norm inequalities for the multilinear Calderon-Zygmund´ operators,Sci. China Math. 53 (2010), no. 7, 1863–1876. 199. Hunt, R., On the convergence of Fourier series, Orthogonal Expansions and their Continuous Analogues (Proc. Conf. Edwardsville, IL, 1967), pp. 235–255, Southern Illinois Univ. Press, Carbondale, IL, 1968. 200. Hunt, R., Young, W.-S., A weighted norm inequality for Fourier series, Bull. Amer. Math. Soc. 80 (1974), 274–277. 201. Igari, S., An extension of the interpolation theorem of Marcinkiewicz, II,Tohokuˆ Math. J. (2) 15 (1963), 343–358. 202. Igari, S., On Kakeya’s maximal function, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), no. 8, 292–293. 203. Janson, S., Mean oscillation and commutators of singular integral operators,Ark.Math.16 (1978), no. 2, 263–270. 204. Janson, S., On interpolation of multilinear operators, Function Spaces and Applications (Lund, 1986), pp. 290–302, Lect. Notes in Math., 1302, Springer, Berlin–New York, 1988. 205. John, F., Nirenberg, L., On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. 206. Jørsboe, O. G., Mejlbro, L., The Carleson–Hunt Theorem on Fourier Series, Lecture Notes in Mathematics, 911, Springer-Verlag, Berlin–New York, 1982. 207. Journe,´ J.-L., Calderon–Zygmund´ Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderon´ , Lecture Notes in Mathematics, 994, Springer-Verlag, Berlin, 1983. 208. Karlin, S., Positive operators, J. Math. Mech. 8 (1959), 907–937. 209. Kato, T., Fractional powers of dissipative operators,J.Math.Soc.Japan13 (1961), 246–274. 210. Kato, T., Ponce, G., Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), no. 7, 891–907. 211. Katz, N., A counterexample for maximal operators over a Cantor set of directions,Math. Res. Lett. 3 (1996), no. 4, 527–536. References 613

212. Katz, N., Maximal operators over arbitrary sets of directions, Duke Math. J. 97 (1999), no. 1, 67–79. 213. N. Katz, Remarks on maximal operators over arbitrary sets of directions, Bull. London Math. Soc. 31 (1999), no. 6, 700–710. 214. Katz, N., Łaba, I., Tao, T., An improved bound on the Minkowski dimension of Besicovitch sets in R3, Ann. of Math. (2nd Ser.) 152 (2000), no. 2, 383–446. 215. Katz, N., Tao, T., Recent progress on the Kakeya conjecture, Proceedings of the 6th Inter- national Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), pp. 161–179, Publ. Mat. 2002, Vol. Extra. 216. Keich, U., On Lp bounds for Kakeya maximal functions and the Minkowski dimension in R2, Bull. London Math. Soc. 31 (1999), no. 2, 213–221. 217. Kenig, C., Meyer, Y., Kato’s square roots of accretive operators and Cauchy kernels on Lip- schitz curves are the same, Recent progress in Fourier analysis (El Escorial, 1983), pp. 123– 143, North-Holland Math. Stud. 111, North-Holland, Amsterdam, 1985. 218. Kenig, C., Ponce, G., Vega, L., Well-posedness and scattering results for the generalized Korteweg-de-Vries equation via the contraction principle, Comm. Pure Appl. Math. (1993), 46, no. 4, 527–620. 219. Kenig, C., Stein, E. M., Multilinear estimates and fractional integration, Math. Res. Lett. 6 (1999), no. 1, 1–15. 220. Knapp, A., Stein, E. M., Intertwining operators for semisimple groups, Ann. of Math. (2nd Ser.) 93 (1971), no. 3, 489–578. 221. Kokilashvili, V., Mastyło, M., Meskhi, A., On the boundedness of the multilinear fractional integral operators, Nonlinear Anal. 94 (2014), 142–147. 222. Kolmogorov, A. N., Une serie´ de Fourier–Lebesgue divergente presque partout, Fund. Math. 4 (1923), 324–328. 223. Kolmogorov, A. N., Une serie´ de Fourier–Lebesgue divergente partout, C. R. Acad. Sci. Paris 183 (1926), 1327–1328. 224. Konyagin, S. V., On the divergence everywhere of trigonometric Fourier series, Sb. Math. 191 (2000), no. 1–2, 97–120. 225. Koosis, P., Sommabilite´ de la fonction maximale et appartenance aH` 1,C.R.Acad.Sci.Paris Ser´ A–B 286 (1978), no. 22, A1041–A1043. 226. Koosis, P., Introduction to Hp Spaces, Second edition, Cambridge Tracts in Mathematics, 115, Cambridge University Press, Cambridge, 1998. 227. Korner,¨ T., Everywhere divergent Fourier series, Colloq. Math. 45 (1981), no. 1, 103–118. 228. Krantz, S. G., Fractional integration on Hardy spaces, Studia Math. 73 (1982), no. 2, 87–94. 