The Schur Lemma

Total Page:16

File Type:pdf, Size:1020Kb

The Schur Lemma Appendix A The Schur Lemma Schur’s lemma provides sufficient conditions for linear operators to be bounded on Lp. Moreover, for positive operators it provides necessary and sufficient such condi- tions. We discuss these situations. A.1 The Classical Schur Lemma We begin with an easy situation. Suppose that K(x,y) is a locally integrable function on a product of two σ-finite measure spaces (X, μ) × (Y,ν), and let T be a linear operator given by T( f )(x)= K(x,y) f (y)dν(y) Y when f is bounded and compactly supported. It is a simple consequence of Fubini’s theorem that for almost all x ∈ X the integral defining T converges absolutely. The following lemma provides a sufficient criterion for the Lp boundedness of T. Lemma. Suppose that a locally integrable function K(x,y) satisfies sup |K(x,y)|dν(y)=A < ∞, x∈X Y sup |K(x,y)|dμ(x)=B < ∞. y∈Y X Then the operator T extends to a bounded operator from Lp(Y) to Lp(X) with norm − 1 1 A1 p B p for 1 ≤ p ≤ ∞. Proof. The second condition gives that T maps L1 to L1 with bound B, while the first condition gives that T maps L∞ to L∞ with bound A. It follows by the Riesz– − 1 1 Thorin interpolation theorem that T maps Lp to Lp with bound A1 p B p . This lemma can be improved significantly when the operators are assumed to be positive. A.2 Schur’s Lemma for Positive Operators We have the following necessary and sufficient condition for the Lp boundedness of positive operators. L. Grafakos, Modern Fourier Analysis, Graduate Texts in Mathematics 250, 589 DOI 10.1007/978-1-4939-1230-8, © Springer Science+Business Media New York 2014 590 A The Schur Lemma Lemma. Let (X, μ) and (Y,ν) be two σ-finite measure spaces, where μ and ν are positive measures, and suppose that K(x,y) is a nonnegative measurable function on X ×Y.Let1 < p < ∞ and 0 < A < ∞. Let T be the linear operator T( f )(x)= K(x,y) f (y)dν(y) Y and T t its transpose operator T t (g)(y)= K(x,y)g(x)dμ(x). X To avoid trivialities, we assume that there is a compactly supported, bounded, and positive ν-a.e. function h1 on Y such that T(h1) > 0 μ-a.e. Then the following are equivalent: (i) T maps Lp(Y) to Lp(X) with norm at most A. (ii) For all B > A there is a measurable function h on Y that satisfies 0 < h < ∞ ν-a.e., 0 < T(h) < ∞ μ-a.e., and such that p p T t T(h) p ≤ Bp h p . (iii) For all B > A there are measurable functions u on X and v on Y such that 0 < u < ∞ μ-a.e., 0 < v < ∞ ν-a.e., and such that T(up ) ≤ Bvp , T t (vp) ≤ Bup. Proof. First we assume (ii) and we prove (iii). Define u,v by the equations vp = T(h) and up = Bh and observe that (iii) holds for this choice of u and v. Moreover, observe that 0 < u,v < ∞ a.e. with respect to the measures μ and ν, respectively. Next we assume (iii) and we prove (i). For g in Lp (X) we have v(x) u(y) T( f )(x)g(x)dμ(x)= K(x,y) f (y)g(x) dν(y)dμ(x). X X Y u(y) v(x) We now apply Holder’s¨ inequality with exponents p and p to the functions v(x) u(y) f (y) and g(x) u(y) v(x) with respect to the measure K(x,y)dν(y)dμ(x) on X ×Y. Since p 1 v(x) p 1 ( )p ( , ) μ( ) ν( ) ≤ p f y p K x y d x d y B f Lp(Y) Y X u(y) A.2 Schur’s Lemma for Positive Operators 591 and 1 p 1 u(y) p ( )p ( , ) ν( ) μ( ) ≤ p , g x K x y d y d x B g Lp (X) X Y v(x)p we conclude that 1 1 + ( )( ) ( ) μ( ) ≤ p p . T f x g x d x B f Lp(Y) g Lp (X) X Taking the supremum over all g with Lp (X) norm 1, we obtain ( ) ≤ . T f Lp(X) B f Lp(Y) Since B was any number greater than A, we conclude that ≤ , T Lp(Y)→Lp(X) A which proves (i). We finally assume (i) and we prove (ii). Without loss of generality, take