A Double-Hexameric MCM2-7 Complex Is Loaded Onto Origin DNA During Licensing of Eukaryotic DNA Replication

Total Page:16

File Type:pdf, Size:1020Kb

A Double-Hexameric MCM2-7 Complex Is Loaded Onto Origin DNA During Licensing of Eukaryotic DNA Replication A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication Cecile Evrina, Pippa Clarkea, Juergen Zecha, Rudi Lurzb, Jingchuan Sunc, Stefan Uhlea,1, Huilin Lic, Bruce Stillmand,2, and Christian Specka,2 aDNA Replication Group, Medical Research Council Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom; bMicroscopy Unit, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; cBiology Department, Brookhaven National Laboratory, Upton, NY 11973; and dCold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 Contributed by Bruce Stillman, October 6, 2009 (sent for review September 22, 2009) During pre-replication complex (pre-RC) formation, origin recog- to form the pre-initiation complex (pre-IC). Binding of pre-IC nition complex (ORC), Cdc6, and Cdt1 cooperatively load the proteins and protein kinase activity stimulates MCM2-7 helicase 6-subunit mini chromosome maintenance (MCM2-7) complex onto activity (13). Pre-IC formation culminates in the recruitment of DNA. Loading of MCM2-7 is a prerequisite for DNA licensing that DNA polymerases and the start of active DNA replication (14). restricts DNA replication to once per cell cycle. During S phase ORC and Cdc6 belong to the AAAϩ family of ATP binding MCM2-7 functions as part of the replicative helicase but within the proteins (4, 15), a family that commonly forms ring- or spiral- pre-RC MCM2-7 is inactive. The organization of replicative DNA shaped structures. A spiral-shaped structure consisting of 5 helicases before and after loading onto DNA has been studied in AAAϩ proteins within the replication factor C (RFC) complex bacteria and viruses but not eukaryotes and is of major importance functions to destabilize the homotrimeric proliferating cell nu- for understanding the MCM2-7 loading mechanism and replisome clear antigen (PCNA) ring during PCNA loading onto DNA. In assembly. Lack of an efficient reconstituted pre-RC system has an analogous scenario it is possible that ORC-Cdc6 could hindered the detailed mechanistic and structural analysis of destabilize the MCM2-7 ring. This would result in ring opening MCM2-7 loading for a long time. We have reconstituted Saccha- during the MCM2-7 loading reaction (4, 16). romyces cerevisiae pre-RC formation with purified proteins and MCM2-7 is the best candidate for the eukaryotic replicative showed efficient loading of MCM2-7 onto origin DNA in vitro. helicase, because it can unwind DNA (17) and travels with the MCM2-7 loading was found to be dependent on the presence of all fork (18). However, MCM2-7 alone is a very weak helicase and pre-RC proteins, origin DNA, and ATP hydrolysis. The quaternary requires further proteins (Cdc45 and GINS) or posttranslational structure of MCM2-7 changes during pre-RC formation: MCM2-7 modifications for full activity (17, 19). For a long time, analysis before loading is a single hexamer in solution but is transformed of MCM2-7’s role in pre-RC formation and MCM2-7’s helicase into a double-hexamer during pre-RC formation. Using electron activity was hampered by the fact that MCM2-7 can form microscopy (EM), we observed that loaded MCM2-7 encircles DNA. multiple complexes in vitro. MCM2-7 exists as MCM467, The loaded MCM2-7 complex can slide on DNA, and sliding is not MCM35, MCM2-7, and other subcomplexes. Previous MCM2-7 directional. Our results provide key insights into mechanisms of purifications contained a mixture of different complexes varying pre-RC formation and have important