The Architecture of a Eukaryotic Replisome
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Emergence of DNA Polymerase E Antimutators That Escape Error-Induced Extinction in Yeast
INVESTIGATION Emergence of DNA Polymerase e Antimutators That Escape Error-Induced Extinction in Yeast Lindsey N. Williams, Alan J. Herr, and Bradley D. Preston1 Department of Pathology, University of Washington, Seattle, Washington 98195 ABSTRACT DNA polymerases (Pols) e and d perform the bulk of yeast leading- and lagging-strand DNA synthesis. Both Pols possess intrinsic proofreading exonucleases that edit errors during polymerization. Rare errors that elude proofreading are extended into duplex DNA and excised by the mismatch repair (MMR) system. Strains that lack Pol proofreading or MMR exhibit a 10- to 100-fold increase in spontaneous mutation rate (mutator phenotype), and inactivation of both Pol d proofreading (pol3-01) and MMR is lethal due to replication error-induced extinction (EEX). It is unclear whether a similar synthetic lethal relationship exists between defects in Pol e proofreading (pol2-4) and MMR. Using a plasmid-shuffling strategy in haploid Saccharomyces cerevisiae, we observed synthetic lethality of pol2-4 with alleles that completely abrogate MMR (msh2D, mlh1D, msh3D msh6D,orpms1D mlh3D) but not with partial MMR loss (msh3D, msh6D, pms1D,ormlh3D), indicating that high levels of unrepaired Pol e errors drive extinction. However, variants that escape this error-induced extinction (eex mutants) frequently emerged. Five percent of pol2-4 msh2D eex mutants encoded second-site changes in Pol e that reduced the pol2-4 mutator phenotype between 3- and 23-fold. The remaining eex alleles were extragenic to pol2-4. The locations of antimutator amino-acid changes in Pol e and their effects on mutation spectra suggest multiple mechanisms of mutator suppression. Our data indicate that unrepaired leading- and lagging-strand polymerase errors drive extinction within a few cell divisions and suggest that there are polymerase-specific pathways of mutator suppression. -
Mutations That Separate the Functions of the Proofreading Subunit of the Escherichia Coli Replicase
G3: Genes|Genomes|Genetics Early Online, published on April 15, 2015 as doi:10.1534/g3.115.017285 Mutations that separate the functions of the proofreading subunit of the Escherichia coli replicase Zakiya Whatley*,1 and Kenneth N Kreuzer*§ *University Program in Genetics & Genomics, Duke University, Durham, NC 27705 §Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 1 © The Author(s) 2013. Published by the Genetics Society of America. Running title: E. coli dnaQ separation of function mutants Keywords: DNA polymerase, epsilon subunit, linker‐scanning mutagenesis, mutation rate, SOS response Corresponding author: Kenneth N Kreuzer, Department of Biochemistry, Box 3711, Nanaline Duke Building, Research Drive, Duke University Medical Center, Durham, NC 27710 Phone: 919 684 6466 FAX: 919 684 6525 Email: [email protected] 1 Present address: Department of Biology, 300 N Washington Street, McCreary Hall, Campus Box 392, Gettysburg College, Gettysburg, PA 17325 Phone: 717 337 6160 Fax: 7171 337 6157 Email: [email protected] 2 ABSTRACT The dnaQ gene of Escherichia coli encodes the ε subunit of DNA polymerase III, which provides the 3’ 5’ exonuclease proofreading activity of the replicative polymerase. Prior studies have shown that loss of ε leads to high mutation frequency, partially constitutive SOS, and poor growth. In addition, a previous study from our lab identified dnaQ knockout mutants in a screen for mutants specifically defective in the SOS response following quinolone (nalidixic acid) treatment. To explain these results, we propose a model whereby in addition to proofreading, ε plays a distinct role in replisome disassembly and/or processing of stalled replication forks. -
Saccharomyces Rrm3p, a 5 to 3 DNA Helicase That Promotes Replication
Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Saccharomyces Rrm3p, a 5 to 3 DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA Andreas S. Ivessa,1 Jin-Qiu Zhou,1,2 Vince P. Schulz, Ellen K. Monson, and Virginia A. Zakian3 Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA In wild-type Saccharomyces cerevisiae, replication forks slowed during their passage through telomeric C1–3A/TG1–3 tracts. This slowing was greatly exacerbated in the absence of RRM3, shown here to encode a 5 ,to 3 DNA helicase. Rrm3p-dependent fork progression was seen at a modified Chromosome VII-L telomere at the natural X-bearing Chromosome III-L telomere, and at Y-bearing telomeres. Loss of Rrm3p also resulted in replication fork pausing at specific sites in subtelomeric DNA, such as at inactive replication origins, and at internal tracts of C1–3A/TG1–3 DNA. The ATPase/helicase activity of Rrm3p was required for its role in telomeric and subtelomeric DNA replication. Because Rrm3p was telomere-associated in vivo, it likely has a direct role in telomere replication. [Key Words: Telomere; helicase; telomerase; replication; RRM3; yeast] Received February 7, 2002; revised version accepted April 10, 2002. Telomeres are the natural ends of eukaryotic chromo- Because conventional DNA polymerases cannot repli- somes. In most organisms, the very ends of chromo- cate the very ends of linear DNA molecules, special somes consist of simple repeated sequences. For ex- mechanisms are required to prevent the loss of terminal ample, Saccharomyces cerevisiae chromosomes end in DNA. -
Orpl, a Member of the Cdcl8/Cdc6 Family of S-Phase Regulators, Is Homologous to a Component of the Origin Recognition Complex M
Proc. Natl. Acad. Sci. USA Vol. 92, pp. 12475-12479, December 1995 Genetics Orpl, a member of the Cdcl8/Cdc6 family of S-phase regulators, is homologous to a component of the origin recognition complex M. MuzI-FALCONI AND THOMAS J. KELLY Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Contributed by Thomas J. Kelly, September 11, 1995 ABSTRACT cdc18+ of Schizosaccharomyces pombe is a is the cdcJ8+ gene (1, 15). Expression of cdcJ8+ from a periodically expressed gene that is required for entry into S heterologous promoter is sufficient to rescue the lethality of a phase and for the coordination of S phase with mitosis. cdc18+ conditional temperature-sensitive (ts) cdc O's mutant. The is related to the Saccharomyces cerevisiae gene CDC6, which has cdcJ8+ gene product, a 65-kDa protein, is essential for the also been implicated in the control of DNA replication. We GI/S transition. Moreover, p65cdclS is a highly labile protein have identified a new Sch. pombe gene, orpl1, that encodes an whose expression is confined to a narrow window at the G,/S 80-kDa protein with amino acid sequence motifs conserved in boundary (unpublished data). These properties are consistent the Cdc18 and Cdc6 proteins. Genetic analysis indicates that with the hypothesis that Cdc18 may play an important role in orpi + is essential for viability. Germinating spores lacking the regulating the initiation of DNA replication at S phase. The orpl + gene are capable of undergoing one or more rounds of Cdc18 protein is homologous to the budding yeast Cdc6 DNA replication but fail to progress further, arresting as long protein, which may have a similar function (16). -
Derepression of Htert Gene Expression Promotes Escape from Oncogene-Induced Cellular Senescence
Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence Priyanka L. Patela, Anitha Surama, Neena Miranib, Oliver Bischofc,d, and Utz Herbiga,e,1 aNew Jersey Medical School-Cancer Center, Rutgers Biomedical and Health Sciences, Newark, NJ 07103; bDepartment of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103; cNuclear Organization and Oncogenesis Unit, Department of Cell Biology and Infection, Institut Pasteur, 75015 Paris, France; dINSERM U993, F-75015 Paris, France; and eDepartment of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103 Edited by Victoria Lundblad, Salk Institute for Biological Studies, La Jolla, CA, and approved June 27, 2016 (received for review February 11, 2016) Oncogene-induced senescence (OIS) is a critical tumor-suppressing that occur primarily at fragile sites. The ensuing DNA damage mechanism that restrains cancer progression at premalignant stages, response (DDR) triggers OIS, thereby arresting cells within a few in part by causing telomere dysfunction. Currently it is unknown cell-division cycles after oncogene expression (8, 