here A = 1 and B > 1. Define a map S : Lp(Y) → Lp(Y) by setting p p S( f )(y)= T t T( f ) p p (y). We observe two things. First, f1 ≤ f2 implies S( f1) ≤ S( f2), which is an easy con- sequence of the fact that the same monotonicity is valid for T. Next, we observe that f Lp ≤ 1 implies that S( f )Lp ≤ 1 as a consequence of the boundedness of T on Lp (with norm at most 1). Construct a sequence hn, n = 1,2,..., by induction as follows. Pick h1 > 0on Y as in the hypothesis of the theorem such that T(h1) > 0 μ-a.e. and such that −p p h1Lp ≤ B (B − 1). (The last condition can be obtained by multiplying h1 by a small constant.) Assuming that hn has been defined, we define 1 h + = h + S(h ). n 1 1 Bp n We check easily by induction that we have the monotonicity property hn ≤ hn+1 and the fact that hnLp ≤ 1. We now define h(x)=suph (x)= lim h (x). n →∞ n n n Fatou’s lemma gives that hLp ≤ 1, from which it follows that h < ∞ ν-a.e. Since h ≥ h1 > 0 ν-a.e., we also obtain that h > 0 ν-a.e. 592 A The Schur Lemma Next we use the Lebesgue dominated convergence theorem to obtain that hn → h p p p in L (Y). Since T is bounded on L ,itfollowsthatT(hn) → T(h) in L (X).It p p p t p follows that T(hn) p → T(h) p in L (X). Our hypothesis gives that T maps L (X) p p p t t p to L (Y) with norm at most 1. It follows T T(hn) p → T T(h) p in L (Y). p ( ) → ( ) p( ) Raising to the power p , we obtain that S hn S h in L Y . ( ) → ( ) It follows that for some subsequence nk of the integers we have S hnk S h a.e. in Y. Since the sequence S(hn) is increasing, we conclude that the entire sequence S(hn) converges almost everywhere to S(h). We use this information in conjunction 1 with hn+ = h + S(hn). Indeed, letting n → ∞ in this identity, we obtain 1 1 Bp 1 h = h + S(h). 1 Bp p Since h1 > 0 ν-a.e. it follows that S(h) ≤ B h ν-a.e., which proves the required estimate in (ii). p It remains to prove that 0 < T(h) < ∞ μ-a.e. Since hLp ≤ 1 and T is L bounded, it follows that T(h)Lp ≤ 1, which implies that T(h) < ∞ μ-a.e. We also have T(h) ≥ T(h1) > 0 μ-a.e. A.3 An Example Consider the Hilbert operator ∞ f (y) T( f )(x)= dy, 0 x + y where x ∈ (0,∞). The operator T takes measurable functions on (0,∞) to measurable functions on (0,∞). We claim that T maps Lp(0,∞) to itself for 1 < p < ∞; precisely, we have the estimate ∞ π ( )( ) ( ) ≤ . T f x g x dx f Lp(0,∞) g Lp (0,∞) 0 sin(π/p) To see this we use Schur’s lemma. We take − 1 u(x)=v(x)=x pp . We have that 1 1 ∞ − ∞ − 1 y p − 1 t p 1 −1 1 − T(up )(x)= dy = x p dt = v(x)p (1 − s) p s p 1 ds, 0 x + y 0 1 +t 0 A.3 An Example 593 where last identity follows from the change of variables s =(1 +t)−1. Now an easy calculation yields 1 1 −1 1 − π ( − ) p p 1 = 1 , 1 = , 1 s s ds B p p 0 sin(π/p) π p→ p ≤ so the lemma in Appendix I.2 gives that T L L sin(π/p) . The sharpness of this constant follows by considering the sequence of functions − 1+ε ( )= p χ ( ) hε t t (1,∞) t for ε > 0. To verify the last assertion notice that for x > 1 and 0 < ε < p−1wehave − 1+ε − 1+ε ∞ t p 1 t p T(hε )(x)= dt − dt 0 x +t 0 x +t +ε +ε ∞ − 1 1 − 1 − 1+ε t p − 1+ε x t p = x p dt − x p dt 0 1 +t 0 1 +t +ε ∞ − 1 1 − 1+ε t p − 1+ε x x − 1+ε ≥ x p dt − x p t p dt 0 1 +t x + 1 0 +ε ∞ − 1 − 1+ε t p 1 p = x p dt − . 0 1 +t x + 1 p − 1 − ε Notice that the expression directly after the ≥ sign is nonnegative, and so is the last expression. It follows that − 1+ε ∞ p t p 1 ( ε ) ≥ ε p − . T h Lp(1,∞) dt h L (1,∞) (·)+1 Lp(1,∞) 0 1 +t p − 1 − ε = = ε−1/p Dividing both sides of this inequality by hε Lp(0,∞) hε Lp(1,∞) , and letting ε → 0 we obtain ∞ − 1 ( ε ) p p π T h L (0,∞) t 1 1 liminf ≥ dt = B , = .