implications for understand- in mass, ranging from single subunit monomers to very large ing the role of the MCM2-7 in establishment of bidirectional aggregated complexes (17, 20, 21). Until now the structure of replication forks. eukaryotic MCM2-7 before, during, and after loading remained poorly understood. helicase ͉ initiation ͉ mini chromosome maintenance ͉ ORC ͉ pre-RC In this study we developed a purification method for MCM2-7 from yeast that enabled reconstitution of pre-RC formation in NA replication is a precisely ordered process that requires vitro. Parallel biochemical and EM approaches showed that Dthe stepwise assembly of the replication machinery (1). The MCM2-7, although a single hexamer in solution, forms a double sites of replication protein assembly occur on DNA replication hexamer that can slide on DNA after loading. These results have origins or autonomous replicating sequences (ARS). In eukary- important implications for understanding how DNA is licensed otic cells, origins are recognized by a conserved 6-protein origin and how replication forks are formed. recognition complex (ORC) (2). ORC is bound to DNA throughout the cell cycle and during late M/early G1 phase Results recruits the Cdc6 protein, which facilitates MCM2-7 loading Purification of a Single-Hexameric MCM2-7 Complex. Loading of (3–5). Cdt1 forms a complex with MCM2-7 during late M phase MCM2-7 onto DNA during pre-RC formation is inhibited by (6). Within the nucleus Cdt1 recruits MCM2-7 to the ORC- B-type cyclin-dependent kinases (22). To obtain an MCM2-7 Cdc6-DNA complex via an interaction with Orc6 to form a complex competent for pre-RC formation, we expressed prereplication complex (pre-RC) (5). Cdc6 ATP hydrolysis is required for MCM2-7 loading, and Orc1 ATP hydrolysis pro- motes the release of the MCM2-7 complex from ORC to finish Author contributions: C.E., P.C., R.L., J.S., H.L., and C.S. designed research; C.E., P.C., R.L., J.S., the process of pre-RC formation and DNA licensing (7, 8). and C.S. performed research; C.E., J.Z., S.U., and C.S. contributed new reagents/analytic tools; C.E., P.C., J.Z., R.L., J.S., H.L., B.S., and C.S. analyzed data; and C.E., P.C., J.Z., R.L., J.S., Although only 2 MCM2-7 hexamers are needed to establish H.L., B.S., and C.S. wrote the paper. bidirectional replication forks at an origin, between 10 and 20 The authors declare no conflict of interest. MCM2-7 complexes are loaded onto each replication origin 1Present address: MBM ScienceBridge GmbH, Hans-Adolf-Krebs-Weg 1, 37077 Go¨ttingen, during G1 in animal cells (9). The additional loaded MCM2-7 Germany. complexes function to protect cells from replicative stress (10, 2To whom correspondence may be addressed. E-mail: [email protected] or christian. 11). Once the MCM2-7 complex is loaded onto DNA it becomes [email protected]. resistant to high salt, suggesting that it is physically linked to This article contains supporting information online at www.pnas.org/cgi/content/full/ DNA (12). During the G1/S transition the pre-RC is remodeled 0911500106/DCSupplemental. 20240–20245 ͉ PNAS ͉ December 1, 2009 ͉ vol. 106 ͉ no. 48 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0911500106 Downloaded by guest on September 30, 2021 A Co-expression of MCM2-7 in yeast and G1 arrest A HA-Mcm3 IP and HA peptide elution MCM2-7 / origin Superdex 200 gelfiltration Cdt1 + MCM2-7 ORC Cdc6 0.17 0.08 0.04 0.67 Concentration of MCM2-7 on Centricon (100K) 0.34 -Cdt1 pre-RC + high salt pre-RC + high -ORC -DNA pre-RC –Cdc6 load -MCM2-7 B C Mcm6 Mcm3 232 kD 440 kD 1338 kD 158 kD 669 kD void load Mcm2 Mcm4 1 2 3- 456789 10- 1112131415 Mcm7 Mcm5 S S 21 345678910 11 12 13 14 15 16 B γ γ C ATP ATP ATP ATP Fig. 1. MCM2-7 purification