Hawking Radiation Is Probably a Type of Superradiation

Total Page:16

File Type:pdf, Size:1020Kb

Hawking Radiation Is Probably a Type of Superradiation Hawking radiation is probably a type of superradiation Yi-Xiao Zhang South China Normal University, Guangzhou 510006,China Wen-Xiang Chen∗ Department of Astronomy, School of Physics and Materials Science, GuangZhou University In this article, it mainly discusses that when the scalar field equation presets boundary condi- tions, the effective action form of Hawking radiation is consistent with the effective action form of superradiation. From this I conclude that Hawking radiation may be a form of superradiation. Keywords: Hawking radiation, superradiance, effective action I. INTRODUCTION Hawking radiation is a kind of thermal radiation emitted by black holes, which is speculated by quantum effect theory. This theory was put forward by physicist Stephen Hawking in 1974. With the Hawking radiation theory, we can explain how to reduce the mass of black holes to cause black hole evapotranspiration. And because Hawking radiation can cause black holes to lose mass, when black holes lose more mass than they increase, they will shrink and eventually disappear. The divergence of a relatively small black hole is usually larger than that of a normal black hole, so the former shrinks and disappears faster than the latter. Hawking's analysis quickly became the first convincing theory of quantum gravity, although the existence of Hawking radiation has not yet been actually observed. In June 2008, NASA launched the GLAST satellite, which can search for flashes of gamma rays in evaporating black holes. In the theory of extra dimensions, collisions of high-energy particles may also create black holes that disappear by themselves. In September 2010, the results of a simulated gravity study were considered by some scientists to demonstrate the possible existence and possible nature of Hawking radiation for the first time. However, Hawking radiation has not yet been actually observed. A black hole is a place with great gravitation, and the matter around it will be pulled in by gravity. In classical mechanics, its gravity is so strong that even electromagnetic radiation waves cannot escape. Although it is not yet known how to unify gravity and quantum mechanics, the gravitational effect far away from the black hole is so weak that the calculation results can still conform to the quantum field theory framework of curved space-time. Hawking said that quantum effects allow black holes to emit precise black body radiation. This electromagnetic radiation seems to be emitted by a black body whose temperature is inversely proportional to the mass of the black hole. For example, the temperature of a solar-mass black hole is only 60nK; in fact, a black hole absorbs much more ∗Electronic address: wxchen4277@qq.com 2 cosmic microwave background radiation than it emits. A black hole with a mass of 4.5×1022 kg (similar to the mass of the moon) will maintain its temperature at 2.7K and absorb the same amount of radiation as it emits. A smaller primary black hole emits more radiation than it absorbs, and therefore gradually loses mass. Before the concept of Hawking radiation, there was a problem in the physics world. If you throw things with a lot of entropy into a black hole, will that entropy be eliminated, but entropy will never decrease in the universe, so this represents a black hole. There should also be a lot of entropy, and anything with entropy will release black body radiation. Whether black holes will also release black body radiation, but what is the mechanism of release? Hawking radiation explains the mechanism of black body radiation. According to the Heisenberg Uncertainty Principle, many particle-antiparticle (virtual particle) pairs are generated in a vacuum instantly and naturally out of thin air, and they are annihilated in pairs in a very short time, and there is no mass production in the macroscopic view. Physicists such as Yakov Borisovich Zeldovich, Jacob Bekenstein, and Stephen Hawking combined quantum me- chanics and general relativity, and the results showed that the temperature of the horizon is not zero, but also Glow, although extremely weak. This kind of light is the so-called "Hawking radiation"; when two pairs of particles-such as electrons and positrons, or a pair of photons-are created in a strong gravitational field, one of the particles will fall into the black hole, and the other One will flee, thus generating this radiation. If a pair of particles is formed near a black hole, due to the strong gravitational field of the black hole, the paired positive and negative particles are torn apart. It is possible that one of them will fall into the event horizon, and the other will not, thereby being lifted to reality by the black hole's gravity. particle. But this violates the law of conservation of energy, so the mass of another particle must come from the mass of the black hole itself-this is a simplified explanation of the radiation emitted by the black hole. Basically, massive black holes can survive longer. Generally, black holes produced by the death of stars can live for 1066 years, while supermassive black holes can live for 1090 years. Hawking radiation can also explain why we cannot observe the micro-black holes produced when the universe was born because they have evaporated. Absolute vacuum violates the uncertainty principle of quantum mechanics, so it does not exist. When the space moves towards an absolute vacuum, a pair of virtual particles will be produced, and the two particles will disappear after colliding, so that neither quantum mechanics nor the conservation of matter will be