Families and Genera of Diaporthalean Fungi Associated with Canker and Dieback of Tree Hosts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CHESTNUT (CASTANEA Spp.) CULTIVAR EVALUATION for COMMERCIAL CHESTNUT PRODUCTION
CHESTNUT (CASTANEA spp.) CULTIVAR EVALUATION FOR COMMERCIAL CHESTNUT PRODUCTION IN HAMILTON COUNTY, TENNESSEE By Ana Maria Metaxas Approved: James Hill Craddock Jennifer Boyd Professor of Biological Sciences Assistant Professor of Biological and Environmental Sciences (Director of Thesis) (Committee Member) Gregory Reighard Jeffery Elwell Professor of Horticulture Dean, College of Arts and Sciences (Committee Member) A. Jerald Ainsworth Dean of the Graduate School CHESTNUT (CASTANEA spp.) CULTIVAR EVALUATION FOR COMMERCIAL CHESTNUT PRODUCTION IN HAMILTON COUNTY, TENNESSEE by Ana Maria Metaxas A Thesis Submitted to the Faculty of the University of Tennessee at Chattanooga in Partial Fulfillment of the Requirements for the Degree of Master of Science in Environmental Science May 2013 ii ABSTRACT Chestnut cultivars were evaluated for their commercial applicability under the environmental conditions in Hamilton County, TN at 35°13ꞌ 45ꞌꞌ N 85° 00ꞌ 03.97ꞌꞌ W elevation 230 meters. In 2003 and 2004, 534 trees were planted, representing 64 different cultivars, varieties, and species. Twenty trees from each of 20 different cultivars were planted as five-tree plots in a randomized complete block design in four blocks of 100 trees each, amounting to 400 trees. The remaining 44 chestnut cultivars, varieties, and species served as a germplasm collection. These were planted in guard rows surrounding the four blocks in completely randomized, single-tree plots. In the analysis, we investigated our collection predominantly with the aim to: 1) discover the degree of acclimation of grower- recommended cultivars to southeastern Tennessee climatic conditions and 2) ascertain the cultivars’ ability to survive in the area with Cryphonectria parasitica and other chestnut diseases and pests present. -
Cryphonectria Parasitica Global Invasive Species Database (GISD)
FULL ACCOUNT FOR: Cryphonectria parasitica Cryphonectria parasitica System: Terrestrial Kingdom Phylum Class Order Family Fungi Ascomycota Sordariomycetes Diaporthales Valsaceae Common name Edelkastanienkrebs (German), chestnut blight (English) Synonym Endothia parasitica Similar species Cryphonectria radicalis, Endothia gyrosa Summary Cryphonectria parasitica is a fungus that attacks primarily Castanea spp. but also has been known to cause damage to various Quercus spp. along with other species of hardwood trees. American chestnut, C. dentata, was a dominant overstorey species in United States forests, but now they have been completely replaced within the ecosystem. C. dentata still exists in the forests but only within the understorey as sprout shoots from the root system of chestnuts killed by the blight years ago. A virus that attacks this fungus appears to be the best hope for the future of Castanea spp., and current research is focused primarily on this virus and variants of it for biological control. Chestnut blight only infects the above-ground parts of trees, causing cankers that enlarge, girdle and kill branches and trunks. view this species on IUCN Red List Global Invasive Species Database (GISD) 2021. Species profile Cryphonectria Pag. 1 parasitica. Available from: http://www.iucngisd.org/gisd/species.php?sc=124 [Accessed 05 October 2021] FULL ACCOUNT FOR: Cryphonectria parasitica Species Description The US Forest Service (undated) states that, \"C. parasitica forms yellowish or orange fruiting bodies (pycnidia) about the size of a pin head on the older portion of cankers. Spores may exude from the pycnidia as orange, curled horns during moist weather. Stem cankers are either swollen or sunken, and the sunken type may be grown over with bark. -
<I>Stilbosporaceae</I>