and characterization. (A) Strategy for the salt wash: + -- + expression and purification of MCM2-7. (B) Two micrograms of purified mut ARS1 mut ARS1 ARS1 ARS1 MCM2-7 was fractionated on a Superose 6 column. Arrows indicate fraction- salt wash - + - + ation of marker proteins (see Materials and Methods). Load (lane 1) and elution fractions (lanes 2–16) were separated by 7.5% SDS-PAGE and the proteins visualized by silver staining. MCM2-7 peaked at the 669-kDa marker (lane 11), which is consistent with their calculated mass of 605 kDa. (C) Purified MCM2-7 was separated on a 10% SDS-PAGE. 1234 MCM2-7 in yeast cells arrested in G1 phase when B-type 12 34 cyclin-dependent kinases were inactive (Fig. 1A). We used an BIOCHEMISTRY HA-tagged Mcm3 subunit to enrich for a population of MCM2-7 Fig. 2. In vitro reconstitution of pre-RC formation. (A) Loading of MCM2-7 devoid of MCM467, a well-known contaminating subcomplex is dependent on ORC, Cdc6, Cdt1, and DNA. Pre-RC assembly was performed with 6 nM pUC19ARS1, 40 nM ORC, 80 nM Cdc6, 40 nM Cdt1, and 40 nM that has a similar size as MCM2-7 and has helicase activity (23). MCM2-7. Lanes 1–3: 10% load of each protein used in the reaction. Lanes 4–8: The HA affinity-purified material was then applied to a gel- 1 component was absent from the reaction: DNA, ORC, Cdc6, Cdt1, or filtration column to remove the smaller MCM35 subcomplex. MCM2-7. Complete pre-RC reaction (lane 9) and salt-extracted pre-RC reaction The final MCM2-7 preparation was analyzed on a gel-filtration (lane 10). Lanes 11–15: quantification of the number of hexameric MCM2-7 column and eluted in the same fraction as the 669-kDa marker per origin DNA. (B) In vitro pre-RC formation is ATP dependent. The reactions protein (Fig. 1B). This fractionation result is consistent with the were carried out as in A with ATP (lanes 1 and 2) or with the nonhydrolyzable ␥ calculated molecular mass of 605 kDa for MCM2-7.
Recommended publications
  • The Architecture of a Eukaryotic Replisome
    The Architecture of a Eukaryotic Replisome Jingchuan Sun1,2, Yi Shi3, Roxana E. Georgescu3,4, Zuanning Yuan1,2, Brian T. Chait3, Huilin Li*1,2, Michael E. O’Donnell*3,4 1 Biosciences Department, Brookhaven National Laboratory, Upton, New York, USA 2 Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, New York, USA. 3 The Rockefeller University, 1230 York Avenue, New York, New York, USA. 4 Howard Hughes Medical Institute *Correspondence and requests for materials should be addressed to M.O.D. ([email protected]) or H.L. ([email protected]) ABSTRACT At the eukaryotic DNA replication fork, it is widely believed that the Cdc45-Mcm2-7-GINS (CMG) helicase leads the way in front to unwind DNA, and that DNA polymerases (Pol) trail behind the helicase. Here we use single particle electron microscopy to directly image a replisome. Contrary to expectations, the leading strand Pol ε is positioned ahead of CMG helicase, while Ctf4 and the lagging strand Pol α-primase (Pol α) are behind the helicase. This unexpected architecture indicates that the leading strand DNA travels a long distance before reaching Pol ε, it first threads through the Mcm2-7 ring, then makes a U-turn at the bottom to reach Pol ε at the top of CMG. Our work reveals an unexpected configuration of the eukaryotic replisome, suggests possible reasons for this architecture, and provides a basis for further structural and biochemical replisome studies. INTRODUCTION DNA is replicated by a multi-protein machinery referred to as a replisome 1,2. Replisomes contain a helicase to unwind DNA, DNA polymerases that synthesize the leading and lagging strands, and a primase that makes short primed sites to initiate DNA synthesis on both strands.