violated. When this quantum phenomenon occurs at the edge of the black hole's horizon, the virtual particles outside the horizon can be observed because they are outside the horizon, and thus become real particles, while the virtual particles within the horizon are within the horizon, so Will be swallowed by black holes and will not be observed. Because the particles outside the horizon are real particles with mass, according to the law of conservation of mass and energy, the particles swallowed by the black hole within the horizon have negative mass, so the mass of the black hole will be reduced due to this effect. From the outside, it seems that the black hole is slowly evaporating. The smaller the black hole, the faster the evaporation rate, until the black hole is completely evaporated. In 1972, Press and Teukolsky[18] proposed that it is possible to create a black hole bomb by adding a mirror to the outside of the black hole (a scattering process that, according to current interpretations, involves classical and quantum mechanics)[1,3, 11, 12, 15, 17, 19]). When a bosonic wave is impinging upon a rotating black hole, the wave reflected by the event horizon will be 3 amplified if the wave frequency ! lies in the following superradiant regime[13, 14, 18, 20, 21] a 0 < ! < mΩH ; ΩH = 2 2 ; (1) r+ + a where m is azimuthal number of the bosonic wave mode, ΩH is the angular velocity of black hole horizon.This amplification is called superradiant scattering.Therefore, the rotational energy of the black hole can be extracted by the superradiation process.If there is a mirror between the event horizon of the black hole and the infinite space, the amplified wave will scatter back and forth and grow exponentially, which will cause the superradiation of the black hole to become unstable. Associate Professor Hasegawa Yuji of the Vienna University of Technology and Professor Masaaki Ozawa of Nagoya University and other scholars published empirical results against Heisenberg's uncertainty principle on January 15, 2012[10]. They measured the spin angle of neutrons with two instruments, and calculated the neutrons with a smaller error than the Heisenberg uncertainty principle, which proved that the limit of the measurement method created by the Heisenberg uncertainty principle is wrong. But due to the inherent quantum nature of particles. In that paper[8], the method of my research on superradiation is adopted to relate the uncertainty principle to the superradiation effect. It is found that under the superradiation effect, the measurement range of the uncertainty principle can be reduced. In the paper[5],when ∆x∆p < ~=2 happens at the same time when the entropy reaches its maximum value, the boson will condense, and if there is a potential well but it does not explode, then the boson will gain high energy (more than normal).This article is to illustrate the possibility of a kind of Bose particle to obtain high energy. There is an inference there, quantum radiation cannot produce thermal effects. In the article[5], under super- radiation, first preset the boundary conditions of the boson, it is possible to get a larger energy than the conventional quantum effect, and that extra energy belongs to the classical domain, that is, heat. In this article, it mainly discusses that when the scalar field equation presets boundary conditions, the effective action form of Hawking radiation is consistent with the effective action form of superradiation. From this I conclude that Hawking radiation may be a form of superradiation. II. THE SUPERRADIATION EFFECT OF BOSON SCATTERING We find the Klein-Gordon equation[2] ;µ Φ;µ = 0 ; (2) µ where we defined Φ;µ ≡ (@µ − ieAµ)Φ and e is the charge of the scalar field.We get A = fA0(x); 0g,and eA0(x)can be equal to µ(where µ is the mass). 8 < 0 as x ! −∞ A0 ! : (3) : V as x ! +1 With Φ = e−i!tf(x), which is determined by the ordinary differential equation d2f + (! − eA )2 f = 0 : (4) dx2 0 4 We see that particles coming from −∞ and scattering off the potential with reflection and transmission amplitudes R and T respectively.
Recommended publications
  • Dicke's Superradiance in Astrophysics
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 9-1-2016 12:00 AM Dicke’s Superradiance in Astrophysics Fereshteh Rajabi The University of Western Ontario Supervisor Prof. Martin Houde The University of Western Ontario Graduate Program in Physics A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Fereshteh Rajabi 2016 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Physical Processes Commons, Quantum Physics Commons, and the Stars, Interstellar Medium and the Galaxy Commons Recommended Citation Rajabi, Fereshteh, "Dicke’s Superradiance in Astrophysics" (2016). Electronic Thesis and Dissertation Repository. 4068. https://ir.lib.uwo.ca/etd/4068 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. Abstract It is generally assumed that in the interstellar medium much of the emission emanating from atomic and molecular transitions within a radiating gas happen independently for each atom or molecule, but as was pointed out by R. H. Dicke in a seminal paper several decades ago this assumption does not apply in all conditions. As will be discussed in this thesis, and following Dicke's original analysis, closely packed atoms/molecules can interact with their common electromagnetic field and radiate coherently through an effect he named superra- diance. Superradiance is a cooperative quantum mechanical phenomenon characterized by high intensity, spatially compact, burst-like features taking place over a wide range of time- scales, depending on the size and physical conditions present in the regions harbouring such sources of radiation.