Persoonia 33, 2014: 61–82 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158514X684212 Stilbosporaceae resurrected: generic reclassification and speciation H. Voglmayr1, W.M. Jaklitsch1 Key words Abstract Following the abolishment of dual nomenclature, Stilbospora is recognised as having priority over Prosthecium. The type species of Stilbospora, S. macrosperma, is the correct name for P. ellipsosporum, the type Alnecium species of Prosthecium. The closely related genus Stegonsporium is maintained as distinct from Stilbospora based Calospora on molecular phylogeny, morphology and host range. Stilbospora longicornuta and S. orientalis are described as Calosporella new species from Carpinus betulus and C. orientalis, respectively. They differ from the closely related Stilbospora ITS macrosperma, which also occurs on Carpinus, by longer, tapering gelatinous ascospore appendages and by dis- LSU tinct LSU, ITS rDNA, rpb2 and tef1 sequences. The asexual morphs of Stilbospora macrosperma, S. longicornuta molecular phylogeny and S. orientalis are morphologically indistinguishable; the connection to their sexual morphs is demonstrated by Phaeodiaporthe morphology and DNA sequences of single spore cultures derived from both ascospores and conidia. Both morphs rpb2 of the three Stilbospora species on Carpinus are described and illustrated. Other species previously recognised in systematics Prosthecium, specifically P. acerophilum, P. galeatum and P. opalus, are determined to belong to and are formally tef1 transferred to Stegonsporium. Isolates previously recognised as Stegonsporium pyriforme (syn. Prosthecium pyri forme) are determined to consist of three phylogenetically distinct lineages by rpb2 and tef1 sequence data, two of which are described as new species (S. protopyriforme, S. pseudopyriforme). Stegonsporium pyriforme is lectotypified and this species and Stilbospora macrosperma are epitypified. -
A Novel Family of Diaporthales (Ascomycota)
Phytotaxa 305 (3): 191–200 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.305.3.6 Melansporellaceae: a novel family of Diaporthales (Ascomycota) ZHUO DU1, KEVIN D. HYDE2, QIN YANG1, YING-MEI LIANG3 & CHENG-MING TIAN1* 1The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, PR China 2International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Bail- ongsi, Kunming 650224, PR China 3Museum of Beijing Forestry University, Beijing 100083, PR China *Correspondence author email: [email protected] Abstract Melansporellaceae fam. nov. is introduced to accommodate a genus of diaporthalean fungi that is a phytopathogen caus- ing walnut canker disease in China. The family is typified by Melansporella gen. nov. It can be distinguished from other diaporthalean families based on its irregularly uniseriate ascospores, and ovoid, brown conidia with a hyaline sheath and surface structures. Phylogenetic analysis shows that Melansporella juglandium sp. nov. forms a monophyletic group within Diaporthales (MP/ML/BI=100/96/1) and is a new diaporthalean clade, based on molecular data of ITS and LSU gene re- gions. Thus, a new family is proposed to accommodate this taxon. Key words: diaporthalean fungi, fungal diversity, new taxon, Sordariomycetes, systematics, taxonomy Introduction The ascomycetous order Diaporthales (Sordariomycetes) are well-known fungal plant pathogens, endophytes and saprobes, with wide distributions and broad host ranges (Castlebury et al. 2002, Rossman et al. 2007, Maharachchikumbura et al. 2016). -
Diseases of Trees in the Great Plains
United States Department of Agriculture Diseases of Trees in the Great Plains Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-335 November 2016 Bergdahl, Aaron D.; Hill, Alison, tech. coords. 2016. Diseases of trees in the Great Plains. Gen. Tech. Rep. RMRS-GTR-335. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 229 p. Abstract Hosts, distribution, symptoms and signs, disease cycle, and management strategies are described for 84 hardwood and 32 conifer diseases in 56 chapters. Color illustrations are provided to aid in accurate diagnosis. A glossary of technical terms and indexes to hosts and pathogens also are included. Keywords: Tree diseases, forest pathology, Great Plains, forest and tree health, windbreaks. Cover photos by: James A. Walla (top left), Laurie J. Stepanek (top right), David Leatherman (middle left), Aaron D. Bergdahl (middle right), James T. Blodgett (bottom left) and Laurie J. Stepanek (bottom right). To learn more about RMRS publications or search our online titles: www.fs.fed.us/rm/publications www.treesearch.fs.fed.us/ Background This technical report provides a guide to assist arborists, landowners, woody plant pest management specialists, foresters, and plant pathologists in the diagnosis and control of tree diseases encountered in the Great Plains. It contains 56 chapters on tree diseases prepared by 27 authors, and emphasizes disease situations as observed in the 10 states of the Great Plains: Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. The need for an updated tree disease guide for the Great Plains has been recog- nized for some time and an account of the history of this publication is provided here. -