    [Show full text]
  • Orpl, a Member of the Cdcl8/Cdc6 Family of S-Phase Regulators, Is Homologous to a Component of the Origin Recognition Complex M
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 12475-12479, December 1995 Genetics Orpl, a member of the Cdcl8/Cdc6 family of S-phase regulators, is homologous to a component of the origin recognition complex M. MuzI-FALCONI AND THOMAS J. KELLY Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Contributed by Thomas J. Kelly, September 11, 1995 ABSTRACT cdc18+ of Schizosaccharomyces pombe is a is the cdcJ8+ gene (1, 15). Expression of cdcJ8+ from a periodically expressed gene that is required for entry into S heterologous promoter is sufficient to rescue the lethality of a phase and for the coordination of S phase with mitosis. cdc18+ conditional temperature-sensitive (ts) cdc O's mutant. The is related to the Saccharomyces cerevisiae gene CDC6, which has cdcJ8+ gene product, a 65-kDa protein, is essential for the also been implicated in the control of DNA replication. We GI/S transition. Moreover, p65cdclS is a highly labile protein have identified a new Sch. pombe gene, orpl1, that encodes an whose expression is confined to a narrow window at the G,/S 80-kDa protein with amino acid sequence motifs conserved in boundary (unpublished data). These properties are consistent the Cdc18 and Cdc6 proteins. Genetic analysis indicates that with the hypothesis that Cdc18 may play an important role in orpi + is essential for viability. Germinating spores lacking the regulating the initiation of DNA replication at S phase. The orpl + gene are capable of undergoing one or more rounds of Cdc18 protein is homologous to the budding yeast Cdc6 DNA replication but fail to progress further, arresting as long protein, which may have a similar function (16).
    [Show full text]
  • Derepression of Htert Gene Expression Promotes Escape from Oncogene-Induced Cellular Senescence
    Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence Priyanka L. Patela, Anitha Surama, Neena Miranib, Oliver Bischofc,d, and Utz Herbiga,e,1 aNew Jersey Medical School-Cancer Center, Rutgers Biomedical and Health Sciences, Newark, NJ 07103; bDepartment of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103; cNuclear Organization and Oncogenesis Unit, Department of Cell Biology and Infection, Institut Pasteur, 75015 Paris, France; dINSERM U993, F-75015 Paris, France; and eDepartment of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103 Edited by Victoria Lundblad, Salk Institute for Biological Studies, La Jolla, CA, and approved June 27, 2016 (received for review February 11, 2016) Oncogene-induced senescence (OIS) is a critical tumor-suppressing that occur primarily at fragile sites. The ensuing DNA damage mechanism that restrains cancer progression at premalignant stages, response (DDR) triggers OIS, thereby arresting cells within a few in part by causing telomere dysfunction. Currently it is unknown cell-division cycles after oncogene expression (8, 9). Although most whether this proliferative arrest presents a stable and therefore DSBs in arrested cells are eventually resolved by cellular DSB irreversible barrier to cancer progression. Here we demonstrate that repair processes, some persist and consequently convert the other- cells frequently escape OIS induced by oncogenic H-Ras and B-Raf, wise transient DDR into a more permanent growth arrest. We and after a prolonged period in the senescence arrested state. Cells that others have demonstrated that the persistent DDR is primarily had escaped senescence displayed high oncogene expression levels, telomeric, triggered by irreparable telomeric DSBs (1, 10, 11).