Recommended publications
  • On the Von Neumann Rule in Quantization
    On the von Neumann rule in quantization Olaf M¨uller∗ June 25, 2019 Abstract We show that any linear quantization map into the space of self-adjoint operators in a Hilbert space violates the von Neumann rule on post- composition with real functions. 1 Introduction and main results Physics today has the ambition to be entirely mathematically derivable from two fundamental theories: gravity and the standard model of parti- cle physics. Whereas the former is a classical field theory with only mildly paradoxical features such as black holes, the latter is not so much a closed theory as rather a toolbox full of complex algorithms and ill-defined objects. Moreover, as it uses a form of canonical quantization, the non-mathematical, interpretational subtleties of quantum mechanics, such as the measurement problem, can also be found in the standard model. Despite of these prob- lems, the standard model is very successful if used by experts inasfar as its predictions are in accordance with a large class of experiments to an un- precedented precision. Its canonical quantization uses a quantization map 0 arXiv:1903.10494v3 [math-ph] 22 Jun 2019 Q : G LSA(H) from some nonempty subset G C (C) of classical → ⊂ observables, where C is the classical phase space, usually diffeomorphic to the space of solutions, and LSA(H) is the space of linear self-adjoint (s.-a.) maps of a Hilbert space to itself.1 There is a widely accepted list of desirable properties for a quantization map going back to Weyl, von Neumann and Dirac ([24], [18], [6]): ∗Humboldt-Universit¨at, Institut f¨ur Mathematik, Unter den Linden 6, 10099 Berlin 1More exactly, the image of Q consists of essentially s.-a.
    [Show full text]
  • Mean Growth of the Derivative of Analytic Functions, Bounded Mean Oscillation and Normal Functions
    MEAN GROWTH OF THE DERIVATIVE OF ANALYTIC FUNCTIONS, BOUNDED MEAN OSCILLATION AND NORMAL FUNCTIONS Oscar Blasco, Daniel Girela and M. Auxiliadora Marquez´ Abstract. For a given positive function φ defined in [0, 1) and 1 ≤ p<∞, we consider L the space (p, φ) which consists of all functions f analytic in the unit disc ∆ for which 1/p 1 π iθ p → 2π −π f (re ) dθ =O(φ(r)), as r 1.A result of Bourdon, Shapiro and Sledd 1 −1 implies that such a space is contained in BMOA for φ(r)=(1− r) p .Among other results, in this paper we prove that this result is sharp in a very strong sense, showing that, 1 −1 for a large class of weight functions φ, the function φ(r)=(1− r) p is the best one to 1− 1 get L(p, φ) ⊂ BMOA.Actually, if φ(r)(1 − r) p ↑∞,asr ↑ 1, we construct a function f ∈L(p, φ) which is not a normal function.These results improve other obtained recently by the second author.We also characterize the functions φ, among a certain class of weight functions, to be able to embedd L(p, φ)intoHq for q>por into the space B of Bloch functions. 1. Introduction and statement of results. Let ∆ denote the unit disc {z ∈ C : |z| < 1} and T the unit circle {ξ ∈ C : |ξ| =1}.If 0 <r<1 and g is a function which is analytic in ∆, we set π 1/p 1 iθ p Mp(r, g)= g(re ) dθ , 0 <p<∞, 2π −π M∞(r, g) = max |g(z)|.
