Dicke Superradiance

Total Page:16

File Type:pdf, Size:1020Kb

Dicke Superradiance 01/13 Pavel Cejnar IPNP MFF UK Superradiance 02/13 Legacy of Robert Dicke 1946 – Dicke radiometer (development of radar) 1953 – Dicke narrowing (analogous to Mössbauer effect, 1958) 1954 – Dicke superradiance Robert Henry Dicke (1916-97) 1956 – infrared laser (US patent in 1958, same as Townes & Schawlow in US, and Prokhorov in CCCP) 1965 – prediction (with Peebles, Roll & Wilkinson) of cosmic microwave background (1965 discovered by Penzias & Wilson using Dicke radiometer) 1957-70 – renaissance of gravitation and cosmology (alternative theory to general relativity, anthropic principle…) 03/13 Dicke Superradiance Cited in: Quantum optics, Condensed matter + Solid state physics (incl. graphene), Astrophysics, Nuclear physics, Biophysics + Biology (incl. neurosciences), Engineering … 04/13 Dicke Superradiance A collection of phenomena named “superradiance” 1) Superradiant flash enhanced non-exponential irradiation of coherent sources 2) Superradiant phase transitions thermal/quantum phase transitions from normal to superradiant phase in interacting matter−field systems 3) Non-hermitian superradiance separation of long- and short-lived states in systems coupled to continuum 4) Zel’dovich-Misner-Unruh superradiance amplification of radiation by rotating black holes …………….. …………….. 05/13 Superradiant flash A sample of N n* two-level atoms M. Gross, S. Haroche, Phys. Rep. 93, 301 (1982) N n* 1) Independent radiators t / d N t / n*(t) Ne I(t) dt n*(t) e t Probability that n photons was emitted I N from a sample of N≈3200 atoms [Raimond et al. 1982] 2) Coherent (collective) radiators t N I N 2 Superradiant pulse in optically pumped HF gas [Skribanowitz et al. 1973] 06/13 cavity Superradiant flash volume V 0 Dicke model N two-level atoms A schematic model for cavity QED: interaction sample volume V of single-mode radiation with two-level atoms 0 n single-ω N N photons 1 i i i H 0 2 z b b x (b b) i1 i1 N 1 0 0 1 1 i 1 i 0d V0 N D 2 2 • dipole approximation 0 1 cos 1 0 i D,d … dipole operator, matrix element 0 V V0 phase ε … electric field intensity • neglect of the A2 term V0 V i i N N N 1 i i i i J σ H 1 b b 1 1 (b b) 2 0 2 z 2 2 i1 i1 N i1 total quasi-spin operators J0 J J Conserved quantity H J b b J J b b 2 0 0 N J j( j 1) 07/13 Superradiant flash Dicke model Hilbert space 12 3 N bases n N dimA=2 1 2 3 N 0 , 1 , 2 dimF=∞ 12 3 N N j max 2 dimj=2j+1 0 (N even) N!(2 j 1) jmin Rj 1 (N odd) N N 2 ( 2 j 1)!( 2 j)! R N 1 j 2 2 j log10 Rj N 2 j n* jm [0,2 j]=number of exc.atoms N=40 j 08/13 j N Superradiant flash 2 m=+j n*=2j J b J b decay I j N Dicke model m=+j−1 H 0 J0 b b J J b b N Hint j(m 1) J jm j( j 1) m(m 1) ( j m)( j m 1) 2 I j(m 1) J jm Approximate solution of the decay dynamics: d 2 2 Pjm F, j(m 1) Hint F, jm Pjm F, jm Hint F, j(m 1) Pj(m1) m=+½ dt I j2 N 2 j( j1)m(m1) j( j1)(m1)m m=−½ d d m m P ( j m)( j m 1) jm m j tanh j(t t0 ) dt m dt j 2 m2 +j d I N 2 m dt 1 t m t N 0 t n*=2 t0 t m=−j+1 n*=1 I j N m=−j n*=0 −j 09/13 Superradiant phase transitions J b J b Dicke model H 0 J0 b b J J b b m n N John Daniel Edward Hint M 0 : n,n* 0,0 In this approximation, n* "Jack" Torrance the model conserves M 1: n,n* 0,1 1,0 (? – ?) the quantity M n m j M 2 : n,n* 0,2 1,1 2,0 Assume the resonant case 0 M=0: H0 j 0 E M=1: 0 2 j H ( j1) Quantum Phase 1 ω N 2 j 0 Transition M=2: 0 2(2 j 1) 0 Superradiant H ( j 2) 2(2 j 1) 0 4 j ω 2 phase N