    [Show full text]
  • Black Hole Termodinamics and Hawking Radiation
    Black hole thermodynamics and Hawking radiation (Just an overview by a non-expert on the field!) Renato Fonseca - 26 March 2018 – for the Journal Club Thermodynamics meets GR • Research in the 70’s convincingly brought together two very different areas of physics: thermodynamics and General Relativity • People realized that black holes (BHs) followed some laws similar to the ones observed in thermodynamics • It was then possible to associate a temperature to BHs. But was this just a coincidence? • No. Hawkings (1975) showed using QFT in curved space that BHs from gravitational collapse radiate as a black body with a certain temperature T Black Holes Schwarzschild metric (for BHs with no spin nor electric charge) • All coordinates (t,r,theta,phi) are what you think they are far from the central mass M • Something funny seems to happen for r=2M. But … locally there is nothing special there (only at r=0): r=0: real/intrinsic singularity r=2M: apparent singularity (can be removed with other coordinates) Important caveat: the Schwarzschild solution is NOT what is called maximal. With coordinates change we can get the Kruskal solution, which is. “Maximal”= ability to continue geodesics until infinity or an intrinsic singularity Schwarzschild metric (for BHs with no spin nor electric charge) • r=2M (event horizon) is not special for its LOCAL properties (curvature, etc) but rather for its GLOBAL properties: r<=2M are closed trapped surfaces which cannot communicate with the outside world [dr/dt=0 at r=2M even for light] Fun fact: for null geodesics (=light) we see that +/- = light going out/in One can even integrate this: t=infinite for even light to fall into the BH! This is what an observatory at infinity sees … (Penrose, 1969) Schwarzschild metric (digression) • But the object itself does fall into the BH.
    [Show full text]
  • Hawking Radiation As Perceived by Different Observers L C Barbado, C Barceló, L J Garay
    Hawking radiation as perceived by different observers L C Barbado, C Barceló, L J Garay To cite this version: L C Barbado, C Barceló, L J Garay. Hawking radiation as perceived by different observers. Classical and Quantum Gravity, IOP Publishing, 2011, 10 (12), pp.125021. 10.1088/0264-9381/28/12/125021. hal-00710459 HAL Id: hal-00710459 https://hal.archives-ouvertes.fr/hal-00710459 Submitted on 21 Jun 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Confidential: not for distribution. Submitted to IOP Publishing for peer review 24 March 2011 Hawking radiation as perceived by different observers LCBarbado1,CBarcel´o1 and L J Garay2,3 1 Instituto de Astrof´ısica de Andaluc´ıa(CSIC),GlorietadelaAstronom´ıa, 18008 Granada, Spain 2 Departamento de F´ısica Te´orica II, Universidad Complutense de Madrid, 28040 Madrid, Spain 3 Instituto de Estructura de la Materia (CSIC), Serrano 121, 28006 Madrid, Spain E-mail: luiscb@iaa.es, carlos@iaa.es, luis.garay@fis.ucm.es Abstract. We use a method recently introduced in Barcel´o et al, 10.1103/Phys- RevD.83.041501, to analyse Hawking radiation in a Schwarzschild black hole as per- ceived by different observers in the system.
