Taiwan, Quarantine Regulation for Importation of Plants

Total Page:16

File Type:pdf, Size:1020Kb

Taiwan, Quarantine Regulation for Importation of Plants Quarantine Requirements for The Importation of Plants or Plant Products into The Republic of China Bureau of Animal and Plant Health Inspection and Quarantine Council of Agriculture Executive Yuan June 2007 including amendments 2008 including amendment sps162 A1 including amendment sps163 including amendment sps174 including amendment sps181 A1 including amendment sps 188A1 including amendment sps 221A1 (more Appendix to be incorporated later) - 1 - July, 2011 In case of any discrepancy between the Chinese text and the English translation thereof, the Chinese text shall govern. The “Quarantine Requirements for The Importation of Plants or Plant Products into The Republic of China” were promulgated by the Council of Agriculture (COA) on April 22, 1999. They are originated from the “Quarantine Restrictions on the Importation of Plants and Plant Products into Taiwan, Republic of China,” promulgated by the Ministry of Economic Affairs (MOEA) on January 7, 1970 and amended at times afterward. “Quarantine Requirements for The Importation of Plants or Plant Products into The Republic of China” has been amended on June 7, 1999, September 4, 1999, March 14, 2000, November 28, 2000, January 5, 2001, July 18, 2001, August 30, 2001, October 8, 2001, April 9, 2002, August 26, 2003, September 22, 2003, October 24, 2003, December 19, 2003, April 26, 2004, July 2, 2004, September 16, 2004, October 21, 2004, Novenber 8, 2004, December 22,2004, Junuary 7, 2005, March 17,2005, May 2, 2005, July 1, 2005, October 21, 2005, November 3, 2005, November 11, 2005, February 3, 2006, February 17, 2006, February 23, 2006, February 27, 2006, March 9, 2006, May 25, 2006, July 19, 2006, June 23, 2007, and February 1, 2008. - 2 - July, 2011 CONTENTS Quarantine Requirements for The Importation of Plants or Plant Products into The Republic of China A. Prohibited Plants or Plant Products………………………………………………………….. B. Quarantine Requirements for Enterable Plants or Plant Products under Precautionary Requirements…………………………………………………………………………………. Appendix Quarantine Requirements for The Importation of Fresh Fruits from Countries or Districts Where The Mediterranean Fruit Fly Is Known to Occur…………………………………….. Quarantine Requirements for The Importation of Apples from Countries or Districts Where The Codling Moth Is Known to Occur……………………………………………………….. Quarantine Requirements for The Importation of Fresh Fruits from The Netherlands………… Quarantine Requirements for The Importation of Fresh Fruits from Chile…………………….. Quarantine Requirements for The Importation of Lilies, Gladiolus, and Dahlia Bulbs.………... Quarantine Inspection Procedures for The Importation of Pear Scions………………………… Quarantine Requirements for Transshipment of Plants or Plant Products through Countries or Districts Where The Quarantine Pests Are Known to Occur………………………………… Quarantine Requirements for the Importation of Wood………………………….…………….. Quarantine Requirements for the Importation of Table Potato from New Zealand…………….. Procedures for Recognition of Pest Free Areas…………………………………………………. Quarantine Requirements for the Importation of Host Fruits of Peach Fruit Moth from Japan... Quarantine Requirements for the Importation of Host Fruits of Peach Fruit Moth from South Korea…. Quarantine Requirements for the Importation of Host Fruits of Mediterranean fruit fly or Queensland fruit fly from Australia…………………………………………………………… Quarantine Requirements for the Importation of fresh fruits of Areca catechu from Thailand… - 3 - July, 2011 Quarantine Requirements for The Importation of Plants or Plant Products into The Republic of China A. Prohibited Plants or Plant Products Pursuant to Paragraph 1, Article 14, Plant Protection and Quarantine Act 1. List of prohibited