Leaf-Inhabiting Genera of the Gnomoniaceae, Diaporthales
Studies in Mycology 62 (2008) Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales M.V. Sogonov, L.A. Castlebury, A.Y. Rossman, L.C. Mejía and J.F. White CBS Fungal Biodiversity Centre, Utrecht, The Netherlands An institute of the Royal Netherlands Academy of Arts and Sciences Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales STUDIE S IN MYCOLOGY 62, 2008 Studies in Mycology The Studies in Mycology is an international journal which publishes systematic monographs of filamentous fungi and yeasts, and in rare occasions the proceedings of special meetings related to all fields of mycology, biotechnology, ecology, molecular biology, pathology and systematics. For instructions for authors see www.cbs.knaw.nl. EXECUTIVE EDITOR Prof. dr Robert A. Samson, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] LAYOUT EDITOR Marianne de Boeij, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] SCIENTIFIC EDITOR S Prof. dr Uwe Braun, Martin-Luther-Universität, Institut für Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle, Germany. E-mail: [email protected] Prof. dr Pedro W. Crous, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] Prof. dr David M. Geiser, Department of Plant Pathology, 121 Buckhout Laboratory, Pennsylvania State University, University Park, PA, U.S.A. 16802. E-mail: [email protected] Dr Lorelei L. Norvell, Pacific Northwest Mycology Service, 6720 NW Skyline Blvd, Portland, OR, U.S.A. -
NDP 11 V2 - National Diagnostic Protocol for Cryphonectria Parasitica
NDP 11 V2 - National Diagnostic Protocol for Cryphonectria parasitica National Diagnostic Protocol Chestnut blight Caused by Cryphonectria parasitica NDP 11 V2 NDP 11 V2 - National Diagnostic Protocol for Cryphonectria parasitica © Commonwealth of Australia Ownership of intellectual property rights Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Commonwealth of Australia (referred to as the Commonwealth). Creative Commons licence All material in this publication is licensed under a Creative Commons Attribution 3.0 Australia Licence, save for content supplied by third parties, logos and the Commonwealth Coat of Arms. Creative Commons Attribution 3.0 Australia Licence is a standard form licence agreement that allows you to copy, distribute, transmit and adapt this publication provided you attribute the work. A summary of the licence terms is available from http://creativecommons.org/licenses/by/3.0/au/deed.en. The full licence terms are available from https://creativecommons.org/licenses/by/3.0/au/legalcode. This publication (and any material sourced from it) should be attributed as: Subcommittee on Plant Health Diagnostics (2017). National Diagnostic Protocol for Cryphonectria parasitica – NDP11 V2. (Eds. Subcommittee on Plant Health Diagnostics) Authors Cunnington, J, Mohammed, C and Glen, M. Reviewers Pascoe, I and Tan YP, ISBN 978-0- 9945113-6-2. CC BY 3.0. Cataloguing data Subcommittee on Plant Health Diagnostics (2017). National Diagnostic Protocol for Cryphonectria parasitica – NDP11 V2. (Eds. Subcommittee on Plant Health Diagnostics) Authors Cunnington, J, Mohammed, C and Glen, M. Reviewers Pascoe, I and Tan YP, ISBN 978-0-9945113-6-2. -
Coryneum Heveanum Sp. Nov. (Coryneaceae, Diaporthales) on Twigs of Para Rubber in Thailand