229. Krantz, S. G., Lipschitz spaces, smoothness of functions, and approximation theory, Exposi- tion. Math. 1 (1983), no. 3, 193–260. 230. Krein, M. G., On linear continuous operators in functional spaces with two norms, Trudy Inst. Mat. Akad. Nauk Ukrain. SSRS 9 (1947), 104–129. 231. Kuk, S., Lee, S., Endpoint bounds for multilinear fractional integrals, Math. Res. Lett. 19 (2012), no. 5, 1145–1154. 232. Kurtz, D., Wheeden, R., Results on weighted norm inequalities for multipliers,Trans.Amer. Math. Soc. 255 (1979), 343–362. 233. Lacey, M., On bilinear Littlewood–Paley square functions, Publ. Mat. 40 (1996), no. 2, 387–396. 234. Lacey, M. T., The bilinear maximal functions map into Lp for 2/3 < p ≤ 1, Ann. of Math. (2nd Ser.) 151 (2000), no. 1, 35–57. 235. Lacey, M., Metcalfe, J., Paraproducts in one and several parameters, Forum Math. 19 (2007), no. 2, 325–351. 236. Lacey, M. T., Thiele, C. M., Lp bounds for the bilinear Hilbert transform for 2 < p < ∞, Ann. of Math. (2nd Ser.) 146 (1997), no. 3, 693–724. 237. Lacey, M., Thiele, C., On Calderon’s´ conjecture, Ann. of Math. (2nd Ser.) 149 (1999), no. 2, 475–496. 238. Lacey, M., Thiele, C., A proof of boundedness of the Carleson operator, Math. Res. Lett. 7 (2000), no. 4, 361–370. 614 References

239. Latter, R. H., A characterization of H p(Rn) in terms of atoms, Studia Math. 62 (1978), no. 1, 92–101. 240. Latter, R. H., Uchiyama, A., The atomic decomposition for parabolic H p spaces,Trans. Amer. Math. Soc. 253 (1979), 391–398. 241. Lerner, A., Ombrosi, S., Perez,´ C., Torres, R. H., Trujillo-Gonzalez,´ R., New maximal func- tions and multiple weights for the multilinear Calderon–Zygmund´ theory, Adv. Math. 220 (2009), no. 4, 1222–1264. 242. Li, K., Sun, W., Weighted estimates for multilinear Fourier multipliers, Forum Math., to appear. 243. Li, W., Xue, Q., Yabuta, K., Multilinear Calderon-Zygmund´ operators on weighted Hardy spaces, Studia Math. 199 (2010), no. 1, 1–16. 244. Li, X., Uniform bounds for the bilinear Hilbert transforms II, Rev. Mat. Iberoamericana 22 (2006), no. 3, 1069–1126. 245. Li, X., Muscalu, C., Generalizations of the Carleson-Hunt theorem. I. The classical singu- larity case, Amer. J. Math. 129 (2007), no. 4, 983–1018. 246. Lieb, E. H., Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. of Math. (2nd Ser.) 118 (1983), no. 2, 349–374. 247. Lieb,E.H.,Loss,M.,Analysis, Graduate Studies in Mathematics 14, American Mathematical Society, Providence, RI, 1997. 248. Lions, J.-L., Espaces d’ interpolation and domaines de puissances fractionnaires d’operaterus´ , J. Math. Soc. Japan 14 (1962), 233–241. 249. Lions, J.-L., Lizorkin, P. I., Nikol’skij, S. M., Integral representation and isomorphic prop- erties of some classes of functions, Ann. Scuola Norm. Sup. Pisa (3) 19 (1965), 127–178. 250. Liu, L., Yang, D., Boundedness of sublinear operators in Triebel–Lizorkin spaces via atoms, Studia Math. 190 (2009), no. 2, 163–183. Λ r 251. Lizorkin, P. I., Properties of functions of the spaces pΘ (Russian), Studies in the theory of differentiable functions of several variables and its applications, V, Trudy Mat. Inst. Steklov. 131 (1974), 158–181, 247. 252. Lu, S.-Z., Four Lectures on Real H p Spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. 253. McIntosh, A., On the comparability of A1/2 and A∗1/2, Proc. Amer. Math. Soc. 32 (1972), 430–434. 254. McIntosh, A., On representing closed accretive sesquilinear forms as (A1/2u,A∗1/2v), Non- linear partial differential equation and their applications, CollegedeFranceSeminar,Vol.III` (Paris, 1980/1981), pp. 252–267, Res. Notes in Math., 70, Pitman, Boston, Mass.–London, 1982. 255. McIntosh, A., Square roots of operators and applications to hyperbolic PDE, Miniconference on Operator Theory and Partial Differential Equations (Canberra, 1983), Proc. Centre Math. Anal. Austral. Nat. Univ., 5, Austral. Nat. Univ., Canberra, 1984. 256. McIntosh, A., Square roots of elliptic operators,J.Funct.Anal.61 (1985), no. 3, 307–327. 257. McIntosh, A., Meyer, Y., Algebres` d’ operateurs´ definis´ par des integrales´ singulieres` C. R. Acad. Sci. Paris Ser´ I Math. 301 (1985), no. 8, 395–397. 258. Maldonado D., Naibo, V., Weighted norm inequalities for paraproducts and bilinear pseu- dodifferential operators with mild regularity, J. Fourier Anal. Appl. 15 (2009), no. 2, 218– 261. 259. Mauceri, G., Picardello, M., Ricci, F., A Hardy space associated with twisted convolution, Adv. in Math. 39 (1981), no. 3, 270–288. 260. Maz’ya, V. G., Sobolev Spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. 261. Meda, S., Sjogren,¨ P., Vallarino, M., On the H1 − L1 boundedness of operators, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2921–2931. 262. Melnikov, M., Verdera, J., A geometric proof of the L2 boundedness of the Cauchy integral on Lipschitz graphs, Internat. Math. Res. Notices 7 (1995), 325–331. References 615