    [Show full text]
  • Using Chemical Inhibitors to Probe AAA Protein Conformational Dynamics and Cellular Functions Steinman and Kapoor 47
    Available online at www.sciencedirect.com ScienceDirect Using chemical inhibitors to probe AAA protein conformational dynamics and cellular functions Jonathan B Steinman and Tarun M Kapoor The AAA proteins are a family of enzymes that play key roles in shRNA) can often take longer than many of the cellular diverse dynamic cellular processes, ranging from proteostasis processes they are involved in and thereby lead to the to directional intracellular transport. Dysregulation of AAA accumulation of phenotypes not directly linked to their proteins has been linked to several diseases, including cancer, functions. Destabilization of multi-protein complexes also suggesting a possible therapeutic role for inhibitors of these has the potential to cause dominant negative effects. Simi- enzymes. In the past decade, new chemical probes have been larly, the slowly or non-hydrolyzable ATP analogs often used developed for AAA proteins including p97, dynein, midasin, and to study AAA proteins in vitro are poorly suited for studying ClpC1. In this review, we discuss how these compounds have these enzymes in cellular contexts, as they are generally been used to study the cellular functions and conformational unable to cross cell membranes and tend to inhibit multiple dynamics of AAA proteins. We discuss future directions for different enzymes. inhibitor development and early efforts to utilize AAA protein inhibitors in the clinical setting. Cell-permeable chemical inhibitors of AAA proteins have the potential to overcome many of these challenges. They Address can act on timescales that match the processes driven by Laboratory of Chemistry and Cell Biology, Rockefeller University, New these enzymes, limiting the degree to which cells can York, United States activate compensatory pathways or accumulate indirect Corresponding author: Kapoor, Tarun M ([email protected]) effects.
    [Show full text]
  • A Double-Hexameric MCM2-7 Complex Is Loaded Onto Origin DNA During Licensing of Eukaryotic DNA Replication
    A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication Cecile Evrina, Pippa Clarkea, Juergen Zecha, Rudi Lurzb, Jingchuan Sunc, Stefan Uhlea,1, Huilin Lic, Bruce Stillmand,2, and Christian Specka,2 aDNA Replication Group, Medical Research Council Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom; bMicroscopy Unit, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; cBiology Department, Brookhaven National Laboratory, Upton, NY 11973; and dCold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 Contributed by Bruce Stillman, October 6, 2009 (sent for review September 22, 2009) During pre-replication complex (pre-RC) formation, origin recog- to form the pre-initiation complex (pre-IC). Binding of pre-IC nition complex (ORC), Cdc6, and Cdt1 cooperatively load the proteins and protein kinase activity stimulates MCM2-7 helicase 6-subunit mini chromosome maintenance (MCM2-7) complex onto activity (13). Pre-IC formation culminates in the recruitment of DNA. Loading of MCM2-7 is a prerequisite for DNA licensing that DNA polymerases and the start of active DNA replication (14). restricts DNA replication to once per cell cycle. During S phase ORC and Cdc6 belong to the AAAϩ family of ATP binding MCM2-7 functions as part of the replicative helicase but within the proteins (4, 15), a family that commonly forms ring- or spiral- pre-RC MCM2-7 is inactive. The organization of replicative DNA shaped structures. A spiral-shaped structure consisting of 5 helicases before and after loading onto DNA has been studied in AAAϩ proteins within the replication factor C (RFC) complex bacteria and viruses but not eukaryotes and is of major importance functions to destabilize the homotrimeric proliferating cell nu- for understanding the MCM2-7 loading mechanism and replisome clear antigen (PCNA) ring during PCNA loading onto DNA.
    [Show full text]
  • In Vivo Interactions of Archaeal Cdc6 Orc1 and Minichromosome
    In vivo interactions of archaeal Cdc6͞Orc1 and minichromosome maintenance proteins with the replication origin Fujihiko Matsunaga*, Patrick Forterre*, Yoshizumi Ishino†, and Hannu Myllykallio*§ *Institut de Ge´ne´ tique et Microbiologie, Universite´de Paris-Sud, 91405 Orsay, France; and †Department of Molecular Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan Communicated by Bruce W. Stillman, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, July 25, 2001 (received for review May 25, 2001) Although genome analyses have suggested parallels between basis of asymmetry in base composition between leading and archaeal and eukaryotic replication systems, little is known about lagging strands (10, 11). In Pyrococcus abyssi, the location of the the DNA replication mechanism in Archaea. By two-dimensional predicted origin coincides with an early replicating chromosomal gel electrophoreses we positioned a replication origin (oriC) within segment of 80 kb identified by radioactive labeling of chromo- 1 kb in the chromosomal DNA of Pyrococcus abyssi, an anaerobic somal DNA in cultures released from a replication block (12). hyperthermophile, and demonstrated that the oriC is physically Our in silico and labeling data also allowed us to conclude that linked to the cdc6 gene. Our chromatin immunoprecipitation as- the hyperthermophilic archaeon P. abyssi uses a single bidirec- says indicated that P. abyssi Cdc6 and minichromosome mainte- tional origin to replicate its genome. We proposed that this origin nance (MCM) proteins bind preferentially to the oriC region in the would correspond to the long intergenic region conserved in all exponentially growing cells. Whereas the oriC association of MCM three known Pyrococcus sp.