    [Show full text]
  • An Introduction to Pseudo-Differential Operators
    An introduction to pseudo-differential operators Jean-Marc Bouclet1 Universit´ede Toulouse 3 Institut de Math´ematiquesde Toulouse [email protected] 2 Contents 1 Background on analysis on manifolds 7 2 The Weyl law: statement of the problem 13 3 Pseudodifferential calculus 19 3.1 The Fourier transform . 19 3.2 Definition of pseudo-differential operators . 21 3.3 Symbolic calculus . 24 3.4 Proofs . 27 4 Some tools of spectral theory 41 4.1 Hilbert-Schmidt operators . 41 4.2 Trace class operators . 44 4.3 Functional calculus via the Helffer-Sj¨ostrandformula . 50 5 L2 bounds for pseudo-differential operators 55 5.1 L2 estimates . 55 5.2 Hilbert-Schmidt estimates . 60 5.3 Trace class estimates . 61 6 Elliptic parametrix and applications 65 n 6.1 Parametrix on R ................................ 65 6.2 Localization of the parametrix . 71 7 Proof of the Weyl law 75 7.1 The resolvent of the Laplacian on a compact manifold . 75 7.2 Diagonalization of ∆g .............................. 78 7.3 Proof of the Weyl law . 81 A Proof of the Peetre Theorem 85 3 4 CONTENTS Introduction The spirit of these notes is to use the famous Weyl law (on the asymptotic distribution of eigenvalues of the Laplace operator on a compact manifold) as a case study to introduce and illustrate one of the many applications of the pseudo-differential calculus. The material presented here corresponds to a 24 hours course taught in Toulouse in 2012 and 2013. We introduce all tools required to give a complete proof of the Weyl law, mainly the semiclassical pseudo-differential calculus, and then of course prove it! The price to pay is that we avoid presenting many classical concepts or results which are not necessary for our purpose (such as Borel summations, principal symbols, invariance by diffeomorphism or the G˚ardinginequality).
    [Show full text]
  • Properties of Field Functionals and Characterization of Local Functionals
    This is a repository copy of Properties of field functionals and characterization of local functionals. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/126454/ Version: Accepted Version Article: Brouder, Christian, Dang, Nguyen Viet, Laurent-Gengoux, Camille et al. (1 more author) (2018) Properties of field functionals and characterization of local functionals. Journal of Mathematical Physics. ISSN 0022-2488 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Properties of field functionals and characterization of local functionals Christian Brouder,1, a) Nguyen Viet Dang,2 Camille Laurent-Gengoux,3 and Kasia Rejzner4 1)Sorbonne Universit´es, UPMC Univ. Paris 06, UMR CNRS 7590, Institut de Min´eralogie, de Physique des Mat´eriaux et de Cosmochimie, Mus´eum National d’Histoire Naturelle, IRD UMR 206, 4 place Jussieu, F-75005 Paris, France. 2)Institut Camille Jordan (UMR CNRS 5208) Universit´eClaude Bernard Lyon 1, Bˆat.
