Structure and Dynamics of Rockpool Fish Assemblages in Southeastern Australia Shane P

Total Page:16

File Type:pdf, Size:1020Kb

Structure and Dynamics of Rockpool Fish Assemblages in Southeastern Australia Shane P University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2002 Structure and dynamics of rockpool fish assemblages in Southeastern Australia Shane P. Griffiths University of Wollongong Recommended Citation Griffiths, Shane P., Structure and dynamics of rockpool fish assemblages in Southeastern Australia, Doctor of Philosophy thesis, Department of Environmental Science, University of Wollongong, 2002. http://ro.uow.edu.au/theses/1381 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] For my parents, Alan and Denise. For never losing faith. STRUCTURE AND DYNAMICS OF ROCKPOOL FISH ASSEMBLAGES IN SOUTHEASTERN AUSTRALIA. A thesis submitted in fulfilment of the requirements for the award of the degree DOCTOR OF PHILOSOPHY from UNIVERSITY OF WOLLONGONG by SHANE P. GRIFFITHS ENVIRONMENTAL SCIENCE 2002 ii "The intertidal zone is the place of origin of most fish groups. From there they spread seaward onto the shelf platform and into the open sea and landward to deltaic (and into the rivers) andsupratidal areas" (Shultze, 1999). Frontispiece. A typical intertidal landscape during low tide at Maloney's Bay, Bass Point, New South Wales, Australia. iii DECLARATION I, Shane P. Griffiths, declare that this thesis, submitted in fulfilment ofthe requirements for the award of Doctor of Philosophy, in Environmental Science, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution. Shane Paul Griffiths 24 October 2002 IV Table of Contents Title Page i Frontispiece ii Declaration iii Table of Contents iv Acknowledgments ix Papers and manuscripts associated with thesis chapters xii Manuscripts associated with this thesis xiii Abstract xiv List of Tables xviii List of Figures xxvii List of Plates xxxv Chapter 1: General introduction 1 Definitions of commonly used terms 9 Description of the study region 11 Chapter 2: Methods for sampling rockpool fishes 16 Introduction 16 Materials and Methods 20 Experiment 1: Determination of a desirable clove oil concentration 20 Experiment 2: Effectiveness of clove oil as a quantitative sampling 21 method Census of fishes 22 Statistical analyses 23 Results 25 Experiment 1: Determination of a desirable clove oil concentration 25 Experiment 2: Effectiveness of clove oil as a quantitative sampling 28 method Discussion 33 Desirable concentration of clove oil 33 Comparisons of sampling methods 3 5 Chapter 3: Overview of rockpool fish assemblages 39 Introduction 39 Materials and Methods 43 Study sites 43 Categorisation of fishes 43 Results 47 Taxonomic composition 47 Residential categories 53 Biogeographic affinities 54 Discussion 56 Comparisons with other rockpool fish communities 56 Comparisons with other Australian rockpool fish communities 60 Residency and biogeographic affinities of NSW rockpool fishes 63 Chapter 4: Spatial and temporal variation in rockpool fish assemblages 66 Introduction 66 Materials and Methods 69 Study 1: Long-term spatial and temporal variation in fish assemblages 69 Study 2: Large-scale spatial variation in fish assemblages 70 Data collection: Study 1 and 2 70 Statistical analyses 72 Univariate analyses 72 Multivariate analyses 73 Results 75 Study 1: Long-term spatial and temporal variation in fish assemblages 75 Variation in the physico-chemical environment 75 Numbers of species and individuals 75 Relationships with environmental variables 82 Variation in abundance of common species 86 Fish assemblage structure 90 Among-location comparisons 90 Within-location comparisons 93 Length-frequency distributions of common species 97 Study 2: Large-scale spatial variation in fish assemblages 102 Discussion 110 Chapter 5: Effects of rockpool elevation on fish assemblage structure 116 Introduction 116 Materials and Methods 118 Study sites and collection of fishes 118 Statistical analyses 120 Results 121 Physico-chemical environment 121 Numbers of species and individuals 121 Fish assemblage structure 126 Length-frequency distributions 130 Discussion 132 Chapter 6: Recolonisation of rockpools by fishes 138 Introduction 138 Materials and Methods 141 Experimental design 141 Statistical analyses 144 Competition 146 Results 147 Numbers of species and individuals 147 Variation in abundance of major recolonising species 153 Fish assemblage structure 158 Length-frequency distributions and