263. Meyer, Y., Regularit´ e´ des solutions des equations´ aux deriv´ ees´ partielles non lineaires´ (d’apres´ J.-M. Bony), Bourbaki Seminar, Vol. 1979/80, pp. 293–302, Lecture Notes in Math., 842, Springer, Berlin-New York, 1981. 264. Meyer, Y., Coifman, R. R., Wavelets. Calderon-Zygmund´ and multilinear operators, Cam- bridge Studies in Advanced Mathematics, 48, Cambridge University Press, Cambridge, 1997. 265. Meyer, Y., Taibleson, M., Weiss, G., Some functional analytic properties of the spaces Bq generated by blocks, Indiana Univ. Math. J. 34 (1985), no. 3, 493–515. 266. Meyers, N. G., Mean oscillation over cubes and Holder¨ continuity, Proc. Amer. Math. Soc. 15 (1964), 717–721. 267. Miyachi, A., Tomita, N., Minimal smoothness conditions for bilinear Fourier multipliers, Rev. Mat. Iberioamerican 29 (2013), no. 2, 495–530. 268. Miyachi, A., Tomita, N., Boundedness criterion for bilinear Fourier multiplier operators, Tohoku Math. J. (2) 66 (2014), no. 1, 55–76. 269. Moen, K., Weighted inequalities for multilinear fractional integral operators, Collect. Math. 60 (2009), no. 2, 213–238. 270. Mohanty, P., Shrivastava, S., A note on the bilinear Littlewood–Paley square function,Proc. Amer. Math. Soc. 138 (2010), no. 6, 2095–2098. 271. Mohanty, P., Shrivastava, S., Bilinear Littlewood–Paley for circle and transference, Publ. Mat. 55 (2011), no. 2, 501–519. 272. Mozzochi, C. J., On the pointwise convergence of Fourier Series, Lecture Notes in Mathe- matics, 199, Springer-Verlag, Berlin–New York 1971. 273. Muller,¨ D., A note on the Kakeya maximal function, Arch. Math. (Basel) 49 (1987), no. 1, 66–71. 274. Murai, T., Boundedness of singular integral integral operators of Calderon´ type, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 8, 364–367. 275. Murai, T., A real variable method for the Cauchy transform and analytic capacity, Lecture Notes in Mathematics, 1307, Springer-Verlag, Berlin, 1988. 276. Muscalu, C., Schlag, W., Classical and Multilinear Harmonic Analysis, Vol. I, Cambridge Studies in Advanced Mathematics, 137, Cambridge University Press, Cambridge, 2013. 277. Muscalu, C., Schlag, W., Classical and Multilinear Harmonic Analysis, Vol. II, Cambridge Studies in Advanced Mathematics, 138, Cambridge University Press, Cambridge, 2013. 278. Muscalu, C., Pipher, J., Tao, T., Thiele, C., Bi-parameter paraproducts, Acta Math. 193 (2004), no. 2, 269–296. 279. Muscalu, C., Pipher, J., Tao, T., Thiele, C., Multi-parameter paraproducts,Rev.Mat. Iberoam. 22 (2006), no. 3, 963–976. 280. Muscalu, C., Tao, T., Thiele, C., Multi-linear operators given by singular multipliers,J. Amer. Math. Soc. 15 (2002), no. 2, 469–496. 281. Muskhelishvili, N. I., Singular Integral Equations, Boundary Problems of Functions Theory and their Applications to Mathematical Physics [Revised translation from the Russian, edited by J. R. M. Radok], Wolters-Noordhoff Publishing, Groningen, 1972. 282. Nagel, A., Stein, E. M., Wainger, S., Differentiation in lacunary directions, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 3, 1060–1062. 283. Nazarov, F., Treil, S., Volberg, A., Cauchy integral and Calderon–Zygmund´ operators on nonhomogeneous spaces, Internat. Math. Res. Notices 15 (1997), 703–726. 284. Nazarov, F., Treil, S., Volberg, A., Weak type estimates and Cotlar inequalities for Calderon–´ Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices 9 (1998), 463–487. 285. Nirenberg, L., On elliptic partial differential equations, Ann. di Pisa 13 (1959), 116–162. 286. Oberlin, D., Fourier restriction for affine arclength measures in the plane, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3303–3305. 287. Orlicz, W., Uber¨ eine gewisse Klasse von Raumen¨ vom Typus B,Bull.Int.Acad.Pol.de Science, Ser A (1932), 207–220; reprinted in W. Orlicz “Collected Papers,” pp. 217–230, PWN, Warsaw, 1988. 288. Orlicz, W., Uber¨ Raume¨ (LM), Bull. Int. Acad. Pol. de Science, Ser A (1936), 93–107; reprinted in W. Orlicz “Collected Papers,” pp. 345–359, PWN, Warsaw, 1988. 616 References