Normal phase 0 4 j 0 −ωj N c ( j) 2 j λ 10/13 Superradiant phase transitions Dicke model extended [0,1] ˆ H 0 J0 b b b J bJ [ b J bJ ] N N N 6, j 2 Thermal Phase Transition QPT QPT QPT 0 0.3 1 normal superradiant / 0 0 N Tc 2 2 2artanh ( N ) / c ( j) [ c 2 ] 1 2 j 11/13 Superradiant phase transitions Theory of superradiant phase transitions: Thermal: Y.K. Wang, F.T. Hioe, Phys. Rev. A 7, 831 (1973) K. Hepp, E.H. Lieb, Phys. Rev. A 8, 2517 (1973) Quantum: C. Emary, T. Brandes, Phys. Rev. Lett. 90, 044101 (2003) Experiment F. Dimer et al., Phys. Rev. A 75, 013804 (2007) … proposal K. Baumann et al., Nature 464, 1301 (2010), Phys. Rev. Lett. 107, Realization by means of BEC at T≈50nK in optical cavity 140402 (2011) Spatial redistribution of BEC leads to undercritical constructive pumping field interference of reflected waves pumping field of overcritical power 12/13 Non-hermitian superradiance Quasi-bound quantum system with a common set of decay channels. Increasing coupling to continuum leads to seggregation of long-lived (compound) and short-lived (superradiant) resonance states. Applications in nuclear physics (e.g. giant & pygmy resonances…), particle physics (baryon resonances) biophysics (photosynthesis), graphene… Recent reviews: N. Auerbach, V. Zelevinsky, Rep. Prog. Phys. 74, 106301 (2011), I. Rotter, J.P. Bird, Rep. Prog. Phys. 78, 114001 (2015) A. Volya, V. Zelevinsky, AIP Conf.Proc. 777, 229 (2004) 13/13 ěkuji ! Thank you !.
Recommended publications
  • Matter-Field Entanglement Within the Dicke Model
    Matter-Field Entanglement within the Dicke Model O. Casta~nos,R. L´opez-Pe~na,J. G. Hirsch, and E. Nahmad-Achar Instituto de Ciencias Nucleares, UNAM 2012{ Beauty in Physics: Theory and Experiment Matter-Field Entanglement Cocoyoc, 2012 Content The Dicke Hamiltonian Energy Surface of coherent states (CS) Symmetry adapted coherent states (SAS) Comparison variational vs Exact Results Fidelity Linear and von Neumann entropies Matter squeezing coefficient Conclusions 2012{ Beauty in Physics: Theory and Experiment Matter-Field Entanglement Cocoyoc, 2012 The Dicke Hamiltonian The Dicke model describes a cloud of cold atoms interacting with a one-mode electromagnetic field in an optical cavity [Dicke 1954] y γ y HD =a ^ a^ + !A^Jz + p a^ +a ^ ^J+ + ^J- : N Consider only the symmetric configuration of atoms i.e., N = 2j. The model presents a quantum phase transition when the p coupling constant, for N , takes the value γc = !A=2 [Hepp, Lieb 1973]. ! 1 2012{ Beauty in Physics: Theory and Experiment Matter-Field Entanglement Cocoyoc, 2012 Energy surface for CS The energy surface, or associated classical Hamilton function, is formed by means of the expectation value of the Hamiltonian with respect to a test state. We consider as test state the direct product of coherent states of the groups HW(1), for the electromagnetic part (Glauber 1963) and SU(2), for the atomic part (Arecchi et al 1972) , i.e., 2 +j e-jαj =2 αν 2j 1=2 p j+m jαi⊗jζi = j ζ jνi ⊗ jj; mi : 2 1 ν! j + m 1 + jζj ν=0 m=-j X X 2012{ Beauty in Physics: Theory and Experiment Matter-Field Entanglement Cocoyoc, 2012 Energy surface for CS The energy surface is given by H(α, ζ) ≡ hαj ⊗ hζjHDjαi ⊗ jζi 1 = p2 + q2 - j ! cos θ + 2pjγ q sin θ cos φ : 2 A We define 1 α = p (q + i p) ; 2 θ ζ = tan exp (i φ) ; 2 where (q; p) correspond to the expectation values of the quadratures of the electromagnetic field and (θ, φ) determine a point on the Bloch sphere.