competition 160 Discussion 165 Vll Chapter 7: Movements and homing of rockpool fishes 172 Introduction 172 Materials and Methods 175 Experiment 1: Assessment of tag utility 175 Experiment 2: Pilot study of fish homing 159 Experiment 3: Main homing study 180 Study sites and fish collection 180 Statistical analyses 183 Results 183 Experiment 1: Assessment of tag utility 183 Experiment 2: Pilot study of fish homing 185 Experiment 3: Main homing study 186 Discussion 191 Utility of visible implant tags for marking small rockpool fishes 191 Homing experiments 193 Displacement distance and homing success 195 Effects of fish size on homing success 196 Time at liberty and homing success 198 Other factors influencing homing success 199 Chapter 8: Effects of habitat complexity on rockpool fish assemblages 201 Introduction 201 Materials and Methods 205 Study design 205 Statistical analyses 209 Results 210 Numbers of species and individuals 210 Variation in abundance of individual species 215 Fish assemblage structure 219 Manipulation 1 219 Manipulation 2 222 Length-frequency distributions 225 Discussion 228 Suspended cover (ASUs) 228 Substratum heterogeneity 231 Chapter 9: General discussion 235 Structure and spatial variation in fish assemblages 236 The role of fish movements in rockpool fish assemblages 239 The role of cover in rockpool fish assemblages 244 Modelling the dynamics of rockpool fish assemblages 246 Limitations ofthe model and directions for future research 249 Implications for conservation and management 252 Conclusions 254 References 256 Appendix 291 Appendix 1. Published scientific paper from work reported in Chapter 2 of 291 this thesis. Appendix 2. Published scientific paper from work reported in Chapter 7 of 303 this thesis. Appendix 3. Photographs and descriptions ofthe locations sampled during 306 studies in this thesis. Photographs after Smith (2001), except for Puckey's Bombora, Marsden Head, Mollymook Point, Tuross Heads and Wagonga Head, which were taken by the author. Appendix 4. Instructions for the use of Visible Implant Alphanumeric tags 311 by Northwest Marine Technologies. Appendix 5. Instructions for the use of Visible Implant Fluorescent 313 Elastomer tags by Northwest Marine Technologies. IX ACKNOWLEDGMENTS To say that a PhD thesis can be one ofthe greatest pieces of work anyone could imagine compiling, in my opinion, would be a drastic understatement. Many times I considered the task all too difficult but only now after finally coming to the end and compiling all my research findings in a single volume do I realise how fortunate I have been to have the opportunity to pursue my personal research in ichthyology. I have always been a keen recreational fisher, and in the early 1980's when I saw Dr Julian Pepperell talk on the television program "Go Fish Australia" about the fascinating migrations of tagged game fish, I knew fisheries was the only field I wanted to work in. From my first day of high school work experience at NSW Fisheries at Cronulla back in August 1991,1 was determined to become an ichthyologist, perhaps 11 years later but nonetheless I reached my goal. This exhausting, but very rewarding, journey would not have been possible without my two supervisors, Associate Professors Ron West and Andy Davis of the University of Wollongong. I extend my most sincere thanks to them for providing me with encouragement, helpful suggestions using their extensive knowledge of marine ecology, and for enduring the arduous task of critically reviewing drafts of this thesis. Without these two people production of this thesis would never have been possible. I owe Jade Bulter an enormous amount of thanks, not only for helping me with many aspects of my work in her own free time, but for tolerating my obsession with fish for the past five years. I also owe thanks to a large number of people who helped out in many ways and for each task I will list them alphabetically. x I thank David Barker, Bruce Pease and Veronica Silberschneider from NSW Fisheries, Robin Gibson, Mike Chotkowski and Donald Buth who critically reviewed drafts of Chapter 1 in the form of a scientific paper published in the Journal of Fish Biology. Kirsten Benkendorff generously allowed use of her aquaria for laboratory experiments. Jade Butler, Adrian Ferguson, Alisa Eustace, Alan Griffiths, and Kane Organ assisted with fieldwork and laboratory experiments. I am grateful to Ken Russell, Mick Gregory, Catherine Pfister and Marti Anderson for statistical advice. Rob Whelan, Kris French and Bill Buttemer are thanked for helpful discussions. Glenn Johnstone generously donated nets and preliminary tagging equipment. Jerermy Nicol and Eric Hockey for supplying equipment needed for the manipulation experiments. Staff at the Environmental Science unit are thanked, namely Professor John Morrison for accepting me into his department and Sandra Quinn for help with all aspects of administration. Peter Bergman and Daniel Thompson from Northwest