289. Peetre, J., On convolution operators leaving Lp,λ spaces invariant, Ann. Mat. Pura Appl. (4) 72 (1966), 295–304. 290. Peetre, J., Sur les espaces de Besov,C.R.Acad.Sci.Paris264 (1967), 281–283. 291. Peetre, J., Remarques sur les espaces de Besov. Le cas 0 < p < 1, C. R. Acad. Sci. Paris 277 (1973), 947–950. 292. Peetre, J., Hp Spaces, Lecture Notes, University of Lund and Lund Institute of Technology, Lund, Sweden, 1974. 293. Peetre, J., On spaces of Triebel–Lizorkin type,Ark.Math.13 (1975), 123–130. 294. Peetre, J., New Thoughts on Besov Spaces, Duke University Mathematical Series, No. 1, Mathematics Department, Duke University, Durham, NC, 1976. 295. Perez,´ C., Endpoint estimates for commutators of singular integral operators, J. Funct. Anal. 128 (1995), no. 1, 163–185. 296. Perez,´ C., Sharp estimates for commutators of singular integrals via iterations of the Hardy– Littlewood maximal function, J. Fourier Anal. Appl. 3 (1997), no. 6, 743–756. 297. Perez,´ C., Wheeden, R., Uncertainty principle estimates for vector fields, J. Funct. Anal. 181 (2001), no. 1, 146–188. 298. Plemelj, J., Ein Erganzungssatz¨ zur Cauchyschen Integraldarstellung analytischer Functio- nen, Randwerte betreffend, Monatsh. Math. Phys. 19 (1908), no. 1, 205–210. 299. Pramanik, M., Terwilleger, E., AweakL2 estimate for a maximal dyadic sum operator on Rn, Illinois J. Math. 47 (2003), 775–813. 300. Prestini, E., A restriction theorem for space curves, Proc. Amer. Math. Soc. 70 (1978), no. 1, 8–10. 301. Privalov, J., Sur les fonctions conjuguees´ , Bull. Soc. Math. France 44 (1916), 100–103. 302. Rao, M. M., Ren, Z. D., Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, Inc., New York, 1991. 303. Riesz, F., Uber¨ die Randwerte einer analytischen Funktion,Math.Z.18 (1923), no. 1, 87–95. 304. Riesz, M., L’ integrale´ de Riemann-Liouville et le probleme` de Cauchy, Acta Math. 81 (1949), no. 1, 1–223. 305. Riviere, N., Sagher, Y., Interpolation between L∞ and H1, the real method,J.Funct.Anal.14 (1973), 401–409. 306. Rodr´ıguez-Lopez,´ S., A homomorphism theorem for bilinear multipliers, J. London Math. Soc., (2) 88 (2013), no. 2, 619–636. 307. Rubio de Francia, J.-L., Estimates for some square functions of Littlewood–Paley type, Publ. Sec. Mat. Univ. Autonoma´ Barcelona 27 (1983), no. 2, 81–108. 308. Rubio de Francia, J.-L., Ruiz, F. J., Torrea, J. L., Calderon–Zygmund´ theory for operator- valued kernels, Adv. in Math. 62 (1986), no. 1, 7–48. 309. Sarason, D., Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391–405. 310. Sawano, Y., Maximal operator for pseudodifferential operators with homogeneous symbols, Michigan Math. J. 59 (2010), no. 1, 119–142. 311. Schlag, W., A geometric inequality with applications to the Kakeya problem in three dimen- sions, Geom. Funct. Anal. 8 (1998), no. 3, 606–625. 312. Schur, I., Bemerkungen zur Theorie der beschrankten¨ Bilinearformen mit unendlich vielen Veranderlichen¨ , J. Reine Angew. Math. 140 (1911), 1–28. 313. Seeger, A., Endpoint inequalities for Bochner–Riesz multipliers in the plane, Pacific J. Math. 174 (1996), no. 2, 543–553. 314. Semmes, S., Square function estimates and the T(b) theorem, Proc. Amer. Math. Soc. 110 (1990), no. 3, 721–726. 315. Sharpley, R., Interpolation of n pairs and counterexamples employing indices, J. Approxi- mation Theory 13 (1975), 117–127. 316. Sharpley, R., Multilinear weak type interpolation of mn-tuples with applications, Studia Math. 60 (1977), no. 2, 179–194. 317. Sjolin,¨ P., On the convergence almost everywhere of certain singular integrals and multiple Fourier series,ArkMath.9 (1971), 65–90. References 617