A peer-reviewed open-access journal MycoKeys 43: 75–90Coryneum (2018) heveanum sp. nov. (Coryneaceae, Diaporthales) on twigs of... 75 doi: 10.3897/mycokeys.43.29365 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Coryneum heveanum sp. nov. (Coryneaceae, Diaporthales) on twigs of Para rubber in Thailand Chanokned Senwanna1,2, Kevin D. Hyde2,3,4, Rungtiwa Phookamsak2,3,4,5, E. B. Gareth Jones1, Ratchadawan Cheewangkoon1 1 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 2 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People’s Republic of China 4 World Agroforestry Cen- tre, East and Central Asia, Heilongtan, Kunming 650201, Yunnan, People’s Republic of China 5 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand Corresponding author: Ratchadawan Cheewangkoon ([email protected]) Academic editor: Andrew Miller | Received 28 August 2018 | Accepted 14 November 2018 | Published 6 December 2018 Citation: Senwanna C, Hyde KD, Phookamsak R, Jones EBG, Cheewangkoon R (2018) Coryneum heveanum sp. nov. (Coryneaceae, Diaporthales) on twigs of Para rubber in Thailand. MycoKeys 43: 75–90. https://doi.org/10.3897/ mycokeys.43.29365 Abstract During studies of microfungi on para rubber in Thailand, we collected a newCoryneum species on twigs which we introduce herein as C. heveanum with support from phylogenetic analyses of LSU, ITS and TEF1 sequence data and morphological characters. -
Notizbuchartige Auswahlliste Zur Bestimmungsliteratur Für Unitunicate Pyrenomyceten, Saccharomycetales Und Taphrinales
Pilzgattungen Europas - Liste 9: Notizbuchartige Auswahlliste zur Bestimmungsliteratur für unitunicate Pyrenomyceten, Saccharomycetales und Taphrinales Bernhard Oertel INRES Universität Bonn Auf dem Hügel 6 D-53121 Bonn E-mail: [email protected] 24.06.2011 Zur Beachtung: Hier befinden sich auch die Ascomycota ohne Fruchtkörperbildung, selbst dann, wenn diese mit gewissen Discomyceten phylogenetisch verwandt sind. Gattungen 1) Hauptliste 2) Liste der heute nicht mehr gebräuchlichen Gattungsnamen (Anhang) 1) Hauptliste Acanthogymnomyces Udagawa & Uchiyama 2000 (ein Segregate von Spiromastix mit Verwandtschaft zu Shanorella) [Europa?]: Typus: A. terrestris Udagawa & Uchiyama Erstbeschr.: Udagawa, S.I. u. S. Uchiyama (2000), Acanthogymnomyces ..., Mycotaxon 76, 411-418 Acanthonitschkea s. Nitschkia Acanthosphaeria s. Trichosphaeria Actinodendron Orr & Kuehn 1963: Typus: A. verticillatum (A.L. Sm.) Orr & Kuehn (= Gymnoascus verticillatus A.L. Sm.) Erstbeschr.: Orr, G.F. u. H.H. Kuehn (1963), Mycopath. Mycol. Appl. 21, 212 Lit.: Apinis, A.E. (1964), Revision of British Gymnoascaceae, Mycol. Pap. 96 (56 S. u. Taf.) Mulenko, Majewski u. Ruszkiewicz-Michalska (2008), A preliminary checklist of micromycetes in Poland, 330 s. ferner in 1) Ajellomyces McDonough & A.L. Lewis 1968 (= Emmonsiella)/ Ajellomycetaceae: Lebensweise: Z.T. humanpathogen Typus: A. dermatitidis McDonough & A.L. Lewis [Anamorfe: Zymonema dermatitidis (Gilchrist & W.R. Stokes) C.W. Dodge; Synonym: Blastomyces dermatitidis Gilchrist & Stokes nom. inval.; Synanamorfe: Malbranchea-Stadium] Anamorfen-Formgattungen: Emmonsia, Histoplasma, Malbranchea u. Zymonema (= Blastomyces) Bestimm. d. Gatt.: Arx (1971), On Arachniotus and related genera ..., Persoonia 6(3), 371-380 (S. 379); Benny u. Kimbrough (1980), 20; Domsch, Gams u. Anderson (2007), 11; Fennell in Ainsworth et al. (1973), 61 Erstbeschr.: McDonough, E.S. u. A.L. -
A Survey of Endophytic Fungi Associated with High-Risk Plants Imported for Ornamental Purposes
agriculture Review A Survey of Endophytic Fungi Associated with High-Risk Plants Imported for Ornamental Purposes Laura Gioia 1,*, Giada d’Errico 1,* , Martina Sinno 1 , Marta Ranesi 1, Sheridan Lois Woo 2,3,4 and Francesco Vinale 4,5 1 Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; [email protected] (M.S.); [email protected] (M.R.) 2 Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; [email protected] 3 Task Force on Microbiome Studies, University of Naples Federico II, 80128 Naples, Italy 4 National Research Council, Institute for Sustainable Plant Protection, 80055 Portici, Italy; [email protected] 5 Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy * Correspondence: [email protected] (L.G.); [email protected] (G.d.); Tel.: +39-2539344 (L.G. & G.d.) Received: 31 October 2020; Accepted: 11 December 2020; Published: 17 December 2020 Abstract: An extensive literature search was performed to review current knowledge about endophytic fungi isolated from plants included in the European Food Safety Authority (EFSA) dossier. The selected genera of plants were Acacia, Albizia, Bauhinia, Berberis, Caesalpinia, Cassia, Cornus, Hamamelis, Jasminus, Ligustrum, Lonicera, Nerium, and Robinia. A total of 120 fungal genera have been found in plant tissues originating from several countries. Bauhinia and Cornus showed the highest diversity of endophytes, whereas Hamamelis, Jasminus, Lonicera, and Robinia exhibited the lowest. The most frequently detected fungi were Aspergillus, Colletotrichum, Fusarium, Penicillium, Phyllosticta, and Alternaria. Plants and plant products represent an inoculum source of several mutualistic or pathogenic fungi, including quarantine pathogens. -