    [Show full text]
  • Atom-Only Theories for U(1) Symmetric Cavity-QED Models
    PHYSICAL REVIEW RESEARCH 3, L032016 (2021) Letter Atom-only theories for U(1) symmetric cavity-QED models Roberta Palacino and Jonathan Keeling SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom (Received 26 November 2020; accepted 29 June 2021; published 19 July 2021) We consider a generalized Dicke model with U(1) symmetry, which can undergo a transition to a superradiant state that spontaneously breaks this symmetry. By exploiting the difference in timescale between atomic and cavity dynamics, one may eliminate the cavity dynamics, providing an atom-only theory. We show that the standard Redfield theory cannot describe the transition to the superradiant state, but including higher-order corrections does recover the transition. Our work reveals how the forms of effective theories must vary for models with continuous symmetry, and provides a template to develop effective theories of more complex models. DOI: 10.1103/PhysRevResearch.3.L032016 While phase transitions in equilibrium many-body sys- continuous symmetry breaking in extended multimode sys- tems have been extensively studied and are broadly un- tems allows one to explore the dispersion of the (complex) derstood [1,2], the critical behavior of driven-dissipative Goldstone modes [4,62] and their contribution to critical be- out-of-equilibrium systems [3–6] poses open questions. A havior. As noted above, theoretically modeling such systems central challenge in numerical exploration of such systems is challenging; one fruitful approach is to adiabatically elimi- is the exponential growth of Hilbert space dimension with nate fast degrees of freedom, providing an effective theory of problem size.
    [Show full text]
  • Dicke's Superradiance in Astrophysics
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 9-1-2016 12:00 AM Dicke’s Superradiance in Astrophysics Fereshteh Rajabi The University of Western Ontario Supervisor Prof. Martin Houde The University of Western Ontario Graduate Program in Physics A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Fereshteh Rajabi 2016 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Physical Processes Commons, Quantum Physics Commons, and the Stars, Interstellar Medium and the Galaxy Commons Recommended Citation Rajabi, Fereshteh, "Dicke’s Superradiance in Astrophysics" (2016). Electronic Thesis and Dissertation Repository. 4068. https://ir.lib.uwo.ca/etd/4068 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract It is generally assumed that in the interstellar medium much of the emission emanating from atomic and molecular transitions within a radiating gas happen independently for each atom or molecule, but as was pointed out by R. H. Dicke in a seminal paper several decades ago this assumption does not apply in all conditions. As will be discussed in this thesis, and following Dicke's original analysis, closely packed atoms/molecules can interact with their common electromagnetic field and radiate coherently through an effect he named superra- diance. Superradiance is a cooperative quantum mechanical phenomenon characterized by high intensity, spatially compact, burst-like features taking place over a wide range of time- scales, depending on the size and physical conditions present in the regions harbouring such sources of radiation.
    [Show full text]
  • Schwarzschild Black Hole Can Also Produce Super-Radiation Phenomena
    Schwarzschild black hole can also produce super-radiation phenomena Wen-Xiang Chen∗ Department of Astronomy, School of Physics and Materials Science, GuangZhou University According to traditional theory, the Schwarzschild black hole does not produce super radiation. If the boundary conditions are set in advance, the possibility is combined with the wave function of the coupling of the boson in the Schwarzschild black hole, and the mass of the incident boson acts as a mirror, so even if the Schwarzschild black hole can also produce super-radiation phenomena. Keywords: Schwarzschild black hole, superradiance, Wronskian determinant I. INTRODUCTION In a closely related study in 1962, Roger Penrose proposed a theory that by using point particles, it is possible to extract rotational energy from black holes. The Penrose process describes the fact that the Kerr black hole energy layer region may have negative energy relative to the observer outside the horizon. When a particle falls into the energy layer region, such a process may occur: the particle from the black hole To escape, its energy is greater than the initial state. It can also show that in Reissner-Nordstrom (charged, static) and rotating black holes, a generalized ergoregion and similar energy extraction process is possible. The Penrose process is a process inferred by Roger Penrose that can extract energy from a rotating black hole. Because the rotating energy is at the position of the black hole, not in the event horizon, but in the area called the energy layer in Kerr space-time, where the particles must be like a propelling locomotive, rotating with space-time, so it is possible to extract energy .