plants or plant products: Plants or Plant Products Countries or Districts of Origin Reasons for Prohibition 1. Entire or any part of the All countries and districts 1. Rice hoja blanca following living plants tenuivirus (excluding seeds): 2. Rice dwarf (1) Brachiaria spp. phytoreovirus (2) Echinochloa spp. 3. Rice stem nematode (3) Panicum spp. (Ditylenchus angustus (4) Paspalum spp. Butler) (5) Oryza spp., Leersia hexandra, Saccioleps interrupta (6) Rottboellia spp. (7) Triticum aestivum 2. Entire or any part of the Asia and Pacific Region Small sweet potato weevil following living plants (1) Belau (Euscepes postfasqciatus (excluding seeds) (2) Mainland China Fairmaire) (1) Calystegia spp. (3) Cook Islands (2) Dioscorea japonica (4) Federated states of Micronesia (3) Ipomoea spp. (5) Fiji (4) Pharbitis spp. (6) Guam (7) Kiribati (8) New Caledonia (9) Norfolk Island (10) Northern Mariana Islands (11) Pitcairn Islands (12) Polynesia (13) Ryukyu Archipelago (14) Samoa (15) Tonga (16) Vanuatu (17) Wallis and Futuna North America (18) Hawaii (19) United States Central and South America (20)Antigua and Barbuda (21)Bahamas (22)Barbados (23)Cuba (24)Dominica (25) Dominican (26) Grenada - 4 - July, 2011 (27) Guadeloupe (28) Haiti (29) Jamaica (30) Lesser Antilles (31) Martinique (32) Montserrat (33) Puerto Rico (34) Saint Christopher and Nevis (35) Saint Lucia (36) Saint Vincent and the Grenadines (37) Trinidad and Tobago (38) Virgin Islands (British) (39) Virgin Islands (United States) (40) All countries and districts in South America 3. Underground portion and Asia And Pacific Region Burrowing nematode adventitious root of all living (1) American Samoa (Radopholus similis plants, excluding the following (2) Australia (Northern Territory, (Cobb) Thorne; R. plants: New South Wales, Queensland, citrophilus Huettel, (1) Agave spp. South Australia, Western Dickson & Kaplan) (2) Allium spp. Australia) (3) Arctium lappa (3) Belau (4) Asparagus officinalis (4) Brunei Darussalem (5) Bryophyta (5) Cook Island (6) Cactaceae (6) Federated States Of Micronesia (7) Cannabis spp. (7) Fiji (8) Codiaeum spp. (8) French Polynesia (9) Dianthus spp. (9) Guam (10) Epipactis longfolia (10) India (11) Euphorbia spp. (11) Indonesia (12) Freesia spp. (12) Lebanon (13) Geranium spp. (13) Malaysia (14) Hyacinthus spp. (14) Nepal (15) Iris spp. (15) Niue (16) Juglans spp. (16) Norfolk Island (17) Lilium spp. (17) Oman (18) Malus spp. (18) Pakistan (19) Marchantia polymorphoa (19) Papua New Guinea (20) Orchidaceae (20) Philippines (21) Pastinaca sativa (21) Samoa (22) Pelargonium spp. (22) Singapore (23) Prunus spp. (excluding P. (23) Solomon Islands persica) (24) Sri Lanka (24) Pteridophyte (25) Thailand (25) Rhododendron spp. (excluding (26) Tonga R. indicum) (27) Vietnam (26) Rhoeo discolor (28) Yemen (27) Rosa spp. Africa (28) Rubus spp. (29) Countries In Africa - 5 - July, 2011 (29) Sagittaria spp. Europe (30) Solanum tuberosum (30) Belgium (31) Tulipa spp. (31) France (32) Vitis vinifera (32) Germany (33) Flower bulbs without fresh (33) Italy roots (excluding Canna spp., (34) Luxemboug Musa spp. and Zingiberaceae) (35) Netherlands (36) Poland (37) Slovenia (38) United Kingdom North America (39) Mexico (40) United States (Excluding Alaska And California) Central And Southern America (41) Barbados (42) Belize (43) Volivia (44) Brazil (45) Colombia (46) Costa Rica (47) Cuba (48) Dominican (49) Dominican Republic (50) Ecuador (51) El Salvador (52) French Guyana (53) French West Indies (54) Grenada (55) Guadeloupe (56) Guatemala (57) Guyana (58) Honduras (59) Jamaica (60) Martinique (61) Nicaragua (62) Panama (63) Peru (64) Puerto Rico (65) Saint Kitts And Nevis (66) Saint Lucia (67) Saint Vincent And The Grenadines (68) Suriname (69) Trinidad And Tobago (70) United States Virgin Islands (71) Venezuela 4. Entire or any part of living citrus Asia and Pacific