    [Show full text]
  • Sequence Analysis of the AAA Protein Family
    Prorein Science (1997), 62043-2058. Cambridge University Press. Printed in the USA. Copyright 0 1997 The Protein Society REVIEW Sequence analysis of the AAA protein family ANDREAS BEYER Institut fur Physiologische Chemie, Medizinische Fakultat, Ruhr-Universitat. D-44780 Bochum, Germany (RECEIVEDMarch 12, 1997; ACCEPTEDJune 27, 1997) Abstract The AAA protein family, a recently recognized group of Walker-type ATPases, has been subjected to an extensive sequence analysis. Multiple sequence alignments revealed the existence of a region of sequence similarity, the so-called AAA cassette. The borders of this cassette were localized and within it, three boxes of a high degree of conservation were identified. Two of these boxes could be assigned to substantial parts of the ATP binding site (namely, to Walker motifs A and B); the third may be a portion of the catalytic center. Phylogenetic trees were calculated to obtain insights into the evolutionary history of the family. Subfamilies with varying degrees of intra-relatedness could be discriminated; these relationships are also supported by analysis of sequences outside thecanonical AAA boxes: within the cassette are regions that are strongly conserved within each subfamily, whereas little or evenno similarity between different subfamilies can be observed. These regions are well suited to define fingerprints for subfamilies. A secondary structure prediction utilizing all available sequence information was performed and the result was fitted to the general 3D structure of a Walker A/GTPase. The agreement was unexpectedly high and strongly supports the conclusion that the AAA family belongs to the Walker superfamily of A/GTPases. Keywords: AAA family; ATPase; evolution; secondary structure prediction; Walker family The AAA protein family (“triple-A family”) is a group of ATPases SF 6, respectively (see Table 1).
    [Show full text]
  • Regulation of the Cell Cycle and DNA Damage-Induced Checkpoint Activation
    RnDSy-lu-2945 Regulation of the Cell Cycle and DNA Damage-Induced Checkpoint Activation IR UV IR Stalled Replication Forks/ BRCA1 Rad50 Long Stretches of ss-DNA Rad50 Mre11 BRCA1 Nbs1 Rad9-Rad1-Hus1 Mre11 RPA MDC1 γ-H2AX DNA Pol α/Primase RFC2-5 MDC1 Nbs1 53BP1 MCM2-7 53BP1 γ-H2AX Rad17 Claspin MCM10 Rad9-Rad1-Hus1 TopBP1 CDC45 G1/S Checkpoint Intra-S-Phase RFC2-5 ATM ATR TopBP1 Rad17 ATRIP ATM Checkpoint Claspin Chk2 Chk1 Chk2 Chk1 ATR Rad50 ATRIP Mre11 FANCD2 Ubiquitin MDM2 MDM2 Nbs1 CDC25A Rad50 Mre11 BRCA1 Ub-mediated Phosphatase p53 CDC25A Ubiquitin p53 FANCD2 Phosphatase Degradation Nbs1 p53 p53 CDK2 p21 p21 BRCA1 Ub-mediated SMC1 Degradation Cyclin E/A SMC1 CDK2 Slow S Phase CDC45 Progression p21 DNA Pol α/Primase Slow S Phase p21 Cyclin E Progression Maintenance of Inhibition of New CDC6 CDT1 CDC45 G1/S Arrest Origin Firing ORC MCM2-7 MCM2-7 Recovery of Stalled Replication Forks Inhibition of MCM10 MCM10 Replication Origin Firing DNA Pol α/Primase ORI CDC6 CDT1 MCM2-7 ORC S Phase Delay MCM2-7 MCM10 MCM10 ORI Geminin EGF EGF R GAB-1 CDC6 CDT1 ORC MCM2-7 PI 3-Kinase p70 S6K MCM2-7 S6 Protein Translation Pre-RC (G1) GAB-2 MCM10 GSK-3 TSC1/2 MCM10 ORI PIP2 TOR Promotes Replication CAK EGF Origin Firing Origin PIP3 Activation CDK2 EGF R Akt CDC25A PDK-1 Phosphatase Cyclin E/A SHIP CIP/KIP (p21, p27, p57) (Active) PLCγ PP2A (Active) PTEN CDC45 PIP2 CAK Unwinding RPA CDC7 CDK2 IP3 DAG (Active) Positive DBF4 α Feedback CDC25A DNA Pol /Primase Cyclin E Loop Phosphatase PKC ORC RAS CDK4/6 CDK2 (Active) Cyclin E MCM10 CDC45 RPA IP Receptor