Recommended publications
  • Suborder BLENNIOIDEI TRIPTERYGIIDAE
    click for previous page 3532 Bony Fishes Suborder BLENNIOIDEI TRIPTERYGIIDAE Triplefins by J.T. Williams and R. Fricke iagnostic characters: Small, slender fishes (seldom longer than 5 cm). Cirri often present on top of Deye and on rim of anterior nostril. Upper and lower jaws each with broad band of conical teeth. Three well-defined dorsal fins, the first with III to X (III or IV in the area) spines, the second with VIII to XXVI spines, the third with 7 to 17 segmented rays; last dorsal-fin spine and first segmented ray borne on separate pterygiophores; anal fin with 0 to II spines and 14 to 32 segmented rays; caudal fin with 13 segmented rays, 9 of which are branched; pelvic fins with 2 (3 in Lepidoblennius) simple segmented rays and I embedded spine, the fin inserted anterior to pectoral-fin base. Ctenoid (cycloid in 1 species of Lepidoblennius) scales on body. Colour: highly variable, often showing sexual dichromatism; frequently with irregular bars or a mottled pattern; males may have reddish pigmentation and/or black areas on head and body, females usually mottled with brown or green. 3 dorsal fins ctenoid scales branched anterior insertion caudal-fin of pelvic fins rays Habitat, biology, and fisheries: Benthic, cryptic fishes occurring on rocky or coral substrates in shallow water, but some species are found as deep as 550 m. They are very abundant in littoral areas, but are rarely utilized commercially because of their small size. Of little commercial interest, but they have been found in Indonesian fish markets. Similar families occurring in the area Blenniidae: body always naked (scaly in Tripterygiidae); a single row of incisors in each jaw (Tripterygiidae with several rows of conical teeth, at least anteriorly in jaws); dorsal fin consisting of a single continuous fin, often deeply notched between spinous and segmented rays (3 clearly defined dorsal fins in Tripterygiidae); dorsal fin with more, a few Blenniidae species with 0 to 3 less, segmented than spinous rays (more spines than rays in Tripterygiidae).
    [Show full text]
  • Qt9z7703dj.Pdf
    UC San Diego UC San Diego Previously Published Works Title Phylogeny and biogeography of a shallow water fish clade (Teleostei: Blenniiformes) Permalink https://escholarship.org/uc/item/9z7703dj Journal BMC Evolutionary Biology, 13(1) ISSN 1471-2148 Authors Lin, Hsiu-Chin Hastings, Philip A Publication Date 2013-09-25 DOI http://dx.doi.org/10.1186/1471-2148-13-210 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Lin and Hastings BMC Evolutionary Biology 2013, 13:210 http://www.biomedcentral.com/1471-2148/13/210 RESEARCH ARTICLE Open Access Phylogeny and biogeography of a shallow water fish clade (Teleostei: Blenniiformes) Hsiu-Chin Lin1,2* and Philip A Hastings1 Abstract Background: The Blenniiformes comprises six families, 151 genera and nearly 900 species of small teleost fishes closely associated with coastal benthic habitats. They provide an unparalleled opportunity for studying marine biogeography because they include the globally distributed families Tripterygiidae (triplefin blennies) and Blenniidae (combtooth blennies), the temperate Clinidae (kelp blennies), and three largely Neotropical families (Labrisomidae, Chaenopsidae, and Dactyloscopidae). However, interpretation of these distributional patterns has been hindered by largely unresolved inter-familial relationships and the lack of evidence of monophyly of the Labrisomidae. Results: We explored the phylogenetic relationships of the Blenniiformes based on one mitochondrial (COI) and four nuclear (TMO-4C4, RAG1, Rhodopsin, and Histone H3) loci for 150 blenniiform species, and representative outgroups (Gobiesocidae, Opistognathidae and Grammatidae). According to the consensus of Bayesian Inference, Maximum Likelihood, and Maximum Parsimony analyses, the monophyly of the Blenniiformes and the Tripterygiidae, Blenniidae, Clinidae, and Dactyloscopidae is supported.