    [Show full text]
  • Covariant Schrödinger Semigroups on Riemannian Manifolds1
    Covariant Schr¨odinger semigroups on Riemannian manifolds1 Batu G¨uneysu Humboldt-Universit¨at zu Berlin arXiv:1801.01335v2 [math.DG] 23 Apr 2018 1This is a shortened version (the Chapters VII - XIII have been removed). The full version has appeared in December 2017 as a monograph in the Birkh¨auser series Operator Theory: Advances and Applications, and only the latter version should be cited. The full version can be obtained on: http://www.springer.com/de/book/9783319689029 For my daughter Elena ♥ Contents Introduction 5 Chapter I. Sobolev spaces on vector bundles 16 1. Differential operators with smooth coefficients and weak derivatives on vector bundles 16 2. Some remarks on covariant derivatives 25 3. Generalized Sobolev spaces and Meyers-Serrin theorems 28 Chapter II. Smooth heat kernels on vector bundles 35 Chapter III. Basic differential operators in Riemannian manifolds 40 1. Preleminaries from Riemannian geometry 40 2. Riemannian Sobolev spaces and Meyers-Serrin theorems 49 3. The Friedrichs realization of † /2 59 ∇ ∇ Chapter IV. Some specific results for the minimal heat kernel 62 Chapter V. Wiener measure and Brownian motion on Riemannian manifolds 84 1. Introduction 84 2. Path spaces as measurable spaces 85 3. The Wiener measure on Riemannian manifolds 89 Chapter VI. Contractive Dynkin and Kato potentials 98 1. Generally valid results 98 2. Specific results under some control on the geometry 112 Chapter VII. Foundations of covariant Schr¨odinger semigroups 115 1. Notation and preleminaries 115 2. Scalar Schr¨odinger semigroups and the Feynman-Kac (FK) formula 118 3. Kato-Simon inequality 118 1 Chapter VIII. Compactness of V (H∇ + 1)− 119 Chapter IX.
    [Show full text]
  • Some Aspects of Differential Theories Respectfully Dedicated to the Memory of Serge Lang
    Handbook of Global Analysis 1071 Demeter Krupka and David Saunders c 2007 Elsevier All rights reserved Some aspects of differential theories Respectfully dedicated to the memory of Serge Lang Jozsef´ Szilasi and Rezso˝ L. Lovas Contents Introduction 1 Background 2 Calculus in topological vector spaces and beyond 3 The Chern-Rund derivative Introduction Global analysis is a particular amalgamation of topology, geometry and analysis, with strong physical motivations in its roots, its development and its perspectives. To formulate a problem in global analysis exactly, we need (1) a base manifold, (2) suitable fibre bundles over the base manifold, (3) a differential operator between the topological vector spaces consisting of the sec- tions of the chosen bundles. In quantum physical applications, the base manifold plays the role of space-time; its points represent the location of the particles. The particles obey the laws of quantum physics, which are encoded in the vector space structure attached to the particles in the mathematical model. A particle carries this vector space structure with itself as it moves. Thus we arrive at the intuitive notion of vector bundle, which had arisen as the ‘repere` mobile’ in Elie´ Cartan’s works a few years before quantum theory was discovered. To describe a system (e.g. in quantum physics) in the geometric framework of vector bundles effectively, we need a suitably flexible differential calculus. We have to differen- tiate vectors which change smoothly together with the vector space carrying them. The primitive idea of differentiating the coordinates of the vector in a fixed basis is obviously not satisfactory, since there is no intrinsic coordinate system which could guarantee the invariance of the results.
    [Show full text]
  • Research.Pdf (1.262Mb)
    Lossless Data Compression of Monitored Power Signals Using the PLHaar Transform A Thesis Presented to the Faculty of the Graduate School at the University of Missouri{Columbia In Partial Fulfillment of the Requirements for the Degree Master of Science By Nicholas J. Hudson Dr. Michael J. Devaney, Thesis Supervisor July 2015 c Nicholas Hudson 2015, All rights reserved. The undersigned have examined the thesis entitled Lossless Data Compression of Monitored Power Signals Using the PLHaar Transform presented by Nicholas Hudson and determined it worthy of acceptance. Professor Michael J. Devaney Professor Zhihai "Henry" He Professor Jeffrey Uhlmann for the old man Acknowledgements I've unmeasurable gratitude to my advisor Dr. Michael Devaney. Without his boundless patience, breadth of knowledge, excellent advice, and boundless patience not only would this work have been not just impossible but unimaginable to me. I'm both deeply honored and fantastically fortunate to be his student. I'd also like to thank Dr. James Keller, who not only introduced me to the non-Euclidean spaces fundamental to this work, but also extended my education with a philosophical ele- ment of value nigh-impossible to overstate. And I'm deeply indebted to my mother and brother, whose faith in me served as bedrock to this research. ii Contents Acknowledgements ii Contents iii List of Figures v List of Tables vi 1 Introduction 1 1.1 Motivation . .1 1.2 Relevance . .2 1.3 Proposed Approach . .4 1.4 Organization . .4 2 Background 5 2.1 History . .5 2.1.1 Fourier . .5 2.1.2 Windowed Transforms .