Region Psorosis plants (Citrus spp., Fortunella (1) Australia spp., and Poncirus spp.) (2) Indonesia (excluding flowers, fruits, and (3) Cyprus - 6 - July, 2011 seeds) (4) Israel (5) Lebanon (6) Mainland China (7) Malaysia (8) Philippines (9) Saudi Arabia (10) Syrian (11) Turkey Africa (12) Algeria (13) Egypt (14) Kenya (15) Libyan (16) Morocco (17) Tunisia Europe (18) Albania (19) Bosnia-Herzegovina and the Republika Srpska (20) Croatia (21) France (22) Greece (23) Italy (24) Malta (25) Monaco (26) Portugal (27) Slovenia (28) Spain (29) Yugoslavia North America (30) United States Central and South America (31) Brazil (32) Chile (33) Colombia (34) Mexico (35) Peru (36) Suriname (37) Uruguay (38) Zaire 5. Entire or any part of living plants Asia and Pacific Region African greening of citrus (excluding flowers, fruits, and (1) Saudi Arabia (Candidatus liberibacter seeds) (2) Yemen africanus Garnier et al.) (1) Calodendrum capense Africa (2) Catharanthus roseus (3) Burundi (3) Citrus spp. (4) Cameroon (4) Fortunella spp. (5) Central African Republic (5) Poncirus spp. (6) Comoros (7) Ethopia (8) Kenya - 7 - July, 2011 (9) Lesotho (10) Madagascar (11) Malawi (12) Mauritius (13) Reunion (14) Rwanda (15) Somalia (16) South Africa (17) Swaziland (18) Tanzania (19) Zimbabwe 6. Entire or any part of living citrus Asia and Pacific Region Stem pitting strains of plants (Citrus spp., Fortunella (1) Indonesia citrus tristeza closterovirus spp., and Poncirus spp.) (2) Mainland China (excluding flowers, fruits, and (3) Malaysia seeds) Central and South America (4) All countries and districts in central and South America 7. Entire or any part of living citrus Asia and Pacific Region Citrus blight plants (excluding flowers, fruits, (1) Australia and seeds) Africa (1) Citrus spp. (2) Lesotho (2) Fortunella spp. (3) South Africa (3) Poncirus spp. (4) Swaziland North America (5) United States (6) Mexico Central and South America (7) All countries
Recommended publications
  • Potential of a Fly Gut Microbiota Incorporated Gel-Based Larval Diet for Rearing Bactrocera Dorsalis (Hendel) Mahfuza Khan1*, Kajla Seheli1, Md
    Khan et al. BMC Biotechnology 2019, 19(Suppl 2):94 https://doi.org/10.1186/s12896-019-0580-0 RESEARCH Open Access Potential of a fly gut microbiota incorporated gel-based larval diet for rearing Bactrocera dorsalis (Hendel) Mahfuza Khan1*, Kajla Seheli1, Md. Abdul Bari1, Nahida Sultana1, Shakil Ahmed Khan1, Khandokar Fahmida Sultana2 and Md. Anwar Hossain3 Abstract Background: The Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is an important polyphagous pest of horticultural produce. The sterile insect technique (SIT) is a proven control method against many insect pests, including fruit flies, under area-wide pest management programs. High quality mass-rearing process and the cost-effective production of sterile target species are important for SIT. Irradiation is reported to cause severe damage to the symbiotic community structure in the mid gut of fruit fly species, impairing SIT success. However, studies have found that target-specific manipulation of insect gut bacteria can positively impact the overall fitness of SIT-specific insects. Results: Twelve bacterial genera were isolated and identified from B. dorsalis eggs, third instars larval gut and adults gut. The bacterial genera were Acinetobacter, Alcaligenes, Citrobacter, Pseudomonas, Proteus, and Stenotrophomonas, belonging to the Enterobacteriaceae family. Larval diet enrichment with the selected bacterial isolate, Proteus sp. was found to improve adult emergence, percentage of male, and survival under stress. However, no significant changes were recorded in B. dorsalis egg hatching, pupal yield, pupal weight, duration of the larval stage, or flight ability. Conclusions: These findings support the hypothesis that gut bacterial isolates can be used in conjunction with SIT.