    [Show full text]
  • Blenniiformes, Tripterygiidae) from Taiwan
    A peer-reviewed open-access journal ZooKeys 216: 57–72 (2012) A new species of the genus Helcogramma from Taiwan 57 doi: 10.3897/zookeys.216.3407 RESEARCH articLE www.zookeys.org Launched to accelerate biodiversity research A new species of the genus Helcogramma (Blenniiformes, Tripterygiidae) from Taiwan Min-Chia Chiang1,†, I-Shiung Chen1,2,‡ 1 Institute of Marine Biology, National Taiwan Ocean University, Keelung 202, Taiwan, ROC 2 Center for Mari- ne Bioenvironment and Biotechnology (CMBB), National Taiwan Ocean University, Keelung 202, Taiwan, ROC † urn:lsid:zoobank.org:author:D82C98B9-D9AA-46E1-83F7-D8BB74776122 ‡ urn:lsid:zoobank.org:author:6094BBA6-5EE6-420F-BAA5-F52D44F11F14 Corresponding author: I-Shiung Chen ([email protected]) Academic editor: Carole Baldwin | Received 19 May 2012 | Accepted 13 August 2012 | Published 21 August 2012 urn:lsid:zoobank.org:pub:2D3E6BCC-171E-4702-B759-E7D7FCEA88DB Citation: Chiang M-C, Chen I-S (2012) A new species of the genus Helcogramma (Blenniiformes, Tripterygiidae) from Taiwan. ZooKeys 216: 57–72. doi: 10.3897/zookeys.216.3407 Abstract A new species of triplefin fish (Blenniiformes: Tripterygiidae), Helcogramma williamsi, is described from six specimens collected from southern Taiwan. This species is well distinguished from its congeners by possess- ing 13 second dorsal-fin spines; third dorsal-fin rays modally 11; anal-fin rays modally 19; pored scales in lateral line 22-24; dentary pore pattern modally 5+1+5; lobate supraorbital cirrus; broad, serrated or pal- mate nasal cirrus; first dorsal fin lower in height than second; males with yellow mark extending from ante- rior tip of upper lip to anterior margin of eye and a whitish blue line extending from corner of mouth onto preopercle.
    [Show full text]
  • Optic-Nerve-Transmitted Eyeshine, a New Type of Light Emission from Fish Eyes
    Optic-nerve-transmitted eyeshine, a new type of light emission from fish eyes The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Fritsch, Roland, Jeremy F. P. Ullmann, Pierre-Paul Bitton, Shaun P. Collin, and Nico K. Michiels. 2017. “Optic-nerve-transmitted eyeshine, a new type of light emission from fish eyes.” Frontiers in Zoology 14 (1): 14. doi:10.1186/s12983-017-0198-9. http:// dx.doi.org/10.1186/s12983-017-0198-9. Published Version doi:10.1186/s12983-017-0198-9 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:32072091 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Fritsch et al. Frontiers in Zoology (2017) 14:14 DOI 10.1186/s12983-017-0198-9 RESEARCH Open Access Optic-nerve-transmitted eyeshine, a new type of light emission from fish eyes Roland Fritsch1* , Jeremy F. P. Ullmann2,3, Pierre-Paul Bitton1, Shaun P. Collin4† and Nico K. Michiels1*† Abstract Background: Most animal eyes feature an opaque pigmented eyecup to assure that light can enter from one direction only. We challenge this dogma by describing a previously unknown form of eyeshine resulting from light that enters the eye through the top of the head and optic nerve, eventually emanating through the pupil as a narrow beam: the Optic-Nerve-Transmitted (ONT) eyeshine.