    [Show full text]
  • On the Equivalence Between Weak BMO and the Space of Derivatives of the Zygmund Class
    On the equivalence between Weak BMO and the space of derivatives of the Zygmund class Eddy Kwessi* Abstract In this paper, we will discuss the space of functions of weak bounded mean oscillation. In particular, we will show that this space is the dual space of the special atom space, whose dual space was already known to be the space of derivative of functions (in the sense of distribution) belonging to the Zygmund class of functions. We show in particular that this proves that the Hardy space H1 strictly contains the space special atom space. Keywords: BMO, Derivative, Distributions, Zygmund Class AMS Subject Classification: 42B05, 42B30, 30B50, 30E20 1 Introduction The space of functions of bounded means oscillation has taken central stage in the mathematical litera- ture after the work of Charles Fefferman [4] where he showed that it is the dual space of the real Hardy 1 space H , a long sought after result. Right after, Ronald Coifman [2] showed this result using a different 1 method. Essentially, he showed that H has an atomic decomposition. De Souza [3] showed there is a 1 1 1 1 subset B of H , formed by special atoms that is contained in H . This space B has the particularity that it contains some functions whose Fourier series diverge. The question of whether B1 is equivalent 1 1 1 to H was never truly answered explicitly but it was always suspected that the inclusion B ⊂ H was 1 1 strict, that is, there must be at least one function in H that is not in B .
    [Show full text]
  • Bounded Mean Oscillation and the Uniqueness of Active Scalar Equations
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 367, Number 5, May 2015, Pages 3095–3118 S 0002-9947(2014)06040-6 Article electronically published on December 18, 2014 BOUNDED MEAN OSCILLATION AND THE UNIQUENESS OF ACTIVE SCALAR EQUATIONS JONAS AZZAM AND JACOB BEDROSSIAN Abstract. We consider a number of uniqueness questions for several wide classes of active scalar equations, unifying and generalizing the techniques of several authors. As special cases of our results, we provide a significantly simplified proof to the known uniqueness result for the 2D Euler equations in L1 ∩ BMO and provide a mild improvement to the recent results of Rusin for the 2D inviscid surface quasi-geostrophic (SQG) equations, which are now to our knowledge the best results known for this model. We also obtain what are (to our knowledge) the strongest known uniqueness results for the Patlak- Keller-Segel models with nonlinear diffusion. We obtain these results via tech- nical refinements of energy methods which are well-known in the L2 setting but are less well-known in the H˙ −1 setting. The H˙ −1 method can be consid- ered a generalization of Yudovich’s classical method and is naturally applied to equations such as the Patlak-Keller-Segel models with nonlinear diffusion and other variants. Important points of our analysis are an Lp-BMO interpo- lation lemma and a Sobolev embedding lemma which shows that velocity fields v with ∇v ∈ BMO are locally log-Lipschitz; the latter is known in harmonic analysis but does not seem to have been connected to this setting. 1. Introduction The term active scalar refers to a wide variety of nonlinear advection-diffusion equations for a scalar density which, through a nonlocal operator such as an elliptic PDE, gives rise to the advective velocity field (to the authors’ knowledge, the terminology is originally due to P.
    [Show full text]
  • Lecture Notes on Harmonic Analysis Updated: April 28, 2020 © Chengchun HAO Institute of Mathematics AMSS CAS - 237 - - 238 - Chengchun HAO
    VII BMO and Carleson Measures 7.1. The sharp maximal functions and BMO spaces .......... 237 7.2. John-Nirenberg theorem ....................... 243 7.3. Non-tangential maximal functions and Carleson measures ... 248 7.4. BMO functions and Carleson measures ............... 253 References ................................... 255 § 7.1 The sharp maximal functions and BMO spaces Functions of bounded mean oscillation were introduced by F. John and L. Niren- berg [JN61], in connection with differential equations. Definition 7.1.1. The mean oscillation of a locally integrable function f (i.e. a function be- 1 Rn Rn longing to Lloc( )) over a cube QZ in is defined as the following integral: ~ 1 fQ = jf(x) − Avg fjdx; jQj Q Q where Avg f is the average value of f on the cube Q, i.e. Q Z 1 Avg f = f(x)dx: Q jQj Q Definition 7.1.2. 1 Rn A BMO function is any function f belonging to Lloc( ) whose mean oscil- lation has a finite supremum over the set of all cubesa Q contained in Rn. For 2 1 Rn f Lloc( ), we define the maximal BMO function or the sharp maximal function Z 1 M #f(x) = sup jf(t) − Avg fjdt; Q3x jQj Q Q where the supremum is take over all cubes Q in Rn that contains the given point x, and M # is called the sharp maximal operator. Then we denote the # norm of f in this space by kfkBMO = kM fk1. The set Rn f 2 1 Rn k k 1g BMO( ) = f Lloc( ): f BMO < is called the function space of bounded mean oscillation or the BMO space.