9). Although most whether this proliferative arrest presents a stable and therefore DSBs in arrested cells are eventually resolved by cellular DSB irreversible barrier to cancer progression. Here we demonstrate that repair processes, some persist and consequently convert the other- cells frequently escape OIS induced by oncogenic H-Ras and B-Raf, wise transient DDR into a more permanent growth arrest. We and after a prolonged period in the senescence arrested state. Cells that others have demonstrated that the persistent DDR is primarily had escaped senescence displayed high oncogene expression levels, telomeric, triggered by irreparable telomeric DSBs (1, 10, 11). -
The Biochemical Activities of the Saccharomyces Cerevisiae Pif1 Helicase Are Regulated by Its N-Terminal Domain
G C A T T A C G G C A T genes Article The Biochemical Activities of the Saccharomyces cerevisiae Pif1 Helicase Are Regulated by Its N-Terminal Domain David G. Nickens y, Christopher W. Sausen y and Matthew L. Bochman * Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA; [email protected] (D.G.N.); [email protected] (C.W.S.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 31 March 2019; Accepted: 20 May 2019; Published: 28 May 2019 Abstract: Pif1 family helicases represent a highly conserved class of enzymes involved in multiple aspects of genome maintenance. Many Pif1 helicases are multi-domain proteins, but the functions of their non-helicase domains are poorly understood. Here, we characterized how the N-terminal domain (NTD) of the Saccharomyces cerevisiae Pif1 helicase affects its functions both in vivo and in vitro. Removal of the Pif1 NTD alleviated the toxicity associated with Pif1 overexpression in yeast. Biochemically, the N-terminally truncated Pif1 (Pif1DN) retained in vitro DNA binding, DNA unwinding, and telomerase regulation activities, but these activities differed markedly from those displayed by full-length recombinant Pif1. However, Pif1DN was still able to synergize with the Hrq1 helicase to inhibit telomerase activity in vitro, similar to full-length Pif1. These data impact our understanding of Pif1 helicase evolution and the roles of these enzymes in the maintenance of genome integrity. Keywords: DNA helicase; Saccharomyces cerevisiae; Pif1; telomerase; telomere 1. Introduction DNA helicases are enzymes that couple DNA binding and ATP hydrolysis to unwind double-stranded DNA (dsDNA) into its component single strands [1]. -
Mcm10 Has Potent Strand-Annealing Activity and Limits Translocase-Mediated Fork Regression
Mcm10 has potent strand-annealing activity and limits translocase-mediated fork regression Ryan Maylea, Lance Langstona,b, Kelly R. Molloyc, Dan Zhanga, Brian T. Chaitc,1,2, and Michael E. O’Donnella,b,1,2 aLaboratory of DNA Replication, The Rockefeller University, New York, NY 10065; bHoward Hughes Medical Institute, The Rockefeller University, New York, NY 10065; and cLaboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065 Contributed by Michael E. O’Donnell, November 19, 2018 (sent for review November 8, 2018; reviewed by Zvi Kelman and R. Stephen Lloyd) The 11-subunit eukaryotic replicative helicase CMG (Cdc45, Mcm2-7, of function using genetics, cell biology, and cell extracts have GINS) tightly binds Mcm10, an essential replication protein in all identified Mcm10 functions in replisome stability, fork progres- eukaryotes. Here we show that Mcm10 has a potent strand- sion, and DNA repair (21–25). Despite significant advances in the annealing activity both alone and in complex with CMG. CMG- understanding of Mcm10’s functions, mechanistic in vitro studies Mcm10 unwinds and then reanneals single strands soon after they of Mcm10 in replisome and repair reactions are lacking. have been unwound in vitro. Given the DNA damage and replisome The present study demonstrates that Mcm10 on its own rap- instability associated with loss of Mcm10 function, we examined the idly anneals cDNA strands even in the presence of the single- effect of Mcm10 on fork regression. Fork regression requires the strand (ss) DNA-binding protein RPA, a property previously unwinding and pairing of newly synthesized strands, performed by associated with the recombination protein Rad52 (26). -