    [Show full text]
  • Parks Victoria Technical Series No
    Deakin Research Online This is the published version: Barton, Jan, Pope, Adam and Howe, Steffan 2012, Marine protected areas of the Flinders and Twofold Shelf bioregions Parks Victoria, Melbourne, Vic. Available from Deakin Research Online: http://hdl.handle.net/10536/DRO/DU:30047221 Reproduced with the kind permission of the copyright owner. Copyright: 2012, Parks Victoria. Parks Victoria Technical Paper Series No. 79 Marine Natural Values Study (Vol 2) Marine Protected Areas of the Flinders and Twofold Shelf Bioregions Jan Barton, Adam Pope and Steffan Howe* School of Life & Environmental Sciences Deakin University *Parks Victoria August 2012 Parks Victoria Technical Series No. 79 Flinders and Twofold Shelf Bioregions Marine Natural Values Study EXECUTIVE SUMMARY Along Victoria’s coastline there are 30 Marine Protected Areas (MPAs) that have been established to protect the state’s significant marine environmental and cultural values. These MPAs include 13 Marine National Parks (MNPs), 11 Marine Sanctuaries (MSs), 3 Marine and Coastal Parks, 2 Marine Parks, and a Marine Reserve, and together these account for 11.7% of the Victorian marine environment. The highly protected Marine National Park System, which is made up of the MNPs and MSs, covers 5.3% of Victorian waters and was proclaimed in November 2002. This system has been designed to be representative of the diversity of Victoria’s marine environment and aims to conserve and protect ecological processes, habitats, and associated flora and fauna. The Marine National Park System is spread across Victoria’s five marine bioregions with multiple MNPs and MSs in each bioregion, with the exception of Flinders bioregion which has one MNP.
    [Show full text]
  • Download Full Article 1.0MB .Pdf File
    Memoirs of the Museum of Victoria 57( I): 143-165 ( 1998) 1 May 1998 https://doi.org/10.24199/j.mmv.1998.57.08 FISHES OF WILSONS PROMONTORY AND CORNER INLET, VICTORIA: COMPOSITION AND BIOGEOGRAPHIC AFFINITIES M. L. TURNER' AND M. D. NORMAN2 'Great Barrier Reef Marine Park Authority, PO Box 1379,Townsville, Qld 4810, Australia ([email protected]) 1Department of Zoology, University of Melbourne, Parkville, Vic. 3052, Australia (corresponding author: [email protected]) Abstract Turner, M.L. and Norman, M.D., 1998. Fishes of Wilsons Promontory and Comer Inlet. Victoria: composition and biogeographic affinities. Memoirs of the Museum of Victoria 57: 143-165. A diving survey of shallow-water marine fishes, primarily benthic reef fishes, was under­ taken around Wilsons Promontory and in Comer Inlet in 1987 and 1988. Shallow subtidal reefs in these regions are dominated by labrids, particularly Bluethroat Wrasse (Notolabrus tet­ ricus) and Saddled Wrasse (Notolabrus fucicola), the odacid Herring Cale (Odax cyanomelas), the serranid Barber Perch (Caesioperca rasor) and two scorpidid species, Sea Sweep (Scorpis aequipinnis) and Silver Sweep (Scorpis lineolata). Distributions and relative abundances (qualitative) are presented for 76 species at 26 sites in the region. The findings of this survey were supplemented with data from other surveys and sources to generate a checklist for fishes in the coastal waters of Wilsons Promontory and Comer Inlet. 23 I fishspecies of 92 families were identified to species level. An additional four species were only identified to higher taxonomic levels. These fishes were recorded from a range of habitat types, from freshwater streams to marine habitats (to 50 m deep).