    [Show full text]
  • Effect of Quantum Gravity on the Stability of Black Holes
    S S symmetry Article Effect of Quantum Gravity on the Stability of Black Holes Riasat Ali 1 , Kazuharu Bamba 2,* and Syed Asif Ali Shah 1 1 Department of Mathematics, GC University Faisalabad Layyah Campus, Layyah 31200, Pakistan; riasatyasin@gmail.com (R.A.); asifalishah695@gmail.com (S.A.A.S.) 2 Division of Human Support System, Faculty of Symbiotic Systems Science, Fukushima University, Fukushima 960-1296, Japan * Correspondence: bamba@sss.fukushima-u.ac.jp Received: 10 April 2019; Accepted: 26 April 2019; Published: 5 May 2019 Abstract: We investigate the massive vector field equation with the WKB approximation. The tunneling mechanism of charged bosons from the gauged super-gravity black hole is observed. It is shown that the appropriate radiation consistent with black holes can be obtained in general under the condition that back reaction of the emitted charged particle with self-gravitational interaction is neglected. The computed temperatures are dependant on the geometry of black hole and quantum gravity. We also explore the corrections to the charged bosons by analyzing tunneling probability, the emission radiation by taking quantum gravity into consideration and the conservation of charge and energy. Furthermore, we study the quantum gravity effect on radiation and discuss the instability and stability of black hole. Keywords: higher dimension gauged super-gravity black hole; quantum gravity; quantum tunneling phenomenon; Hawking radiation 1. Introduction General relativity is associated with the thermodynamics and quantum effect which are strongly supportive of each other. A black hole (BH) is a compact object whose gravitational pull is so intense that can not escape the light.
    [Show full text]
  • Schwarzschild Black Hole Can Also Produce Super-Radiation Phenomena
    Schwarzschild black hole can also produce super-radiation phenomena Wen-Xiang Chen∗ Department of Astronomy, School of Physics and Materials Science, GuangZhou University According to traditional theory, the Schwarzschild black hole does not produce super radiation. If the boundary conditions are set in advance, the possibility is combined with the wave function of the coupling of the boson in the Schwarzschild black hole, and the mass of the incident boson acts as a mirror, so even if the Schwarzschild black hole can also produce super-radiation phenomena. Keywords: Schwarzschild black hole, superradiance, Wronskian determinant I. INTRODUCTION In a closely related study in 1962, Roger Penrose proposed a theory that by using point particles, it is possible to extract rotational energy from black holes. The Penrose process describes the fact that the Kerr black hole energy layer region may have negative energy relative to the observer outside the horizon. When a particle falls into the energy layer region, such a process may occur: the particle from the black hole To escape, its energy is greater than the initial state. It can also show that in Reissner-Nordstrom (charged, static) and rotating black holes, a generalized ergoregion and similar energy extraction process is possible. The Penrose process is a process inferred by Roger Penrose that can extract energy from a rotating black hole. Because the rotating energy is at the position of the black hole, not in the event horizon, but in the area called the energy layer in Kerr space-time, where the particles must be like a propelling locomotive, rotating with space-time, so it is possible to extract energy .
    [Show full text]
  • Firewalls and the Quantum Properties of Black Holes
    Firewalls and the Quantum Properties of Black Holes A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science degree in Physics from the College of William and Mary by Dylan Louis Veyrat Advisor: Marc Sher Senior Research Coordinator: Gina Hoatson Date: May 10, 2015 1 Abstract With the proposal of black hole complementarity as a solution to the information paradox resulting from the existence of black holes, a new problem has become apparent. Complementarity requires a vio- lation of monogamy of entanglement that can be avoided in one of two ways: a violation of Einstein’s equivalence principle, or a reworking of Quantum Field Theory [1]. The existence of a barrier of high-energy quanta - or “firewall” - at the event horizon is the first of these two resolutions, and this paper aims to discuss it, for Schwarzschild as well as Kerr and Reissner-Nordstr¨omblack holes, and to compare it to alternate proposals. 1 Introduction, Hawking Radiation While black holes continue to present problems for the physical theories of today, quite a few steps have been made in the direction of understanding the physics describing them, and, consequently, in the direction of a consistent theory of quantum gravity. Two of the most central concepts in the effort to understand black holes are the black hole information paradox and the existence of Hawking radiation [2]. Perhaps the most apparent result of black holes (which are a consequence of general relativity) that disagrees with quantum principles is the possibility of information loss. Since the only possible direction in which to pass through the event horizon is in, toward the singularity, it would seem that information 2 entering a black hole could never be retrieved.