    [Show full text]
  • Experimentally Exploring the Dicke Phase Transition
    Diss. ETH No. 19943 Experimental Realization of the Dicke Quantum Phase Transition A dissertation submitted to the ETH Zurich¨ for the degree of Doctor of Sciences presented by Kristian Gotthold Baumann Dipl.-Phys., Technische Universit¨at Munchen,¨ Germany born 7.4.1983 in Leipzig, Germany citizen of Germany accepted on the recommendation of Prof. Dr. Tilman Esslinger, examiner Prof. Dr. Johann Blatter, co-examiner 2011 Zusammenfassung In dieser Arbeit wird die erste experimentelle Realisierung des Quantenphasenuberganges¨ im Dicke Modell vorgestellt. Wir betrachten die Quantenbewegung eines Bose-Einstein Konden- sates die an einen optischen Resonator gekoppelt ist. Konzeptionell ist der Phasenubergang¨ durch langreichweitige Wechselwirkungen induziert, die zum Entstehen eines selbstorgani- sierten suprasoliden Zustandes fuhren.¨ Der Quantenphasenubergang¨ im Dicke Modell wurde bereits 1973 vorhergesagt. Vor dieser Arbeit konnte dieser aber wegen grundlegenden und technologischen Grunden¨ experimentell nicht nachgewiesen werden. Durch die Verwendung von atomaren Impulszust¨anden konnten wir diese Herausforderung nun bew¨altigen. Die Impulszust¨ande werden durch Zweiphotonen- Uberg¨ ¨ange miteinander gekoppelt, wobei je ein Photon aus dem Resonator und ein Photon aus einer transversalen Lichtwelle gebraucht werden. Diese offene Implementierung des Di- cke Modells erlaubt es alle relevanten Parameter einzustellen und bietet eine einzigartige Detektionsmethode in Echtzeit. Wir zeigen in dieser Doktorarbeit, dass der Phasenubergang¨ von einem
    [Show full text]
  • Coherently Amplifying Photon Production from Vacuum with a Dense Cloud of Accelerating Photodetectors ✉ Hui Wang 1 & Miles Blencowe 1
    ARTICLE https://doi.org/10.1038/s42005-021-00622-3 OPEN Coherently amplifying photon production from vacuum with a dense cloud of accelerating photodetectors ✉ Hui Wang 1 & Miles Blencowe 1 An accelerating photodetector is predicted to see photons in the electromagnetic vacuum. However, the extreme accelerations required have prevented the direct experimental ver- ification of this quantum vacuum effect. In this work, we consider many accelerating pho- todetectors that are contained within an electromagnetic cavity. We show that the resulting photon production from the cavity vacuum can be collectively enhanced such as to be 1234567890():,; measurable. The combined cavity-photodetectors system maps onto a parametrically driven Dicke-type model; when the detector number exceeds a certain critical value, the vacuum photon production undergoes a phase transition from a normal phase to an enhanced superradiant-like, inverted lasing phase. Such a model may be realized as a mechanical membrane with a dense concentration of optically active defects undergoing gigahertz flexural motion within a superconducting microwave cavity. We provide estimates suggesting that recent related experimental devices are close to demonstrating this inverted, vacuum photon lasing phase. ✉ 1 Department of Physics and Astronomy, Dartmouth College, Hanover, NH, USA. email: [email protected] COMMUNICATIONS PHYSICS | (2021) 4:128 | https://doi.org/10.1038/s42005-021-00622-3 | www.nature.com/commsphys 1 ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00622-3 ne of the most striking consequences of the interplay Cavity wall Obetween relativity and the uncertainty principle is the predicted detection of real photons from the quantum fi TLS defects electromagnetic eld vacuum by non-inertial, accelerating pho- Cavity mode todetectors.