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • The Marine Biodiversity and Fisheries Catches of the Pitcairn Island Group
    The Marine Biodiversity and Fisheries Catches of the Pitcairn Island Group THE MARINE BIODIVERSITY AND FISHERIES CATCHES OF THE PITCAIRN ISLAND GROUP M.L.D. Palomares, D. Chaitanya, S. Harper, D. Zeller and D. Pauly A report prepared for the Global Ocean Legacy project of the Pew Environment Group by the Sea Around Us Project Fisheries Centre The University of British Columbia 2202 Main Mall Vancouver, BC, Canada, V6T 1Z4 TABLE OF CONTENTS FOREWORD ................................................................................................................................................. 2 Daniel Pauly RECONSTRUCTION OF TOTAL MARINE FISHERIES CATCHES FOR THE PITCAIRN ISLANDS (1950-2009) ...................................................................................... 3 Devraj Chaitanya, Sarah Harper and Dirk Zeller DOCUMENTING THE MARINE BIODIVERSITY OF THE PITCAIRN ISLANDS THROUGH FISHBASE AND SEALIFEBASE ..................................................................................... 10 Maria Lourdes D. Palomares, Patricia M. Sorongon, Marianne Pan, Jennifer C. Espedido, Lealde U. Pacres, Arlene Chon and Ace Amarga APPENDICES ............................................................................................................................................... 23 APPENDIX 1: FAO AND RECONSTRUCTED CATCH DATA ......................................................................................... 23 APPENDIX 2: TOTAL RECONSTRUCTED CATCH BY MAJOR TAXA ............................................................................
    [Show full text]
  • Influence of Maternal Effects and Environmental Conditions on Growth and Survival of Atlantic Cod (Gadus Morhua L.)
    Aus dem Leibniz Institut für Meereswissenschaften An der Christian-Albrechts-Universität zu Kiel Influence of maternal effects and environmental conditions on growth and survival of Atlantic cod (Gadus morhua L.) Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian Albrechts-Universität zu Kiel vorgelegt von Vivian Christiane Buehler Kiel 2004 Influence of maternal effects and environmental conditions on growth and survival of Atlantic cod (Gadus morhua L.) Table of Contents: Acknowledgements 1 1. Introduction 1 1.1 Importance of cod fisheries. 3 1.2 The Northeast Artic cod 4 1.2.1 Characteristics of the NEAC Stock 5 1.2.2 Sex ratio and spawning behaviour of NEAC 6 1.2.3 The offspring of NEAC 7 1.3 Factors that may influence stock management 8 1.4 What is maternal effect? 9 1.5 The MACOM Project 12 2. Materials and Methods 12 2.1 Parental Stock 12 2.1.1 Collecting Fish 12 2.1.2 Breeding 13 2.1.3 Incubation 14 2.1.4 Egg quality measurements 14 2.2 Mesocosm Experiment 14 2.2.1 Characteristics of the mesocosms 15 2.2.2 Monitoring of biotic and abiotic parameters 16 2.2.3 Transport and arrival of the larvae in Flødevigen 17 2.2.4 Releasing of larvae in the mesocosms 18 2.2.5 Sampling of cod larvae in the mesocosms 18 2.2.6 Termination of the Mesocosm Experiment 18 2.2.7 Mortality Calculation 19 2.3 Rearing of Juveniles in Indoor Tanks 20 2.3.1 Fish Tagging and fin clipping 20 2.3.2 Fish Measurements 21 2.3.3 Termination of the tanks Experiment 21 2.3.3.1 Estimation of oocytes size and Potential Fecundity 22 2.4 Laboratory Examinations 23 2.4.1 Otolith microstructure analysis 23 2.4.1.1 Otolith Preparation 23 2.4.1.2 Otolith reading 24 2.4.2 RNA/DNA ratio and glycolytic enzymes 24 2.4.3 DNA Fingerprinting 26 2.5 Statistical Analysis 27 3.