    [Show full text]
  • Arxiv:1410.1486V2 [Gr-Qc] 26 Aug 2015
    October 2014 Black Hole Thermodynamics S. Carlip∗ Department of Physics University of California Davis, CA 95616 USA Abstract The discovery in the early 1970s that black holes radiate as black bodies has radically affected our understanding of general relativity, and offered us some early hints about the nature of quantum gravity. In this chapter I will review the discovery of black hole thermodynamics and summarize the many indepen- dent ways of obtaining the thermodynamic and (perhaps) statistical mechanical properties of black holes. I will then describe some of the remaining puzzles, including the nature of the quantum microstates, the problem of universality, and the information loss paradox. arXiv:1410.1486v2 [gr-qc] 26 Aug 2015 ∗email: carlip@physics.ucdavis.edu 1 Introduction The surprising discovery that black holes behave as thermodynamic objects has radically affected our understanding of general relativity and its relationship to quantum field theory. In the early 1970s, Bekenstein [1, 2] and Hawking [3, 4] showed that black holes radiate as black bodies, with characteristic temperatures and entropies ~κ Ahor kTH = ;SBH = ; (1.1) 2π 4~G where κ is the surface gravity and Ahor is the area of the horizon. These quantities appear to be inherently quantum gravitational, in the sense that they depend on both Planck's constant ~ and Newton's constant G. The resulting black body radiation, Hawking radiation, has not yet been directly observed: the temperature of an astrophysical black hole is on the order of a microkelvin, far lower than the cosmic microwave background temperature. But the Hawking temperature and the Bekenstein-Hawking entropy have been derived in so many independent ways, in different settings and with different assumptions, that it seems extraordinarily unlikely that they are not real.
    [Show full text]
  • BLACK HOLE THERMODYNAMICS the Horizon Area Theorem 1970: Stephen Hawking Uses the Theory of General Relativity to Derive the So-Called
    BLACK HOLE THERMODYNAMICS The horizon area theorem 1970: Stephen Hawking uses the theory of general relativity to derive the so-called Horizon area theorem The total horizon area in a closed system containing black holes never decreases. It can only increase or stay the same. [Stephen Hawking] Analogy between the area theorem and the 2nd law of thermodynamic Shortly after Stephen Hawking Formulated the area theorem, Jacob Beckenstein, at the time a graduate student at Princeton, noticed the analogy between the area theorem and the 2nd law of thermodynamics: [Jacob Beckenstein] The total area of a closed system never decreases. Entropy: logarithm of the number of ways you can relocate the atoms and molecules of a system without changing the overall properties of the system. Example of entropy: toys in a playroom (Thorne, pg. 424) Extremely orderly: 20 toys on 1 tile This playroom floor has 100 tiles, on which the kids can arrange 20 different toys. Parents prefer the toys to be kept in an extremely orderly configuration, with all the toys piled on one tile in one corner, as shown. There is only one such arrangement; the entropy of this configuration is thus the Number of equivalent rearrangements = 1; logarithm of 1, which is zero. entropy = 0. [This and next two slides courtesy of D. Watson] Entropy in a playroom (continued) Orderly: 20 toys on 10 tiles Parents might even accept this somewhat less orderly configuration: 20 different toys on 10 specific tiles. But there are lots of different equivalent arrangements (e.g. swapping the positions of two toys on different tiles produces a different arrangement that’s still acceptable): 1020 of them, in Number of equivalent rearrangements = 1020; fact, for an entropy value of “entropy” = 20.
    [Show full text]
  • Coherently Amplifying Photon Production from Vacuum with a Dense Cloud of Accelerating Photodetectors ✉ Hui Wang 1 & Miles Blencowe 1
    ARTICLE https://doi.org/10.1038/s42005-021-00622-3 OPEN Coherently amplifying photon production from vacuum with a dense cloud of accelerating photodetectors ✉ Hui Wang 1 & Miles Blencowe 1 An accelerating photodetector is predicted to see photons in the electromagnetic vacuum. However, the extreme accelerations required have prevented the direct experimental ver- ification of this quantum vacuum effect. In this work, we consider many accelerating pho- todetectors that are contained within an electromagnetic cavity. We show that the resulting photon production from the cavity vacuum can be collectively enhanced such as to be 1234567890():,; measurable. The combined cavity-photodetectors system maps onto a parametrically driven Dicke-type model; when the detector number exceeds a certain critical value, the vacuum photon production undergoes a phase transition from a normal phase to an enhanced superradiant-like, inverted lasing phase. Such a model may be realized as a mechanical membrane with a dense concentration of optically active defects undergoing gigahertz flexural motion within a superconducting microwave cavity. We provide estimates suggesting that recent related experimental devices are close to demonstrating this inverted, vacuum photon lasing phase. ✉ 1 Department of Physics and Astronomy, Dartmouth College, Hanover, NH, USA. email: hui.wang-2.gr@dartmouth.edu COMMUNICATIONS PHYSICS | (2021) 4:128 | https://doi.org/10.1038/s42005-021-00622-3 | www.nature.com/commsphys 1 ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00622-3 ne of the most striking consequences of the interplay Cavity wall Obetween relativity and the uncertainty principle is the predicted detection of real photons from the quantum fi TLS defects electromagnetic eld vacuum by non-inertial, accelerating pho- Cavity mode todetectors.