318. Sjolin,¨ P., Soria, F., Some remarks on restriction of the Fourier transform for general mea- sures,Publ.Mat.43 (1999), no. 2, 655–664. 319. Sobolev, S. L., On a theorem in [in Russian], Mat. Sob. 46 (1938), 471–497. L p,Φ 320. Spanne, S., Sur l’ interpolation entre les espaces k , Ann. Scuola Norm. Sup. Pisa (3) 20 (1966), 625–648. 321. Stefanov, A., Characterizations of H1 and applications to singular integrals, Illinois J. Math. 44 (2000), 574–592. 322. Stein, E. M., Interpolation of linear operators,Trans.Amer.Math.Soc.83 (1956), 482–492. 323. Stein, E. M., On limits of of operators, Ann. of Math. (Ser. 2) 74 (1961), no. 1, 140–170. 324. Stein, E. M., Singular integrals, harmonic functions, and differentiability properties of func- tions of several variables, Singular Integrals (Proc. Sympos. Pure Math., Chicago, IL, 1966), pp. 316–335, Amer. Math. Soc., Providence, RI, 1967. 325. Stein, E. M., Oscillatory integrals in Fourier analysis, Beijing Lectures in Harmonic Analysis (Beijing, 1984), pp. 307–355, Ann. of Math. Stud. 112, Princeton Univ. Press, Princeton, NJ, 1986. 326. Stein, E. M., Harmonic Analysis, Real Variable Methods, Orthogonality, and Oscillatory Integrals, With the assistance of Timothy S. Murphy, Princeton Mathematical Series, 43, Monographs in Harmonic Analysis, III, Princeton University Press, Princeton, NJ, 1993. 327. Stein, E. M., Weiss, G., On the theory of harmonic functions of several variables, I: The theory of H p spaces, Acta Math. 103 (1960), no. 1–2, 25–62. 328. Strichartz, R., A multilinear version of the Marcinkiewicz interpolation theorem, Proc. Amer. Math. Soc. 21 (1969), 441–444. 329. Strichartz, R., Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705–714. 330. Stromberg,¨ J.-O., Maximal functions for rectangles with given directions, Doctoral disserta- tion, Mittag-Leffler Institute, Djursholm, Sweden, 1976. 331. Stromberg,¨ J.-O., Maximal functions associated to rectangles with uniformly distributed di- rections, Ann. of Math. (Ser. 2) 107 (1978), no. 2, 399–402. 332. Stromberg,¨ J.-O., Bounded mean oscillation with Orlicz norms and of Hardy spaces, Indiana Univ. Math. J. 28 (1979), no. 3, 511–544. 333. Stromberg,¨ J.-O., Torchinsky, A., Weighted Hardy spaces, Lecture Notes in Mathematics, 1381, Springer-Verlag, Berlin, 1989. 334. Taibleson, M. H., The preservation of Lipschitz spaces under singular integral operators, Studia Math. 24 (1964), 107–111. 335. Taibleson, M. H., On the theory of Lipschitz spaces of distributions on Euclidean n-space, I, J. Math. Mech. 13 (1964), 407–479. 336. Taibleson, M. H., On the theory of Lipschitz spaces of distributions on Euclidean n-space, II, J. Math. Mech. 14 (1965), 821–839. 337. Taibleson, M. H., On the theory of Lipschitz spaces of distributions on Euclidean n-space, III, J. Math. Mech. 15 (1966), 973–981. 338. Tao, T., Weak-type endpoint bounds for Riesz means, Proc. Amer. Math. Soc. 124 (1996), no. 9, 2797–2805. 339. Tao, T., The weak-type endpoint Bochner–Riesz conjecture and related topics, Indiana Univ. Math. J. 47 (1998), no. 3, 1097–1124. 340. Tao, T., The Bochner–Riesz conjecture implies the restriction conjecture, Duke Math. J. 96 (1999), no. 2, 363–375. 341. Tao, T., Endpoint bilinear restriction theorems for the cone, and some sharp null form estimates,Math.Z.238 (2001), no. 2, 215–268. 342. Tao, T., On the Maximal Bochner–Riesz conjecture in the plane, for p < 2, Trans. Amer. Math. Soc. 354 (2002), no. 5, 1947–1959. 343. Tao, T., Vargas, A., Vega, L., A bilinear approach to the restriction and Kakeya conjectures, J. Amer. Math. Soc. 11 (1998), no. 4, 967–1000. 618 References

344. Taylor, M., Pseudodifferential Operators and Nonlinear PDE, Progress in mathematics, 100, Birkhauser¨ Boston, Inc., Boston, MA, 1991. 345. Tchamitchian, P., Ondelettes et integrale´ de Cauchy sur les courbes lipschitziennes, Ann. of Math. (Ser. 2) 129 (1989), no. 3, 641–649. 346. Thiele, C., A uniform estimate, Ann. of Math. (Ser. 2) 156 (2002), no. 2, 519–563. 347. Thiele, C., Multilinear singular integrals, Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, Spain, 2000), Publ. Mat., 2002, Vol. Extra, pp. 229–274. 348. Thiele, C., Wave Packet Analysis, CBMS Regional Conference Series in Mathematics, 105, American Mathematical Society, Providence, RI, 2006. 349. Tomas, P. A., A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975), 477–478. 