Dicke Superradiance

Dicke Superradiance

01/13 Pavel Cejnar IPNP MFF UK Superradiance 02/13 Legacy of Robert Dicke 1946 – Dicke radiometer (development of radar) 1953 – Dicke narrowing (analogous to Mössbauer effect, 1958) 1954 – Dicke superradiance Robert Henry Dicke (1916-97) 1956 – infrared laser (US patent in 1958, same as Townes & Schawlow in US, and Prokhorov in CCCP) 1965 – prediction (with Peebles, Roll & Wilkinson) of cosmic microwave background (1965 discovered by Penzias & Wilson using Dicke radiometer) 1957-70 – renaissance of gravitation and cosmology (alternative theory to general relativity, anthropic principle…) 03/13 Dicke Superradiance Cited in: Quantum optics, Condensed matter + Solid state physics (incl. graphene), Astrophysics, Nuclear physics, Biophysics + Biology (incl. neurosciences), Engineering … 04/13 Dicke Superradiance A collection of phenomena named “superradiance” 1) Superradiant flash enhanced non-exponential irradiation of coherent sources 2) Superradiant phase transitions thermal/quantum phase transitions from normal to superradiant phase in interacting matter−field systems 3) Non-hermitian superradiance separation of long- and short-lived states in systems coupled to continuum 4) Zel’dovich-Misner-Unruh superradiance amplification of radiation by rotating black holes …………….. …………….. 05/13 Superradiant flash A sample of N n* two-level atoms M. Gross, S. Haroche, Phys. Rep. 93, 301 (1982) N n* 1) Independent radiators t / d N t / n*(t) Ne I(t) dt n*(t) e t Probability that n photons was emitted I N from a sample of N≈3200 atoms [Raimond et al. 1982] 2) Coherent (collective) radiators t N I N 2 Superradiant pulse in optically pumped HF gas [Skribanowitz et al. 1973] 06/13 cavity Superradiant flash volume V 0 Dicke model N two-level atoms A schematic model for cavity QED: interaction sample volume V of single-mode radiation with two-level atoms 0 n single-ω N N photons 1 i i i H 0 2 z b b x (b b) i1 i1 N 1 0 0 1 1 i 1 i 0d V0 N D 2 2 • dipole approximation 0 1 cos 1 0 i D,d … dipole operator, matrix element 0 V V0 phase ε … electric field intensity • neglect of the A2 term V0 V i i N N N 1 i i i i J σ H 1 b b 1 1 (b b) 2 0 2 z 2 2 i1 i1 N i1 total quasi-spin operators J0 J J Conserved quantity H J b b J J b b 2 0 0 N J j( j 1) 07/13 Superradiant flash Dicke model Hilbert space 12 3 N bases n N dimA=2 1 2 3 N 0 , 1 , 2 dimF=∞ 12 3 N N j max 2 dimj=2j+1 0 (N even) N!(2 j 1) jmin Rj 1 (N odd) N N 2 ( 2 j 1)!( 2 j)! R N 1 j 2 2 j log10 Rj N 2 j n* jm [0,2 j]=number of exc.atoms N=40 j 08/13 j N Superradiant flash 2 m=+j n*=2j J b J b decay I j N Dicke model m=+j−1 H 0 J0 b b J J b b N Hint j(m 1) J jm j( j 1) m(m 1) ( j m)( j m 1) 2 I j(m 1) J jm Approximate solution of the decay dynamics: d 2 2 Pjm F, j(m 1) Hint F, jm Pjm F, jm Hint F, j(m 1) Pj(m1) m=+½ dt I j2 N 2 j( j1)m(m1) j( j1)(m1)m m=−½ d d m m P ( j m)( j m 1) jm m j tanh j(t t0 ) dt m dt j 2 m2 +j d I N 2 m dt 1 t m t N 0 t n*=2 t0 t m=−j+1 n*=1 I j N m=−j n*=0 −j 09/13 Superradiant phase transitions J b J b Dicke model H 0 J0 b b J J b b m n N John Daniel Edward Hint M 0 : n,n* 0,0 In this approximation, n* "Jack" Torrance the model conserves M 1: n,n* 0,1 1,0 (? – ?) the quantity M n m j M 2 : n,n* 0,2 1,1 2,0 Assume the resonant case 0 M=0: H0 j 0 E M=1: 0 2 j H ( j1) Quantum Phase 1 ω N 2 j 0 Transition M=2: 0 2(2 j 1) 0 Superradiant H ( j 2) 2(2 j 1) 0 4 j ω 2 phase N Normal phase 0 4 j 0 −ωj N c ( j) 2 j λ 10/13 Superradiant phase transitions Dicke model extended [0,1] ˆ H 0 J0 b b b J bJ [ b J bJ ] N N N 6, j 2 Thermal Phase Transition QPT QPT QPT 0 0.3 1 normal superradiant / 0 0 N Tc 2 2 2artanh ( N ) / c ( j) [ c 2 ] 1 2 j 11/13 Superradiant phase transitions Theory of superradiant phase transitions: Thermal: Y.K. Wang, F.T. Hioe, Phys. Rev. A 7, 831 (1973) K. Hepp, E.H. Lieb, Phys. Rev. A 8, 2517 (1973) Quantum: C. Emary, T. Brandes, Phys. Rev. Lett. 90, 044101 (2003) Experiment F. Dimer et al., Phys. Rev. A 75, 013804 (2007) … proposal K. Baumann et al., Nature 464, 1301 (2010), Phys. Rev. Lett. 107, Realization by means of BEC at T≈50nK in optical cavity 140402 (2011) Spatial redistribution of BEC leads to undercritical constructive pumping field interference of reflected waves pumping field of overcritical power 12/13 Non-hermitian superradiance Quasi-bound quantum system with a common set of decay channels. Increasing coupling to continuum leads to seggregation of long-lived (compound) and short-lived (superradiant) resonance states. Applications in nuclear physics (e.g. giant & pygmy resonances…), particle physics (baryon resonances) biophysics (photosynthesis), graphene… Recent reviews: N. Auerbach, V. Zelevinsky, Rep. Prog. Phys. 74, 106301 (2011), I. Rotter, J.P. Bird, Rep. Prog. Phys. 78, 114001 (2015) A. Volya, V. Zelevinsky, AIP Conf.Proc. 777, 229 (2004) 13/13 ěkuji ! Thank you !.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    13 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us