    [Show full text]
  • Black Hole Thermodynamics
    Black Hole Thermodynamics Reading: Wald 12.5 There is good evidence that after formation black holes relax to stationary configurations, characterized by mass, angular momentum, and gauge charges. This is a negligible amount of data compared to the many ways we can form black holes, suggesting that they ought to be thought of as thermodynamic entities. If so we need to identify their temperature and entropy and ask if they satisfy the laws of thermodynamics. This was a great discovery by Bekenstein and Hawking who showed black holes are thermal only after quantum effects are taken into account and their entropy is the horizon area=4G. To motivate these answers, let us return to the Kerr solution and consider the area of a constant t section of the horizon. The induced metric is (r2 + a2)2 ds2 = Σdθ2 + + sin2 θ d'2; (1) Σ and the resulting area is 2 2 2 2 p 4 4 2 2 A = 4π(r+ + a ) = 8π(G M + G M − G J ): (2) In the last step we used J = Ma and the definition of r+ to write A in terms of black hole mass and spin. Under an infinitesimal change dM and dJ, we obtaind p G4M 4 − G2J 2 dM = Ω dJ + dA: (3) H 2G2MA This equation is reminding of the first law of thermodynamics dE = µdQ + T dS (in a system with rotation symmetry, Ω is the chemical potential associated to the conserved charge J). It suggests identifying the horizon area with black hole entropy SBH / A; (4) though we need a different calculation to determine the temperature and hence the (positive) proportionality constant.
    [Show full text]
  • Dicke Superradiance in Solids [Invited]
    C80 Vol. 33, No. 7 / July 2016 / Journal of the Optical Society of America B Review Dicke superradiance in solids [Invited] 1 1 2 1 2 KANKAN CONG, QI ZHANG, YONGRUI WANG, G. TIMOTHY NOE II, ALEXEY BELYANIN, AND 1,3,4, JUNICHIRO KONO * 1Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA 2Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA 3Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA 4Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA *Corresponding author: kono@rice.edu Received 18 February 2016; revised 7 April 2016; accepted 7 April 2016; posted 8 April 2016 (Doc. ID 259437); published 13 May 2016 Recent advances in optical studies of condensed matter systems have led to the emergence of a variety of phenomena that have conventionally been studied in the realm of quantum optics. These studies have not only deepened our understanding of light–matter interactions but have also introduced aspects of many-body corre- lations inherent in optical processes in condensed matter systems. This paper is concerned with the phenomenon of superradiance (SR), a profound quantum optical process originally predicted by Dicke in 1954. The basic concept of SR applies to a general N body system, where constituent oscillating dipoles couple together through interaction with a common light field and accelerate the radiative decay of the whole system. Hence, the term SR ubiquitously appears in order to describe radiative coupling of an arbitrary number of oscillators in many situations in modern science of both classical and quantum description.
    [Show full text]
  • The Black Hole Bomb and Superradiant Instabilities
    The black hole bomb and superradiant instabilities Vitor Cardoso∗ Centro de F´ısica Computacional, Universidade de Coimbra, P-3004-516 Coimbra, Portugal Oscar´ J. C. Dias† Centro Multidisciplinar de Astrof´ısica - CENTRA, Departamento de F´ısica, F.C.T., Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal Jos´e P. S. Lemos‡ Centro Multidisciplinar de Astrof´ısica - CENTRA, Departamento de F´ısica, Instituto Superior T´ecnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal Shijun Yoshida§ Centro Multidisciplinar de Astrof´ısica - CENTRA, Departamento de F´ısica, Instituto Superior T´ecnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal ¶ (Dated: February 1, 2008) A wave impinging on a Kerr black hole can be amplified as it scatters off the hole if certain conditions are satisfied giving rise to superradiant scattering. By placing a mirror around the black hole one can make the system unstable. This is the black hole bomb of Press and Teukolsky. We investigate in detail this process and compute the growing timescales and oscillation frequencies as a function of the mirror’s location. It is found that in order for the system black hole plus mirror to become unstable there is a minimum distance at which the mirror must be located. We also give an explicit example showing that such a bomb can be built. In addition, our arguments enable us to justify why large Kerr-AdS black holes are stable and small Kerr-AdS black holes should be unstable. PACS numbers: 04.70.-s I. INTRODUCTION one can extract as much rotational energy as one likes from the black hole.
    [Show full text]