350. Tomas, P. A., A note on restriction, Indiana Univ. Math. J. 29 (1980), no. 2, 287–292. 351. Tomita, N., AHormander¨ type multiplier theorem for multilinear operators,J.Funct.Anal. 259 (2010), no. 8, 2028–2044. 352. Torres, R. H., Boundedness results for operators with singular kernels on distribution spaces, Mem. Amer. Math. Soc. 90 (1991), no. 442. 353. Triebel, H., Spaces of distributions of Besov type on Euclidean n-space. Duality, interpola- tion,Ark.Math.11 (1973), 13–64. 354. Triebel, H., Theory of function spaces, Monographs in Mathematics, 78, Birkhauser¨ Verlag, Basel, 1983. 355. Uchiyama, A., A constructive proof of the Fefferman-Stein decomposition of BMO(Rn), Acta Math. 148 (1982), no. 1, 215–241. 356. Uchiyama, A., Characterization of H p(Rn) in terms of generalized Littlewood–Paley g- function, Studia Math. 81 (1985), no. 2, 135–158. 357. Uchiyama, A., On the characterization of H p(Rn) in terms of Fourier multipliers,Proc. Amer. Math. Soc. 109 (1990), no. 1, 117–123. 358. Uchiyama, A., Hardy Spaces on the Euclidean Space, Springer Monographs in Mathematics, Springer-Verlag, Tokyo, 2001. 359. Vargas, A., Bochner–Riesz multipliers, Maximal operators, Restriction theorems in Rn,Notes from lectures given at MSRI, August 1997. 360. Varopoulos, N., BMO functions and the ∂-equation, Pacific J. Math. 71 (1977), no. 1, 221–273. 361. Verbitsky, I. E., A dimension-free Carleson measure inequality, Complex Analysis, Opera- tors, and Related Topics, pp. 393–398, Oper. Theory: Adv. Appl. 113, Birkhauser,¨ Basel, 2000. 362. Verdera, J., L2 boundedness of the Cauchy Integral and Menger curvature, Harmonic Anal- ysis and Boundary Value Problems (Fayetteville, AR, 2000), 139–158, Contemp. Math. 277 Amer. Math. Soc., Providence, RI, 2001. p n+1 363. Walsh, T., The dual of H (R+ ) for p < 1, Canad. J. Math. 25 (1973), 567–577. 364. Wang, S., A note on characterization of Hardy space H1, (English summary) Sci. China Ser. A 48 (2005), no. 4, 448–455. 365. Weiss, G., An interpolation theorem for sublinear operators on Hp spaces, Proc. Amer. Math. Soc. 8 (1957), 92–99. 366. Welland, G. V., Weighted norm inequalities for fractional integrals, Proc. Amer. Math. Soc. 51 (1975), 143–148. 367. Weyl, H., Singulare¨ Integralgleichungen mit besonderer Berucksichtigung¨ des Fourierschen Integraltheorems, Inaugural-Dissertation, Gottingen,¨ 1908. 368. Weyl, H., Bemerkungen zum Begriff der Differentialquotienten gebrochener Ordnung,Viertel Natur. Gesellschaft Zurich¨ 62 (1917), 296–302. 369. Whitney, H., Analytic extensions of differentiable functions defined in closed sets,Trans. Amer. Math. Soc. 36 (1934), no. 1, 63–89. 370. Wilson, J. M., On the atomic decomposition for Hardy spaces, Pacific J. Math. 116 (1985), no. 1, 201–207. References 619

371. Wolff, T. H., An improved bound for Kakeya type maximal functions,Rev.Mat.Iberoameri- cana 11 (1995), no. 3, 651–674. 372. Wolff, T. H., Recent work connected with the Kakeya problem, Prospects in Mathematics (Princeton, NJ, 1996), pp. 129–162, Amer. Math. Soc., Providence, RI, 1999. 373. Wolff, T., A sharp bilinear cone restriction estimate, Ann. of Math. (2nd Ser.) 153 (2001), no. 3, 661–698. 374. Yang, D, Zhou, Y., A boundedness criterion via atoms for linear operators in Hardy spaces, Constr. Approx. 29 (2009), no. 2, 207–218. 375. Zafran, M., A multilinear interpolation theorem, Studia Math. 62 (1978), no. 2, 107–124. 376. Zygmund, A., On a theorem of Marcinkiewicz concerning interpolation of operators,J.Math. Pures Appl. (9) 35 (1956), 223–248. 377. Zygmund, A., Trigonometric Series, Vol. II, Second edition, Cambridge University Press, New York, 1959. 378. Zygmund, A., On Fourier coefficients and transforms of functions of two variables, Studia Math. 50 (1974), 198–201. Index