    [Show full text]
  • 2013. Tucuman 3Rd. RCM. August-2013. Produced Working
    1 IAEA-D41023-CR-3 LIMITED DISTRIBUTION WORKING MATERIAL RESOLUTION OF CRYPTIC SPECIES COMPLEXES OF TEPHRITID PESTS TO OVERCOME CONSTRAINTS TO SIT APPLICATION AND INTERNATIONAL TRADE THIRD RESEARCH COORDINATION MEETING OF A FAO/IAEA COORDINATED RESEARCH PROJECT HELD IN TUCUMAN, ARGENTINA FROM 26-31 AUGUST 2013 Reproduced by the IAEA Vienna, Austria 2014 __________________________________________________________________________ NOTE Material in this document has been supplied by the authors and has not been edited by the IAEA. The views expressed remain the responsibility of the named authors and do not necessarily reflect those of the government of the designating Member State(s). In particular, neither the IAEA nor any other organization or body sponsoring the meeting can be held responsible for any material reproduced in this document. 2 Table of Contents A. Background Situation Analysis ................................................................................. 3 B. The Co-ordinated Research Project (CRP) ................................................................ 4 C. Report for the 3rd RCM (Tucuman 2013) ................................................................. 5 D. Conclusions on Current Status and Recommended Future Activities for the CRP Participants ................................................................................................. 10 Anastrepha fraterculus Complex ............................................................................ 10 Background Situation Analysis ..................................................................
    [Show full text]
  • <I>Tilletia Indica</I>
    ISPM 27 27 ANNEX 4 ENG DP 4: Tilletia indica Mitra INTERNATIONAL STANDARD FOR PHYTOSANITARY MEASURES PHYTOSANITARY FOR STANDARD INTERNATIONAL DIAGNOSTIC PROTOCOLS Produced by the Secretariat of the International Plant Protection Convention (IPPC) This page is intentionally left blank This diagnostic protocol was adopted by the Standards Committee on behalf of the Commission on Phytosanitary Measures in January 2014. The annex is a prescriptive part of ISPM 27. ISPM 27 Diagnostic protocols for regulated pests DP 4: Tilletia indica Mitra Adopted 2014; published 2016 CONTENTS 1. Pest Information ............................................................................................................................... 2 2. Taxonomic Information .................................................................................................................... 2 3. Detection ........................................................................................................................................... 2 3.1 Examination of seeds/grain ............................................................................................... 3 3.2 Extraction of teliospores from seeds/grain, size-selective sieve wash test ....................... 3 4. Identification ..................................................................................................................................... 4 4.1 Morphology of teliospores ................................................................................................ 4 4.1.1 Morphological
    [Show full text]
  • Parasitoids of Queensland Fruit Fly Bactrocera Tryoni in Australia and Prospects for Improved Biological Control
    Insects 2012, 3, 1056-1083; doi:10.3390/insects3041056 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Review Parasitoids of Queensland Fruit Fly Bactrocera tryoni in Australia and Prospects for Improved Biological Control Ashley L. Zamek 1,, Jennifer E. Spinner 2 Jessica L. Micallef 1, Geoff M. Gurr 3 and Olivia L. Reynolds 4,* 1 Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Woodbridge Road, Menangle, NSW 2568, Australia; E-Mails: [email protected] (A.L.Z.); [email protected] (J.L.M) 2 EH Graham Centre for Agricultural Innovation, NSW Department of Primary Industries and Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; E-Mail: [email protected] 3 EH Graham Centre for Agricultural Innovation, NSW Department of Primary Industries and Charles Sturt University, Charles Sturt University, P.O. Box 883, Orange, NSW 2800, Australia; E-Mail: [email protected] 4 EH Graham Centre for Agricultural Innovation, NSW Department of Primary Industries and Charles Sturt University, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW 2568, Australia Present address: Level 1, 1 Phipps Close DEAKIN ACT 2600 Australia. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-0-2-4640-6426; Fax: +61-0-2-4640-6300. Received: 3 September 2012; in revised form: 4 October 2012 / Accepted: 10 October 2012 / Published: 22 October 2012 Abstract: This review draws together available information on the biology, methods for study, and culturing of hymenopteran parasitoids of the Queensland fruit fly, Bactrocera tryoni, and assesses prospects for improving biological control of this serious pest.