Families and Genera of Diaporthalean Fungi Associated with Canker and Dieback of Tree Hosts
Persoonia 40, 2018: 119–134 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2018.40.05 Families and genera of diaporthalean fungi associated with canker and dieback of tree hosts X.L. Fan1, J.D.P. Bezerra2, C.M. Tian1, P.W. Crous3,4,5 Key words Abstract In this study we accept 25 families in Diaporthales based on phylogenetic analyses using partial ITS, LSU, rpb2 and tef1-α gene sequences. Four different families associated with canker and dieback of tree hosts Ascomycota are morphologically treated and phylogenetically compared. These include three new families (Diaporthostomata phylogeny ceae, Pseudomelanconidaceae, Synnemasporellaceae), and one new genus, Dendrostoma (Erythrogloeaceae). Sordariomycetes Dendrostoma is newly described from Malus spectabilis, Osmanthus fragrans and Quercus acutissima having taxonomy fusoid to cylindrical, bicellular ascospores, with three new species namely D. mali, D. osmanthi and D. quercinum. Diaporthostomataceae is characterised by conical and discrete perithecia with bicellular, fusoid ascospores on branches of Machilus leptophylla. Pseudomelanconidaceae is defined by conidiogenous cells with apical collarets and discreet annellations, and the inconspicuous hyaline conidial sheath when mature on Carya cathayensis, compared to morphologically similar families Melanconidaceae and Juglanconidaceae. Synnemasporellaceae is proposed to accommodate fungi with synnematous conidiomata, with descriptions of S. toxicodendri on Toxico dendron sylvestre and S. aculeans on Rhus copallina. Article info Received: 3 November 2017; Accepted: 9 January 2018; Published: 6 February 2018. INTRODUCTION Juglanconis juglandina and J. oblonga (in Juglanconidaceae) (Voglmayr et al. 2017), foliar diseases of Eucalyptus by Hark Diaporthales represents an important order in Sordariomy nessia spp. -
Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two
(topsheet) Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113. Fieldiana, Botany H. Thorsten Lumbsch Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7881 fax: 312-665-7158 e-mail: [email protected] Sabine M. Huhndorf Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7855 fax: 312-665-7158 e-mail: [email protected] 1 (cover page) FIELDIANA Botany NEW SERIES NO 00 Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 H. Thorsten Lumbsch Sabine M. Huhndorf [Date] Publication 0000 PUBLISHED BY THE FIELD MUSEUM OF NATURAL HISTORY 2 Table of Contents Abstract Part One. Outline of Ascomycota - 2009 Introduction Literature Cited Index to Ascomycota Subphylum Taphrinomycotina Class Neolectomycetes Class Pneumocystidomycetes Class Schizosaccharomycetes Class Taphrinomycetes Subphylum Saccharomycotina Class Saccharomycetes Subphylum Pezizomycotina Class Arthoniomycetes Class Dothideomycetes Subclass Dothideomycetidae Subclass Pleosporomycetidae Dothideomycetes incertae sedis: orders, families, genera Class Eurotiomycetes Subclass Chaetothyriomycetidae Subclass Eurotiomycetidae Subclass Mycocaliciomycetidae Class Geoglossomycetes Class Laboulbeniomycetes Class Lecanoromycetes Subclass Acarosporomycetidae Subclass Lecanoromycetidae Subclass Ostropomycetidae 3 Lecanoromycetes incertae sedis: orders, genera Class Leotiomycetes Leotiomycetes incertae sedis: families, genera Class Lichinomycetes Class Orbiliomycetes Class Pezizomycetes Class Sordariomycetes Subclass Hypocreomycetidae Subclass Sordariomycetidae Subclass Xylariomycetidae Sordariomycetes incertae sedis: orders, families, genera Pezizomycotina incertae sedis: orders, families Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 Introduction Literature Cited 4 Abstract Part One presents the current classification that includes all accepted genera and higher taxa above the generic level in the phylum Ascomycota.