jth transpose symbol of a symbol, 534 Bochner–Riesz means, 339 m-linear Riesz transform, 540 boundedness in higher dimensions, 381 m-linear convolution operator, 480, 526 Bochner–Riesz operator m-linear multiplier, 480 boundedness result, 342 maximal, 356, 392 accretive function, 297 unboundedness result, 340 accretivity condition on matrices, 303 bounded distribution, 56 adjoint kernel, 211 bounded mean oscillation, 154 adjoint of an operator, 210 admissible growth, 513 Calderon´ commutator, 215, 254 almost everywhere convergence Calderon´ commutator kernel, 215 of Fourier integrals Calderon´ reproducing formula, 7 of L2 functions, 415 Calderon–Vaillancourt´ theorem, 279 of Lp functions, 450 Calderon–Zygmund´ kernel almost orthogonality lemma, 269 m-linear, 538 analytic family Calderon–Zygmund´ decomposition, 225, 226, of multilinear operators, 513 462 antisymmetric kernel, 213, 540 with bounded overlap, 235 arms of a sprouted figure, 329 Calderon–Zygmund´ operator atom CZO(δ,A,B),215 for H p(Rn),120 boundedness of, 226 smooth, 109 definition on L∞, 222 atomic decomposition Calderon–Zygmund´ singular integral operator, nonsmooth, 114 221 of Hardy space, 120 Calderon–Zygmund´ theorem smooth, 109 multilinear, 541 auxiliary maximal function, 79 Carleson function, 174 average of a function, 154 Carleson measure, 174 Carleson measures and BMO,178 bad function, 83, 149 Carleson operator, 415 basic estimate over a single tree, 430 maximal, 473 Besov–Lipschitz space one-sided, 417 homogeneous, 92 Carleson’s theorem, 177, 415 inhomogeneous, 92 Carleson–Sjolin¨ theorem, 342 Bessel potential operator Jz,13 Cauchy integral along a Lipschitz , 284 bilinear fractional integral, 482 Cauchy–Riemann equations bilinear Hilbert transform, 493 generalized, 143

L. Grafakos, Modern Fourier Analysis, Graduate Texts in Mathematics 250, 621 DOI 10.1007/978-1-4939-1230-8, © Springer Science+Business Media New York 2014 622 Index

Coifman-Meyer multiplier theorem, 561 Gagliardo–Nirenberg inequality, 33 commutator of a singular integral, 196 generalized Cauchy–Riemann equations, 143 commutator of operators, 305 good function, 83, 149 complex inner product, 210 good lambda inequality conical tent, 182 for the Carleson operator, 477 continuous paraproduct, 268 for the sharp maximal function, 186 continuous wave packet, 449 gradient, 1 continuously differentiable function grand maximal function, 59, 79 of order N,1 Cotlar’s inequality, 228 H1-BMO duality, 169 Cotlar–Knapp–Stein lemma, 269 Hormander-Mihlin¨ multiplier theorem counting function, 447 multilinear, 564 Hardy space, 56 δ-separated tubes, 371 vector-valued, 80 derivative Hardy space characterizations, 59, 80 of a function (partial), 1 Hardy–Littlewood–Sobolev theorem, 11 difference operator, 35 hemispherical tent, 182 dilation operator, 417 Holder’s¨ inequality directional Carleson operators, 472 for Orlicz spaces, 205 discrete fractional integral, 20 homogeneous Besov–Lipschitz space, 92 discrete maximal operator, 19 homogeneous Lipschitz space, 36 discretization homogeneous singular integral of the Carleson operator, 421 multilinear, 554 distributional inequality, 182 homogeneous Sobolev space, 29 homogeneous Triebel–Lizorkin space, 92 for the sharp maximal function, 186 Hormander’s¨ condition, 234 distributional kernel, 213 Hunt’s theorem, 450 distributions modulo polynomials, 2 divergence form operator, 303 infinitely differentiable function, 1 doubling measure, 194 inhomogeneous Besov–Lipschitz space, 92 dual inhomogeneous Triebel–Lizorkin space, 92 of multilinear convolution operator, 534 inner product duality H1-BMO,169 complex, 210 dyadic BMO,195 real, 209 dyadic maximal function, 185 integral representation of CZO(δ,A,B),216 dyadic tile, 417 interpolation between H1 and Lp,148 ellipticity condition on matrices, 303 using BMO,190 energy lemma, 430 energy of a function John–Nirenberg theorem, 160 with respect to a set of tiles, 429 exponential integrability, 33 Kakeya maximal function, 357 exponentially integrable, 164 Kakeya maximal function theorem, 359 extension operator, 385 Kakeya maximal operator, 349, 367 extension theorem without dilations, 349, 366 for a hypersurface, 376 Kato’s square root operator, 303 kernel Fefferman’s theorem, 169 of a multilinear operator, 486 finitely simple functions, 493 fractional integral Laplacian, 9 discrete, 20 powers of, 9 fractional integration theorem, 11 linearization fractional maximal function, 18 of the Carleson operator, 425 frequency projection of a tile, 417 of the Kakeya maximal operator, 369 Index 623