    [Show full text]
  • Diet, Food Preference, and Algal Availability for Fishes and Crabs on Intertidal Reef Communities in Southern California
    Environmental Biology of Fishes 37: 75-95,1993. 0 1993 Kluwer Academic Publishers. Printed in the Netherlands. Diet, food preference, and algal availability for fishes and crabs on intertidal reef communities in southern California James P. Barry’ & Michael J. Ehret* A-001 Scripps Institution of Oceanography, La Jolla, CA 92093, U.S.A. ‘Present address: Monterey Bay Aquarium Research Institute, 160 Central Ave., Pacific Grove, CA 93950, U.S.A. 2 Present address: Biology Department, Old Dominion University, Norfolk, VA 23507, U.S. A. Received 18.9.1991 Accepted 3.9.1992 Key words: Herbivory, Kyphosidae, Girella, Hermosilla, Pachygrapsus, Community structure, Foraging, Chemical ecology Synopsis Herbivory by wide-ranging fishes is common over tropical reefs, but rare in temperate latitudes where the effects of herbivorous fishes are thought to be minimal. Along the west coast of North America, herbivory by fishes on nearshore reefs is largely restricted to a few members of the Kyphosidae, distributed south of Pt. Conception. This paper presents information on natural diets and results from feeding choice experiments for two abundant kyphosids from intertidal habitats in San Diego, California - Girella nigricans and Hermosilla azurea, and similar data for the lined shore crab, Pachygrapsus crassipes, which also forages over intertidal reefs. These results are compared with the availability of algae in intertidal habitats measured during summer and winter, on both disturbed and undisturbed habitats. The diets of juveniles of G. nigricans and H. azurea collected from nearshore habitats were dominated by animal prey (mainly amphipods), but adults of these fishes, and P. crassipes, consumed algae nearly exclusively, with 26,10, and 14 taxa of algae identified from G.
    [Show full text]
  • Ichthyofaunal Diversity and Vertical Distribution Patterns in the Rockpools of the Southwestern Coast of Yaku-Shima Island, Southern Japan
    11 4 1682 the journal of biodiversity data 19 June 2015 Check List LISTS OF SPECIES Check List 11(4): 1682, 19 June 2015 doi: http://dx.doi.org/10.15560/11.4.1682 ISSN 1809-127X © 2015 Check List and Authors Ichthyofaunal diversity and vertical distribution patterns in the rockpools of the southwestern coast of Yaku-shima Island, southern Japan Atsunobu Murase Laboratory of Ichthyology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4–5–7 Konan, Minato-ku, Tokyo 108–8477, Japan. Present address: Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki, 889–2192 Japan E-mail: [email protected] Abstract: The community composition of rockpool in a total of 988 marine and estuarine fish species being fish on the southwestern coast of Yaku-shima listed from compiled literature sources, underwater Island, southern Japan, in the northwest Pacific was photographs and voucher specimens (Motomura et al. investigated by sampling of 22 rockpools and recording 2010; Motomura and Aizawa 2011; Murase et al. 2011). the range of vertical heights (a total of 76 sampling To identify the temporal dynamics of the coastal events from May 2009 to February 2010). A total of 72 fish assemblage of Yaku-shima Island, Murase (2013) species belonging to 19 families were collected from the quantitatively sampled the intertidal rocky shore and study site. This species richness is the highest recorded investigated the community structure of rockpool fish on of similar studies undertaken worldwide, reflecting the the southwestern coast of the island over four seasons.
    [Show full text]
  • Annotated Checklist of the Fishes of Lord Howe Island
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Allen, Gerald R., Douglass F. Hoese, John R. Paxton, J. E. Randall, C. Russell, W. A. Starck, F. H. Talbot, and G. P. Whitley, 1977. Annotated checklist of the fishes of Lord Howe Island. Records of the Australian Museum 30(15): 365–454. [21 December 1976]. doi:10.3853/j.0067-1975.30.1977.287 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia ANNOTATED CHECKLIST OF THE FISHES OF LORD HOWE ISLAND G. R. ALLEN, 1,2 D. F. HOESE,1 J. R. PAXTON,1 J. E. RANDALL, 3 B. C. RUSSELL},4 W. A. STARCK 11,1 F. H. TALBOT,1,4 AND G. P. WHITlEy5 SUMMARY lord Howe Island, some 630 kilometres off the northern coast of New South Wales, Australia at 31.5° South latitude, is the world's southern most locality with a well developed coral reef community and associated lagoon. An extensive collection of fishes from lord Howelsland was made during a month's expedition in February 1973. A total of 208 species are newly recorded from lord Howe Island and 23 species newly recorded from the Australian mainland. The fish fauna of lord Howe is increased to 447 species in 107 families. Of the 390 species of inshore fishes, the majority (60%) are wide-ranging tropical forms; some 10% are found only at lord Howe Island, southern Australia and/or New Zealand.
    [Show full text]