    [Show full text]
  • CARBÓN PARCIAL DEL TRIGO Tilletia Indica Mitra Ficha Técnica
    CARBÓN PARCIAL DEL TRIGO Tilletia indica Mitra Ficha Técnica No. 24 Durán, 2008., Durán 2016., Castlebury & Shivas 2006. ISBN: Pendiente Mayo, 2019 Dirección: DGSV/CNRF/PVEF Código EPPO : NEOVIN. Fecha de actualización: Mayo, 2019. Comentarios y sugerencias enviar correo a: [email protected] CONTENIDO IDENTIDAD .................................................................................................................................................................................................... 1 Nombre científico ................................................................................................................................................................................ 1 Sinonimia .................................................................................................................................................................................................. 1 Clasificación taxonómica ................................................................................................................................................................ 1 Nombre común .................................................................................................................................................................................... 1 Código EPPO .......................................................................................................................................................................................... 1 Estatus Fitosanitario .........................................................................................................................................................................
    [Show full text]
  • Tilletia Indica.Pdf
    Podsumowanie Analizy Zagrożenia Agrofagiem (Ekspres PRA) dla Tilletia indica Obszar PRA: Rzeczpospolita Polska Opis obszaru zagrożenia: Obszar całego kraju Główne wnioski Prawdopodobieństwo wniknięcia T. indica na teren PRA jest ściśle związane z importem zakażonego ziarna. Istnieje ryzyko zadomowienia się patogenu na obszarze PRA i wywoływania szkód w produkcji rolnej. W przypadku sprowadzania z miejsc, gdzie występuje choroba konieczne jest prowadzenie działań fitosanitarnych jak kontrola materiału nasiennego lub ziarna przeznaczonego na inne cele. Wskazane jest także zaniechanie importu w przypadku epidemii na nowym terenie lub z rejonów o silnym natężeniu infekcji. Sprowadzanie ziarna produkowanego poza obszarem występowania T. indica nie wymaga podejmowania specjalnych zabiegów fitosanitarnych. Wszelkie sygnały o obecności agrofaga powinny zostać poddane wnikliwej analizie, a zakażone rośliny lub materiał zniszczone. Ze względu na duże zdolności teliospor do przetrwania w niekorzystnych warunkach zwalczanie chemiczne lub płodozmian mogą okazać się nieskuteczne. Ryzyko fitosanitarne dla zagrożonego obszaru (indywidualna ranga prawdopodobieństwa wejścia, Wysokie Średnie X Niskie zadomowienia, rozprzestrzenienia oraz wpływu w tekście dokumentu) Poziom niepewności oceny: (uzasadnienie rangi w punkcie 18. Indywidualne rangi niepewności dla prawdopodobieństwa wejścia, Wysoka Średnia Niska X zadomowienia, rozprzestrzenienia oraz wpływu w tekście) Inne rekomendacje: 1 Ekspresowa Analiza Zagrożenia Agrofagiem: Tilletia indica Przygotowana przez: dr Katarzyna Pieczul, prof. dr hab. Marek Korbas, mgr Jakub Danielewicz, dr Katarzyna Sadowska, mgr Michał Czyż, mgr Magdalena Gawlak, lic. Agata Olejniczak dr Tomasz Kałuski; Instytut Ochrony Roślin – Państwowy Instytut Badawczy, ul. Węgorka 20, 60-318 Poznań. Data: 10.08.2017 Etap 1 Wstęp Powód wykonania PRA: Tilletia indica jest patogenem porażającym pszenicę i pszenżyto oraz potencjalnie niektóre z gatunków traw dziko rosnących. Patogen stwarza realne zagrożenie dla upraw zbóż na obszarze PRA.