Lipschitz function, 34 multilinear symbol, 527 Lipschitz space, 35 multiplier problem for the ball, 337 homogeneous, 36 inhomogeneous, 35 nonsmooth atomic decomposition, 114 Littlewood–Paley characterization nontangential maximal function, 59, 79, 173 of Hardy space, 101 norm of homogeneous Lipschitz spaces, 39 of a multilinear operator, 485 of homogeneous Sobolev space, 29 norm of a Schwartz function, 76 of inhomogeneous Lipschitz spaces, 45 normalized bump, 236 of inhomogeneous Sobolev space, 25 Littlewood–Paley operator, 5, 258 Littlewood–Paley theorem operator associated with a standard kernel, 215 for intervals with equal length, 350 Orlicz maximal operator, 198 Orlicz norm, 197 Marcinkiewicz function, 86 , 197 mass lemma, 430 oscillation of a function, 154 mass of a set of tiles, 429 maximal Bochner–Riesz operator, 356, 392 para-accretive function, 302 maximal Carleson operator, 473 paraproduct, 257, 556 maximal directional Carleson operator, 476 paraproduct operator, 258 maximal function paraproducts associated with a set of directions, 357 boundedness of, 260 ∗∗ auxiliary M ,59 partial derivative, 1 b∗∗ auxiliary Mb ,79 partial order of tiles, 428 directional along a vector, 373 partial sum discrete, 19 of Littlewood–Paley operator, 258 dyadic, 185 Peetre maximal function, 99 fractional, 18 Peetre’s theorem, 99 grand, 59, 79 Peetre–Spanne–Stein theorem, 233 Kakeya, 357, 367 , 56 Kakeya without dilations, 366 Poisson maximal function, 56, 80 nontangential, 59, 79, 173 potential Peetre, 99 Bessel Jz,13 Poisson, 56, 80 Riesz Is,10 sharp, 184 powers of Laplacian, 9 with respect to a measure, 194 pseudo-Haar basis, 302 smooth, 59, 79 pseudodifferential operator, 279 strong, 357 multilinear, 556 with respect to cubes, 357 pyramidal tent, 182 maximal operator associated with a cube, 198 quadratic T(1) type theorem, 293 of Orlicz type, 198 T(b) maximal singular integrals quadratic theorem, 297 boundedness of, 228 maximal singular operator, 218 real inner product, 209 mean of a function, 154 resolution of an operator, 289 mean oscillation of a function, 154 resolution of the Cauchy integral, 292 modulation operator, 417 restricted weak type, 482 multi-index, 1 restriction condition, 375 multilinear complex interpolation, 516 restriction of the Fourier transform multilinear convolution operator, 486 on a hypersurface, 375 multilinear interpolation restriction theorem for analytic families of operators, 514 in R2, 385 multilinear multiplier, 527 Riesz potential operator Is,10 624 Index

Schur Lemma, 589 T(1) reduced theorem, 273 Schwartz kernel, 213 T(1) theorem, 237, 275 Schwartz kernel theorem, 212 T(b) theorem, 302 selection of trees, 428 tempered distributions modulo polynomials, 2 self-adjoint operator, 210 tensor product, 480 self-transpose operator, 210 tent semitile, 417, 428 conical, 182 sharp maximal function, 184 cylindrical, 173 controls singular integrals, 191 hemispherical, 182 with respect to a measure, 194 over a set, 174 singular integral characterization of H1,141 pyramidal, 182 singular integrals on function spaces, 127 tile, 417 singular integrals on Hardy spaces, 81 of a given scale, 418 SK(δ,A),211 time projection of a tile, 417 smooth atom, 109 total order of differentiation, 1 smooth atomic decomposition, 109 translation operator, 417 smooth function, 1 transpose smooth function with compact support, 1 of a multilinear operator, 486 smooth maximal function, 79 transpose kernel, 211 smoothing operators, 11 transpose of an operator, 210 smoothly truncated singular integral, 132 tree of tiles, 428 Sobolev embedding theorem, 24 1-tree of tiles, 428 Sobolev space, 20 2-tree of tiles, 428 homogeneous, 29 Triebel–Lizorkin space inhomogeneous, 21 homogeneous, 92 space inhomogeneous, 92 BMO,154 truncated kernel, 217 BMOd ,195 α,q tube, 369 Bp ,92 α,q Fp ,92 H p(Rn),56 vector-valued Hardy space, 80 n vector-valued inequalities Λγ (R ),35 n for half-plane multipliers, 335 D0(R ),221 S /P,2 for the Carleson operator, 478 .α,q Bp ,92 .α,q wave packet, 449 F.p ,92 Λγ ,36 WBP weak boundedness property, 237 C N ,1 weak type Orlicz estimate, 206 C ∞,1 weighted estimates C ∞ for the Carleson operator, 472 0 ,1 sprouting of a triangle, 329 Whitney decomposition, 175 square root operator, 303, 322 standard kernel, 211 Young’s function, 197 0 symbol of class S1,0, 282 Young’s inequality m symbol of class Sρ,δ ,279 for Orlicz spaces, 205