    [Show full text]
  • A Free-Living Protist That Lacks Canonical Eukaryotic DNA Replication and Segregation Systems
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.14.435266; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A free-living protist that lacks canonical eukaryotic DNA replication and segregation systems 2 Dayana E. Salas-Leiva1, Eelco C. Tromer2,3, Bruce A. Curtis1, Jon Jerlström-Hultqvist1, Martin 3 Kolisko4, Zhenzhen Yi5, Joan S. Salas-Leiva6, Lucie Gallot-Lavallée1, Geert J. P. L. Kops3, John M. 4 Archibald1, Alastair G. B. Simpson7 and Andrew J. Roger1* 5 1Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of 6 Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2 2 7 Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom 8 3Oncode Institute, Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences) 9 and University Medical Centre Utrecht, Utrecht, The Netherlands 10 4Institute of Parasitology Biology Centre, Czech Acad. Sci, České Budějovice, Czech Republic 11 5Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, 12 South China Normal University, Guangzhou 510631, China 13 6CONACyT-Centro de Investigación en Materiales Avanzados, Departamento de medio ambiente y 14 energía, Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31136 Chihuahua, Chih., México 15 7Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of 16 Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2 17 *corresponding author: [email protected] 18 D.E.S-L ORCID iD: 0000-0003-2356-3351 19 E.C.T.
    [Show full text]
  • Diversity of DNA Replication in the Archaea
    G C A T T A C G G C A T genes Review Diversity of DNA Replication in the Archaea Darya Ausiannikava * and Thorsten Allers School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-115-823-0304 Academic Editor: Eishi Noguchi Received: 29 November 2016; Accepted: 20 January 2017; Published: 31 January 2017 Abstract: DNA replication is arguably the most fundamental biological process. On account of their shared evolutionary ancestry, the replication machinery found in archaea is similar to that found in eukaryotes. DNA replication is initiated at origins and is highly conserved in eukaryotes, but our limited understanding of archaea has uncovered a wide diversity of replication initiation mechanisms. Archaeal origins are sequence-based, as in bacteria, but are bound by initiator proteins that share homology with the eukaryotic origin recognition complex subunit Orc1 and helicase loader Cdc6). Unlike bacteria, archaea may have multiple origins per chromosome and multiple Orc1/Cdc6 initiator proteins. There is no consensus on how these archaeal origins are recognised—some are bound by a single Orc1/Cdc6 protein while others require a multi- Orc1/Cdc6 complex. Many archaeal genomes consist of multiple parts—the main chromosome plus several megaplasmids—and in polyploid species these parts are present in multiple copies. This poses a challenge to the regulation of DNA replication. However, one archaeal species (Haloferax volcanii) can survive without replication origins; instead, it uses homologous recombination as an alternative mechanism of initiation. This diversity in DNA replication initiation is all the more remarkable for having been discovered in only three groups of archaea where in vivo studies are possible.