    [Show full text]
  • Dicke Superradiance in Solids [Invited]
    C80 Vol. 33, No. 7 / July 2016 / Journal of the Optical Society of America B Review Dicke superradiance in solids [Invited] 1 1 2 1 2 KANKAN CONG, QI ZHANG, YONGRUI WANG, G. TIMOTHY NOE II, ALEXEY BELYANIN, AND 1,3,4, JUNICHIRO KONO * 1Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA 2Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA 3Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA 4Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA *Corresponding author: [email protected] Received 18 February 2016; revised 7 April 2016; accepted 7 April 2016; posted 8 April 2016 (Doc. ID 259437); published 13 May 2016 Recent advances in optical studies of condensed matter systems have led to the emergence of a variety of phenomena that have conventionally been studied in the realm of quantum optics. These studies have not only deepened our understanding of light–matter interactions but have also introduced aspects of many-body corre- lations inherent in optical processes in condensed matter systems. This paper is concerned with the phenomenon of superradiance (SR), a profound quantum optical process originally predicted by Dicke in 1954. The basic concept of SR applies to a general N body system, where constituent oscillating dipoles couple together through interaction with a common light field and accelerate the radiative decay of the whole system. Hence, the term SR ubiquitously appears in order to describe radiative coupling of an arbitrary number of oscillators in many situations in modern science of both classical and quantum description.
    [Show full text]
  • The Black Hole Bomb and Superradiant Instabilities
    The black hole bomb and superradiant instabilities Vitor Cardoso∗ Centro de F´ısica Computacional, Universidade de Coimbra, P-3004-516 Coimbra, Portugal Oscar´ J. C. Dias† Centro Multidisciplinar de Astrof´ısica - CENTRA, Departamento de F´ısica, F.C.T., Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal Jos´e P. S. Lemos‡ Centro Multidisciplinar de Astrof´ısica - CENTRA, Departamento de F´ısica, Instituto Superior T´ecnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal Shijun Yoshida§ Centro Multidisciplinar de Astrof´ısica - CENTRA, Departamento de F´ısica, Instituto Superior T´ecnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal ¶ (Dated: February 1, 2008) A wave impinging on a Kerr black hole can be amplified as it scatters off the hole if certain conditions are satisfied giving rise to superradiant scattering. By placing a mirror around the black hole one can make the system unstable. This is the black hole bomb of Press and Teukolsky. We investigate in detail this process and compute the growing timescales and oscillation frequencies as a function of the mirror’s location. It is found that in order for the system black hole plus mirror to become unstable there is a minimum distance at which the mirror must be located. We also give an explicit example showing that such a bomb can be built. In addition, our arguments enable us to justify why large Kerr-AdS black holes are stable and small Kerr-AdS black holes should be unstable. PACS numbers: 04.70.-s I. INTRODUCTION one can extract as much rotational energy as one likes from the black hole.
    [Show full text]
  • A Modern Approach to Superradiance
    A Modern Approach to Superradiance Solomon Endlicha and Riccardo Pencob,c a Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94306, USA b Physics Department, Center for Theoretical Physics & Institute for Strings, Cosmology, and Astroparticle Physics, Columbia University, New York, NY 10027, USA c Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA Abstract In this paper, we provide a simple and modern discussion of rotational superradiance based on quantum field theory. We work with an effective theory valid at scales much larger than the size of the spinning object responsible for superradiance. Within this framework, the probability of absorption by an object at rest completely determines the superradiant amplification rate when that same object is spinning. We first discuss in detail superradiant scattering of spin 0 particles with orbital angular momentum ℓ = 1, and then extend our analysis to higher values of orbital angular momentum and spin. Along the way, we provide a simple derivation of vacuum friction—a “quantum torque” acting on spinning objects in empty space. Our results apply not only to black holes but to arbitrary spinning objects. We also discuss superradiant instability due to formation of bound states and, as an illustration, we calculate the instability rate Γ for bound states with massive spin 1 particles. For a black hole with mass M and angular velocity Ω, we find Γ (GMµ)7Ω when the particle’s Compton wavelength 1/µ is ∼ much greater than the size GM of the spinning object. This rate is parametrically much larger than the instability rate for spin 0 particles, which scales like (GMµ)9Ω.