    [Show full text]
  • Tilletia Indica) of Wheat Prem Lal Kashyap 1, Satvinder Kaur 1, Gulzar S
    1873 Prem Lal Kashyap et al./ Elixir Agriculture 31 (2011) 1873-1876 Available online at www.elixirpublishers.com (Elixir International Journal) Agriculture Elixir Agriculture 31 (2011) 1873-1876 Novel methods for quarantine detection of karnal bunt (tilletia indica) of wheat Prem Lal Kashyap 1, Satvinder Kaur 1, Gulzar S. Sanghera 2, Santhokh S. Kang 1 and PPS Pannu 1 1 Molecular Diagnostic Laboratory, Department of Plant Pathology, Punjab Agricultural University, Ludhiana- 141004 2 SKUAST (K) - Rice Research and Regional Station, Khudwani, Anantnag, 192102, Jammu and Kashmir, India ARTICLE INFO ABSTRACT Article history: Prior knowledge about the presence of a plant pathogen in an infected plant material and Received: 8 December 2010; natural reservoir is the first requirement for a successful disease management strategy. This Received in revised form: becomes more crucial in case of quarantine pathogen like T. indica in order to alleviate 29 December 2010; unnecessary restrictions that prevent the movement of wheat across the globe and tells how Accepted: 1 February 2011; this pathogen hinders the wheat trade of India. More over the potential risk of its dissemination in international wheat trade and germplasm exchange, there is a need for quick, sensitive, Keywords reliable and alarming method to identify T. indica to facilitate implementation of specific Tilletia indica, disease control strategies and for accurately selecting areas for quarantine. The detection of Detection, Karnal bunt (KB) is based primarily on the presence of teliospores on wheat seeds. However, Karnal bunt, accurate and reliable identification of T. indica teliospores by spore morphology alone is not Wheat always possible. Research based on genomic advances and innovative detection methods as well as better knowledge of the T.
    [Show full text]
  • Star Fruit(Carambola)
    THE MINISTRY OF AGRICULTURE AND AGRO-BASED INDUSTRY KUALA LUMPUR MALAYSIA FFOORR MMAARRKKEETT AACCCCEESSSS OONN SSTTAARR FFRRUUIITT ((CCaarraammbboollaa)) CROP PROTECTION & PLANT QUARANTINE SERVICES DIVISION DEPARTMENT OF AGRICULTURE KUALA LUMPUR Technical Document For Market Access On Star fruit (carambola) October 2004 MALAYSIA 2004 Page i Ms. Asna Booty Othman, Director, Crop Protection and Plant Quarantine Services Division, Department of Agriculture Malaysia, wishes to extend her appreciation and gratitude to the following for their contribution, assistance and cooperation in the preparation of this Technical Document For Star fruit (Carambola):- Mr. Muhamad Hj. Omar, Assistant Director, Phytosanitary and Export Control Section, Crop Protection and Plant Quarantine Services Division, Department of Agriculture Malaysia; Ms. Nuraizah Hashim, Agriculture Officer, Phytosanitary and Export Control Section, Crop Protection and Plant Quarantine Services Division, Department of Agriculture Malaysia; Appreciation is also extended to Y. Bhg. Dato’ Ismail Ibrahim, Director-General of Agriculture, for his support and guidance in the preparation of this Document. Technical Document For Market Access On Star fruit (carambola) October 2004 Page ii TABLE OF CONTENTS Section Page No. Agronomy Aspects Scientific Name 1 Family 1 Common Name 1 Introduction 1 Nutrient Composition 1 Origin 2 Adaptation 2 Use And Potential 2 Marketing 2 Main Areas 3 Varieties/Clones 3 Botanical Description 3 Tree 3 Leaves 3 Flowers 4 Fruit 4 Crop Requirement 4 Climate
    [Show full text]