    [Show full text]
  • Bounded Mean Oscillation Treated by John and Nirenberg [9], a Martingale Analogue Was Proved by Fefferman and Stein, A
    TRANSACTIONSOF THE AMERICANMATHEMATICAL SOCIETY Volume 193, 1974 BOUNDEDMEAN OSCILLATION AND REGULATEDMARTINGALES(l) BY CARL HERZ ABSTRACT. In the martingale context, the dual Banach space to H. is BMO in analogy with the result of Charles Fefferman [4] for the classical case. This theorem is an easy consequence of decomposition theorems for H.-martingales which involve the notion ofL -regulated ¿.-martingales where 1 < p < oo. The strongest decomposition theorem is for p = oo, and this provides full information about BMO. The weaker p = 2 decomposition is fundamental in the theory of martingale transforms. Introduction. Shortly after Charles Fefferman [A] proved that the dual Banach space to the Hardy space H. (in this context we view Hl as the space of func- tions on the circle which together with their conjugate function belong to Lj) was equivalent to the space BMO of functions of bounded mean oscillation treated by John and Nirenberg [9], a martingale analogue was proved by Fefferman and Stein, A. Garsia, and me; see [5] and [6]. In this Richard Gundy played a role which, at least for me, was of the highest value. There are related matters in [7] and [ll]. The martingale spaces BMO are defined for 1 < p < oo by the John-Nirenberg conditions JN plus a supplementary condition which is needed to handle the case of general martingales; see §2 below for the definitions. In the classical case, that of martingales on a dyadic stochastic base, John and Nirenberg proved that, while the defining conditions for membership in BMO appear to be more stringent with increasing p, they are all equivalent.
    [Show full text]
  • Carleson Measures and Elliptic Boundary Value Problems 3
    1 Carleson measures and elliptic boundary value 2 problems 3 4 Jill Pipher 5 Abstract. In this article, we highlight the role of Carleson measures in elliptic boundary value prob- 6 lems, and discuss some recent results in this theory. The focus here is on the Dirichlet problem, with 7 measurable data, for second order elliptic operators in divergence form. We illustrate, through selected 8 examples, the various ways Carleson measures arise in characterizing those classes of operators for 9 which Dirichlet problems are solvable with classical non-tangential maximal function estimates. 10 Mathematics Subject Classification (2010). Primary 42B99, 42B25, 35J25, 42B20. 11 Keywords. Carleson measures, elliptic divergence form equations, A1, boundary value problems. 12 1. Introduction 13 Measures of Carleson type were introduced by L. Carleson in [9] and [10] to solve a problem 14 in analytic interpolation, via a formulation that exploited the duality between Carleson mea- 15 sures and non-tangential maximal functions (defined below). Carleson measures have since 16 become one of the most important tools in harmonic analysis, playing a fundamental role in 17 the study of singular integral operators in particular, through their connection with BMO, 18 the John-Nirenberg space of functions of bounded mean oscillation. We aim to describe, 19 through some specific examples, the ubiquitous role of measures of this type in the theory 20 of boundary value problems, especially with regard to sharp regularity of “elliptic” measure, 21 the probability measure arising in the Dirichlet problem for second order divergence form 22 elliptic operators. Perhaps the first connection between Carleson measures and boundary 23 value problems was observed by C.
    [Show full text]