    [Show full text]
  • Super- and Subradiance by Entangled Free Particles
    Super- and subradiance by entangled free particles Aviv Karnieli1,*, Nicholas Rivera2, Ady Arie3 and Ido Kaminer4 1Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel 2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 3School of Electrical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel 4Department of Electrical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel *corresponding authors: [email protected]; [email protected] When multiple quantum emitters radiate, their emission rate may be enhanced or suppressed due to collective interference in a process known as super- or subradiance. Such processes are well-known to occur also in light emission by free charged particles. To date, all experimental and theoretical studies of super- and subradiance in these systems involved the classical correlations between the emitters. However, dependence on quantum correlations, such as entanglement between different emitting particles, has not been studied. Recent advances in coherent-shaping of free-electron wavefunctions motivate the investigation of such quantum regimes of super- and subradiance. In this Letter, we show how a pair of coincident path-entangled electrons can demonstrate either super- or subradiant light emission, depending on the two-particle wavefunction. By choosing different free-electron Bell-states, the spectrum and emission pattern of the light can be reshaped, in a manner that cannot be accounted for by a classical mixed state. We show these results for light emission in any optical medium, and discuss their generalization to many-body quantum states. Our findings suggest that light emission can be sensitive to the explicit quantum state of the emitting matter wave, and possibly serve as a non-destructive measurement scheme for measuring the quantum state of many-body systems.
    [Show full text]
  • (BEC) with Constant Density
    Analog Black Holes and Energy Extraction by Super-Radiance from Bose Einstein Condensates (BEC) with Constant Density Betül Demirkaya,∗ Tekin Dereli,† Kaan Güven,‡ Department of Physics, Koç University, 34450 Sarıyer, İstanbul, Turkey December 6, 2018 Abstract This paper presents a numerical study of the acoustic superradiance from the single vortex state of a Bose-Einstein condensate (BEC). The draining bathtub model of an incompressible barotropic fluid is adopted to describe the vortex. The propagation of the velocity poten- tial fluctuations are governed by the massless scalar Klein-Gordon wave equation, which establishes the rotating black-hole analogy. Hence, the amplified scattering of these fluctuations from the vortex comprise the superradiance effect. Particular to this study, a coordinate transforma- tion is applied which enables the identification of the event horizon and the ergosphere termwise in the metric. Thus, the respective spectral solutions can be obtained asymptotically at either boundary. Fur- ther, the time-domain calculations of the energy of the propagating perturbations and the independently performed reflection coefficient calculations from the asymptotic solutions of the propagating pertur- bations are shown to be in very good agreement. While the former solution provides the full dynamical behavior of the superradiance, the latter method gives the frequency spectrum of the superradiance as a arXiv:1806.02139v2 [cond-mat.other] 5 Dec 2018 function of the rotational frequency of the vortex. Hence, a compre- hensive analysis of the superradiance effect can be conducted within this workframe. ∗[email protected][email protected][email protected] 1 1 Introduction Analogies in physics enable us to observe a particular phenomenon with the same characteristic features in different systems pertaining to disparate mechanisms and space-time-energy scales.
    [Show full text]
  • Dynamics of Coherent States in Regular and Chaotic Regimes of the Non-Integrable Dicke Model
    Dynamics of Coherent States in Regular and Chaotic Regimes of the Non-integrable Dicke Model S. Lerma-Hernandez´ 1,2,a), J. Chavez-Carlos´ 2, M. A. Bastarrachea-Magnani3, B. Lopez-del-Carpio´ 2 and J. G. Hirsch2 1Facultad de F´ısica,Universidad Veracruzana, Circuito Aguirre Beltr´ans/n, C.P. 91000 Xalapa, Mexico 2Instituto de Ciencias Nucleares, Universidad Nacional Aut´onomade M´exico,Apdo. Postal 70-543, C.P. 04510 Cd. Mx., Mexico 3Physikalisches Institut, Albert-Ludwigs-Universitat Freiburg, Hermann-Herder-Str. 3, Freiburg, Germany, D-79104. a)Corresponding author: [email protected] Abstract. The quantum dynamics of initial coherent states is studied in the Dicke model and correlated with the dynamics, regular or chaotic, of their classical limit. Analytical expressions for the survival probability, i.e. the probability of finding the system in its initial state at time t, are provided in the regular regions of the model. The results for regular regimes are compared with those of the chaotic ones. It is found that initial coherent states in regular regions have a much longer equilibration time than those located in chaotic regions. The properties of the distributions for the initial coherent states in the Hamiltonian eigenbasis are also studied. It is found that for regular states the components with no negligible contribution are organized in sequences of energy levels distributed according to Gaussian functions. In the case of chaotic coherent states, the energy components do not have a simple structure and the number of participating energy levels is larger than in the regular cases. Introduction Simple models, originally proposed to study schematically quantum phenomena present in more realistic and elab- orated systems, have become experimentally feasible.
    [Show full text]