    [Show full text]
  • New Mesh Headings for 2018 Single Column After Cutover
    New MeSH Headings for 2018 Listed in alphabetical order with Heading, Scope Note, Annotation (AN), and Tree Locations 2-Hydroxypropyl-beta-cyclodextrin Derivative of beta-cyclodextrin that is used as an excipient for steroid drugs and as a lipid chelator. Tree locations: beta-Cyclodextrins D04.345.103.333.500 D09.301.915.400.375.333.500 D09.698.365.855.400.375.333.500 AAA Domain An approximately 250 amino acid domain common to AAA ATPases and AAA Proteins. It consists of a highly conserved N-terminal P-Loop ATPase subdomain with an alpha-beta-alpha conformation, and a less-conserved C- terminal subdomain with an all alpha conformation. The N-terminal subdomain includes Walker A and Walker B motifs which function in ATP binding and hydrolysis. Tree locations: Amino Acid Motifs G02.111.570.820.709.275.500.913 AAA Proteins A large, highly conserved and functionally diverse superfamily of NTPases and nucleotide-binding proteins that are characterized by a conserved 200 to 250 amino acid nucleotide-binding and catalytic domain, the AAA+ module. They assemble into hexameric ring complexes that function in the energy-dependent remodeling of macromolecules. Members include ATPASES ASSOCIATED WITH DIVERSE CELLULAR ACTIVITIES. Tree locations: Acid Anhydride Hydrolases D08.811.277.040.013 Carrier Proteins D12.776.157.025 Abuse-Deterrent Formulations Drug formulations or delivery systems intended to discourage the abuse of CONTROLLED SUBSTANCES. These may include physical barriers to prevent chewing or crushing the drug; chemical barriers that prevent extraction of psychoactive ingredients; agonist-antagonist combinations to reduce euphoria associated with abuse; aversion, where controlled substances are combined with others that will produce an unpleasant effect if the patient manipulates the dosage form or exceeds the recommended dose; delivery systems that are resistant to abuse such as implants; or combinations of these methods.
    [Show full text]
  • Scfcyclin F-Dependent Degradation of CDC6 Suppresses DNA Re-Replication
    ARTICLE Received 3 Jun 2015 | Accepted 22 Dec 2015 | Published 28 Jan 2016 DOI: 10.1038/ncomms10530 OPEN SCFCyclin F-dependent degradation of CDC6 suppresses DNA re-replication David Walter1, Saskia Hoffmann1, Eirini-Stavroula Komseli2, Juri Rappsilber3,4, Vassilis Gorgoulis2,5 & Claus Storgaard Sørensen1 Maintenance of genome stability requires that DNA is replicated precisely once per cell cycle. This is believed to be achieved by limiting replication origin licensing and thereby restricting the firing of each replication origin to once per cell cycle. CDC6 is essential for eukaryotic replication origin licensing, however, it is poorly understood how CDC6 activity is constrained in higher eukaryotes. Here we report that the SCFCyclin F ubiquitin ligase complex prevents DNA re-replication by targeting CDC6 for proteasomal degradation late in the cell cycle. We show that CDC6 and Cyclin F interact through defined sequence motifs that promote CDC6 ubiquitylation and degradation. Absence of Cyclin F or expression of a stable mutant of CDC6 promotes re-replication and genome instability in cells lacking the CDT1 inhibitor Geminin. Together, our work reveals a novel SCFCyclin F-mediated mechanism required for precise once per cell cycle replication. 1 Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N 2200, Denmark. 2 Department of Histology and Embryology, School of Medicine, University of Athens, Athens GR-11527, Greece. 3 Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland. 4 Department of Bioanalytics, Institute of Biotechnology, Technische Universita¨t Berlin, Berlin 13355, Germany.
    [Show full text]