Huh7 HK4+ HK2- Cells a Protein Complementation Assay B Coimmunoprecipitation Even If NS3 Is Able to Stimulates Glycolysis in Cells Expressing Replicate
Dengue virus protein NS3 activates hexokinase activity in SAT-390 hepatocytes to support virus replication Marianne FIGL, Clémence JACQUEMIN, Patrice ANDRE, Laure PERRIN-COCON, Vincent LOTTEAU, Olivier DIAZ International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon, FRANCE 1 INTRODUCTION 4 RESULTS 5 CONCLUSIONS Result 2: DENV NS3 protein interacts with hexokinases Viruses are mandatory parasites that use metabolism machinery to Result 1: DENV efficiently replicates in HuH7 HK4+ HK2- cells A Protein Complementation Assay B Coimmunoprecipitation Even if NS3 is able to stimulates glycolysis in cells expressing replicate. Growing literature demonstrates that viruses manipulate A.A. DENV-NS3 versus human metabolism enzymes DENVB.B.-NS3 versus hexokinases A. HuH7 HuH7 HK4+ HK2- B. (a) (b) 60 Lysate Co-IP HK2 or HK4, we observe an higher DENV replication in HuH7 central carbon metabolism (CCM) and more specifically glycolysis for HuH7 HuH7 55 NS3-3xFlag - + - + HuH7 HK4+ HK2- HK4+ HK2- suggesting that HK4 positive cells are more susceptible their propagation [1]. However, the underlying mechanisms are not HuH7 HK4+ HK2- 50 HK1 α-Gluc 45 α-Flag to DENV replication. fully described. Our team has already demonstrated that hepatitis C 40 80 80 HK2 α-Gluc *** 35 NS5A protein interacts and activates hexokinases (HKs) to favor viral 70 70 α-Flag cells 30 Poster presented at: presented Poster Fluorescente light Fluorescente 60 cells 60 α-Gluc replication [2]. It was described that dengue infection (DENV) 25 HK3 We observed that HuH7 HK4+HK2- cells have a rewiring of their 50 50 α-Flag 20 increases glycolysis [3] and thus we wondered if control of 40 40 glycolytic pathway resulting in intracellular lipids accumulation (see 15 HK4 α-Gluc 30 hexokinase activity was shared by DENV, another Flavivirus. -
Functional Characterization of the DNA Polymerase Epsilon and Its Involvement in the Maintenance of Genome Integrity in Arabidopsis Jose Antonio Pedroza-Garcia
Functional characterization of the DNA Polymerase epsilon and its involvement in the maintenance of genome integrity in Arabidopsis Jose Antonio Pedroza-Garcia To cite this version: Jose Antonio Pedroza-Garcia. Functional characterization of the DNA Polymerase epsilon and its involvement in the maintenance of genome integrity in Arabidopsis. Plants genetics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS248. tel-03092326 HAL Id: tel-03092326 https://tel.archives-ouvertes.fr/tel-03092326 Submitted on 2 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS248 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de doctorat: Biologie Par M. José Antonio Pedroza-Garcia Functional characterization of the DNA Polymerase epsilon and its involvement in the maintenance of genome integrity in Arabidopsis Thèse présentée et soutenue à Orsay, le 22 septembre 2016 : Composition du Jury : M. Frugier, Florian Directeur de Recherche, CNRS Président Mme Gallego, Maria Professeure, Université Blaise Pascal Rapporteur M. Bendahmane, Mohammed Directeur de Recherche, INRA Rapporteur Mme Mézard, Christine Directrice de Recherche, CNRS Examinatrice Mme Chabouté, Marie-Edith Directrice de Recherche, CNRS Examinatrice Mme Raynaud, Cécile Chargée de Recherche, CNRS Directrice de thèse Acknowledgments First, I would like to express my huge gratitude to my supervisor, Cécile Raynaud. -
In Vivo Interactions of Archaeal Cdc6 Orc1 and Minichromosome
In vivo interactions of archaeal Cdc6͞Orc1 and minichromosome maintenance proteins with the replication origin Fujihiko Matsunaga*, Patrick Forterre*, Yoshizumi Ishino†, and Hannu Myllykallio*§ *Institut de Ge´ne´ tique et Microbiologie, Universite´de Paris-Sud, 91405 Orsay, France; and †Department of Molecular Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan Communicated by Bruce W. Stillman, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, July 25, 2001 (received for review May 25, 2001) Although genome analyses have suggested parallels between basis of asymmetry in base composition between leading and archaeal and eukaryotic replication systems, little is known