  • Bactrocera Carambolae
    THE JOURNAL OF TROPICAL LIFE SCIENCE OPEN ACCESS Freely available online VOL. 3, NO. 3, pp. 187 – 192, September, 2013 The Effectiveness of Entomopathogenic Fungi Beauveria bassiana with the Addition of Insect Growth Regulator Lufenuron for Controlling Bactrocera carambolae Mochammad Syamsul Hadi1*, Toto Himawan2, Luqman Qurata Aini2 1Graduate Program Plant Science Faculty of Agriculture, Brawijaya University 2Department of Plant Protection Faculty of Agriculture, Brawijaya University ABSTRACT The study of the effectiveness of entomopathogenic fungus Beauveria bassiana (Bals) Vuill. with the addition of an insect growth regulator (IGR) lufenuron to control the fruit fly Bactrocera carambolae (Drew and Hancock) (Diptera: Tephritidae) was conducted at the Laboratory of Toxicology and Laboratory of Entomology, Department of Plant Pests and Diseases, Faculty of Agriculture, University of Brawijaya Malang from March 2012 until December 2012. This study examined the effect of lufe- nuron to the development and sporulation of B. bassiana and the effectiveness of the fungus B. bassiana in combination with several concentrations of lufenuron (0.5, 1, 1.5 mL/L) on the mortality of fruit fly larva B. carambolae. The results showed that the addition of lufenuron at the concentration of 1 mL/L could significantly increase the sporulation of B. bassiana. The addition of B. bassiana at 108 spores/mL combined with lufenuron at the concentration of 1 mL/L applied to compost pupation medium of larva of B. carambolae is significantly able to suppress the formation of the fruit fly pupa and imago of B. carambolae. Keywords: Beauveria bassiana, Bactrocera carambolae, Effectiveness. INTRODUCTION B. carambolae is usually seen from the puncture marks found on the skin of fruit.
    [Show full text]
  • 12 Bactrocera Species That Pose a Threat to Florida: B. Carambolae and B
    12 Bactrocera Species that Pose a Threat to Florida: B. carambolae and B. invadens Aldo Malavasi,1 David Midgarden2 and Marc De Meyer3 1Medfly Rearing Facility – Moscamed Brasil, Juazeiro, Bahia, Brazil; 2USDA/APHIS, Guatemala City, Guatemala; 3Royal Museum for Central Africa, Tervuren, Belgium 12.1 Introduction point, (e.g., a backyard or garden tree) to adjacent areas and commercial groves. Tephritidae is one of the largest families of 2. High natural ability of dispersion. Some fru- Diptera and contains more than 500 genera and givorous fruit fly species are good flyers and can 4000 species, divided into three subfamilies disperse quickly and in large number when suita- (White and Elson-Harris, 1992; Norrbom et al., ble host trees are not available or are out of sea- 1999). Tephri tidae pests are particularly impor- son. Well-fed adults – males and females – can fly tant because of their ability to invade regions large distances in search of reproductive and ovi- far from their native distribution. Introduced position sites or just for shelter. Experiments populations attack commercial fruit species, using the mark-release-recapture methodology which causes countries imp orting fruit to have shown that either males or females can impose quarantine regulations (McPheron and travel many kilometers when the environment is Steck, 1996). These restrictions can inhibit the inadequate. In addition, being physically strong, sale of produce and the development or expan- the adults can be carried large distances by wind, sion of fruit production in the areas in which the hurricanes and masses of warm air, a fairly com- pest species are established.