about lagging strands (10, 11). In Pyrococcus abyssi, the location of the the DNA replication mechanism in Archaea. By two-dimensional predicted origin coincides with an early replicating chromosomal gel electrophoreses we positioned a replication origin (oriC) within segment of 80 kb identified by radioactive labeling of chromo- 1 kb in the chromosomal DNA of Pyrococcus abyssi, an anaerobic somal DNA in cultures released from a replication block (12). hyperthermophile, and demonstrated that the oriC is physically Our in silico and labeling data also allowed us to conclude that linked to the cdc6 gene. Our chromatin immunoprecipitation as- the hyperthermophilic archaeon P. abyssi uses a single bidirec- says indicated that P. abyssi Cdc6 and minichromosome mainte- tional origin to replicate its genome. We proposed that this origin nance (MCM) proteins bind preferentially to the oriC region in the would correspond to the long intergenic region conserved in all exponentially growing cells. Whereas the oriC association of MCM three known Pyrococcus sp. -
Direct Interaction Between Hnrnp-M and CDC5L/PLRG1 Proteins Affects Alternative Splice Site Choice
Direct interaction between hnRNP-M and CDC5L/PLRG1 proteins affects alternative splice site choice David Llères, Marco Denegri, Marco Biggiogera, Paul Ajuh, Angus Lamond To cite this version: David Llères, Marco Denegri, Marco Biggiogera, Paul Ajuh, Angus Lamond. Direct interaction be- tween hnRNP-M and CDC5L/PLRG1 proteins affects alternative splice site choice. EMBO Reports, EMBO Press, 2010, 11 (6), pp.445 - 451. 10.1038/embor.2010.64. hal-03027049 HAL Id: hal-03027049 https://hal.archives-ouvertes.fr/hal-03027049 Submitted on 26 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. scientificscientificreport report Direct interaction between hnRNP-M and CDC5L/ PLRG1 proteins affects alternative splice site choice David Lle`res1*, Marco Denegri1*w,MarcoBiggiogera2,PaulAjuh1z & Angus I. Lamond1+ 1Wellcome Trust Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dundee, UK, and 2LaboratoriodiBiologiaCellulareandCentrodiStudioperl’IstochimicadelCNR,DipartimentodiBiologiaAnimale, Universita’ di Pavia, Pavia, Italy Heterogeneous nuclear ribonucleoprotein-M (hnRNP-M) is an and affect the fate of heterogeneous nuclear RNAs by influencing their abundant nuclear protein that binds to pre-mRNA and is a structure and/or by facilitating or hindering the interaction of their component of the spliceosome complex. -
The Possible Roles for Polyamines in the Initiation Process of SV40 DNA Replication in Vitro
535-539 9/1/08 14:46 Page 535 ONCOLOGY REPORTS 19: 535-539, 2008 535 The possible roles for polyamines in the initiation process of SV40 DNA replication in vitro DONG-GIL KIM1, JUAN DU1, CHUNHUI MIAO1, JEE H. JUNG3, SANG CHUL PARK4 and DONG-KYOO KIM1,2 1Department of Biomedicinal Chemistry, and Institute of Functional Materials, 2Biohealth Product Research Center, Inje University, Kimhae 621-749; 3College of Pharmacy, Pusan National University, Busan 609-735; 4Department of Biochemistry and Molecular Biology, The Aging and Apoptosis Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea Received May 14, 2007; Accepted July 25, 2007 Abstract. The polyamines are aliphatic cations which are polyanionic macromolecules such as DNA (3). The most present in millimolar concentrations in all mammalian cells, obvious specific characteristic of the polyamines is their and are required for optimal growth of almost all cell types. polybasic character which gives them a much higher affinity In this study, the roles of polyamines in DNA replication for acidic constituents than that exhibited by Na+, K+, in vitro and the mechanism by which polyamines affected Mg2+, Ca2+, or monoamines; this polybasic character is most DNA replication were examined using simian virus 40 DNA pronounced with spermine because of its four positive groups. replication system in vitro. We found that polyamines The polyamines are required for optimal growth of almost all inhibited DNA replication, but it is not clear at which stage cell types and increased biosynthesis is necessary for the this occurs. Spermidine inhibited the DNA cleavage by traverse of a cell through the cell cycle.