    [Show full text]
  • Near Full-Length 16S Rrna Gene Next-Generation Sequencing
    Deutscher et al. Microbiome (2018) 6:85 https://doi.org/10.1186/s40168-018-0463-y RESEARCH Open Access Near full-length 16S rRNA gene next- generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae Ania T. Deutscher1,2*, Catherine M. Burke4, Aaron E. Darling3, Markus Riegler5, Olivia L. Reynolds1,2 and Toni A. Chapman1 Abstract Background: Gut microbiota affects tephritid (Diptera: Tephritidae) fruit fly development, physiology, behavior, and thus the quality of flies mass-reared for the sterile insect technique (SIT), a target-specific, sustainable, environmentally benign form of pest management. The Queensland fruit fly, Bactrocera tryoni (Tephritidae), is a significant horticultural pest in Australia and can be managed with SIT. Little is known about the impacts that laboratory-adaptation (domestication) and mass-rearing have on the tephritid larval gut microbiome. Read lengths of previous fruit fly next-generation sequencing (NGS) studies have limited the resolution of microbiome studies, and the diversity within populations is often overlooked. In this study, we used a new near full-length (> 1300 nt) 16S rRNA gene amplicon NGS approach to characterize gut bacterial communities of individual B. tryoni larvae from two field populations (developing in peaches) and three domesticated populations (mass- or laboratory-reared on artificial diets). Results: Near full-length 16S rRNA gene sequences were obtained for 56 B. tryoni larvae. OTU clustering at 99% similarity revealed that gut bacterial diversity was low and significantly lower in domesticated larvae. Bacteria commonly associated with fruit (Acetobacteraceae, Enterobacteriaceae,andLeuconostocaceae)weredetectedinwild larvae, but were largely absent from domesticated larvae.
    [Show full text]
  • Synonymization of Key Pest Species Within the Bactrocera Dorsalis
    Systematic Entomology (2014), DOI: 10.1111/syen.12113 Synonymization of key pest species within the Bactrocera dorsalis species complex (Diptera: Tephritidae): taxonomic changes based on a review of 20 years of integrative morphological, molecular, cytogenetic, behavioural and chemoecological data MARK K. SCHUTZE1,2, NIDCHAYA AKETARAWONG3, WEERAWAN AMORNSAK4, KAREN F. ARMSTRONG5, ANTONIS A. AUGUSTINOS6,7,8, NORMAN BARR9,WANGBO6,7,10,KOSTAS BOURTZIS6,7, LAURA M. BOYKIN11, CARLOS CÁCERES6,7, STEPHEN L. CAMERON1, TONI A. CHAPMAN2,12, SUKSOM CHINVINIJKUL13, ANASTASIJA CHOMICˇ 5, MARC DE MEYER14, ELLENA DROSOPOULOU15, ANNA ENGLEZOU2,12, SUNDAY EKESI16, ANGELIKI GARIOU-PAPALEXIOU17, SCOTT M. GEIB18, DEBORAH HAILSTONES2,12, MOHAMMED HASANUZZAMAN19, DAVID HAYMER20, ALVIN K. W. HEE21, JORGE HENDRICHS6,7, ANDREW JESSUP22, QINGE JI10, FATHIYA M. KHAMIS16, MATTHEW N. KROSCH2,23, LUC LEBLANC24, KHALID MAHMOOD25, ANNA R. MALACRIDA26, PINELOPI MAVRAGANI -TSIPIDOU15, MAULID MWATAWALA27, RITSUO NISHIDA28, HAJIME ONO28, JESUS REYES6,7, DANIEL RUBINOFF24, MICHAEL SANJOSE24, TODD E. SHELLY29, SUNYANEE SRIKACHAR30,KENGH.TAN31, SUJINDA THANAPHUM32, IHSAN HAQ6,7,33, SHANMUGAM VIJAYSEGARAN1, SUK L. WEE34, FARZANA YESMIN19, ANTIGONE ZACHAROPOULOU17 and ANTHONY R. CLARKE1,2 1School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Australia, 2Plant Biosecurity Cooperative Research Centre, Canberra, Australia, 3Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand, 4Department of Entomology,
    [Show full text]