Chlorination for the Removal of Zinc from Basic Oxygen Steelmaking (Bos) By-Product

Total Page:16

File Type:pdf, Size:1020Kb

Chlorination for the Removal of Zinc from Basic Oxygen Steelmaking (Bos) By-Product CHLORINATION FOR THE REMOVAL OF ZINC FROM BASIC OXYGEN STEELMAKING (BOS) BY-PRODUCT THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY By IZAN JAAFAR BSc (Hons) – Env. Sc., MEng. (Env. M’ment) Institute of Sustainability and Environment, School of Engineering, Cardiff University 2014 1 DECLARATION This work has not previously been accepted in substance for any degree and is not concurrently submitted in candidature for any degree. Signed…………………………… (Izan Jaafar) Date ……………………..31/12/2013 STATEMENT 1 This thesis is being submitted in partial fulfilment of the requirements for the degree of PhD. Signed…………………………… (Izan Jaafar) Date……………………..31/12/2013 STATEMENT 2 This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledged by explicit references. Signed……………………………(Izan Jaafar) Date……………………..31/12/2013 STATEMENT 3 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan and for the title and summary to be made available to outside organisations. Signed……………………………(Izan Jaafar) Date……………………..31/12/2013 i ABSTRACT A study on the chlorination of Basic Oxygen Steelmaking (BOS) by-product dusts followed by water leaching was conducted. The samples used for the studies sourced from the earth works and beneficiation of BOS byproduct from the stockpile. Comprehensive reports resulted from the excavation, beneficiation, physical and chemical analysis are reported. Zinc and iron removal studies from BOS by-product were investigated by means of chlorination roasting. Chlorination roasting of the BOS material by means of pyrometallurgical extraction was undertaking, assessing parameters such as roasting temperature, roasting time and chemical stoichiometry. A preliminary study was carried out using a solid chlorination agent, Ammonium Chloride (NH4Cl) in a muffle furnace for a 3 stage roasting conducted for 15 minutes to 180 minutes at 450C to 750C. Selected studies were carried out with 1-stage roasting. Further experimental studies then took place for chlorination using gaseous Cl2/N2 mixture gas in the tube furnace with 5 times chemical stoichiometry for a roasting time from 5 minutes to 90 minutes, with various temperatures from 150C to 750C. A 1 times and 2 times stoichiometry were added in selected procedure to foresee the effects of starvation agent. Additional surface area affects were also added to the chlorination with Cl2/N2 gas using bigger sample boat. Water leaching for 1 hour and 24 hours were conducted on the sample roasted with Cl2/N2 to investigate the leachability of Zn to assist further removal. The chemical and mineralogical composition of the BOS stockpile varied widely. The pH value were highly alkaline ranging from 10.2 – 13.5, while the moisture content showed a very wide range from 6 – 43%. The particle size analysis of the earth works excavation on the study site established five stockpile particle size fraction, ranging from as fine as <0.8mm to >38.22 mm. The composition of zinc ranging from 2.78% - 5.96%, while the iron content ranging from 41.36 to 62.18% respectively. This amount of iron has the potential for recovery and reused within a steel making process. It is possible to recover 97% of Zn and 30% Fe by roasting at 750C for a period of 135 minutes with NH4Cl salt. Roasting with 3 stages of NH4Cl addition proved to be more appropriate to increase the percentage of zinc removal. 97% Zn are removed Cl2/N2 gas for a period of 30 minutes roasting. The water leaching was conducted More than 90% Zn are recovered using bigger surface area sample boat with only 2.5 times stoichiometry. The extraction of Zn was greatly enhanced by the water leaching following the chlorination roasting using Cl2/N2 gas. 95% of Zn was leached while only 7% Fe was extracted after chlorination at 650C for 20 minutes roasting. It is possible to leach up to 98% Zinc after the chlorination roasting at 450C at 20 mins. The research has demonstrated that chlorination extraction has potential application in the steel sector for removal of Zn from steelmaking BOS dusts. In conducting the chlorination roasting, operational parameters such as temperature, roasting, chlorine agent stoichiometry, and surface area are important in determining the best operational condition. Hybrid process of chlorination roasting with leaching could highly assist in the further removal of Zn from BOS dust. ii DEDICATION To my beloved Baba & Mama; my inspiration iii ACKNOWLEDGEMENT I would like to express my sincere gratitude to my supervisor Prof Anthony Griffiths and Prof Keith Williams. The publication of this study would not be possible without their continuous supervision, guidance, encouragement and understanding. Their advices and suggestions have given a better insight into the completion of this research. I would like to express my great appreciation to the Ministry of Higher Education Malaysia and Universiti Malaysia Terengganu for their financial support to undertake this study. Not forgetting Tata Steel for the financial support particularly for the chemicals and experimental set up. Special thanks to Tata’s Centre of Excellence team in Cardiff University; Mr Julian Steer, Mr Andrew Hopkins and Mr Martyn Griffiths. I would also like to thank Mr Jeffrey Rowlands and Mr Ravi Mitha for all the help and assistance they provided me with in the CLEER laboratories throughout this study. I am grateful to Mr Malcolm Seabourne in particular and the remaining workshop technicians for the experimental set-up, rig design and rig development, ongoing advice and maintenance for the experimental works. I would also like to acknowledge all my fellow colleagues and friends who have been so encouraging for all these PhD years. Their valuable ongoing supports have motivates and inspires me to face all the turbulences and difficulties I’m facing in completing this research. Lastly, to my family, for their everlasting love, encouragement, motivation and believe in me. The accomplishment of this thesis would not be done without their continuous support. iv CONTENTS DECLARATION ................................................................................................................................ i ABSTRACT ....................................................................................................................................... ii DEDICATION .................................................................................................................................. iii ACKNOWLEDGEMENT ................................................................................................................ iv CONTENTS ....................................................................................................................................... v LIST OF FIGURES ......................................................................................................................... viii LIST OF TABLE .............................................................................................................................. xi LIST OF ABBREVIATIONS ......................................................................................................... xiii Chapter 1 INTRODUCTION .......................................................................................................... 1 1.1 Introduction ...................................................................................................................... 1 1.2 Aims and Objectives......................................................................................................... 5 1.3 Thesis Outline ................................................................................................................... 6 Chapter 2 LITERATURE REVIEW ............................................................................................ 10 2.1 Introduction .................................................................................................................... 10 2.2 STEELMAKING DUSTS .............................................................................................. 10 2.2.1 Formation ................................................................................................................. 11 2.2.2 Metallurgical and Characterization .......................................................................... 14 2.3 Sampling site investigation and sample beneficiation ................................................. 17 2.3.2 Sample Beneficiation ............................................................................................... 20 2.4 Extractive Metallurgy .................................................................................................... 22 2.4.1 Pyrometallurgy ......................................................................................................... 24 2.4.2 Hydrometallurgy ...................................................................................................... 26 2.5 CHLORINATION .......................................................................................................... 29 2.5.1 Introduction .............................................................................................................. 29 2.5.2 Mechanism ............................................................................................................... 31 2.5.3 Process design .........................................................................................................
Recommended publications
  • Society, Materials, and the Environment: the Case of Steel
    metals Review Society, Materials, and the Environment: The Case of Steel Jean-Pierre Birat IF Steelman, Moselle, 57280 Semécourt, France; [email protected]; Tel.: +333-8751-1117 Received: 1 February 2020; Accepted: 25 February 2020; Published: 2 March 2020 Abstract: This paper reviews the relationship between the production of steel and the environment as it stands today. It deals with raw material issues (availability, scarcity), energy resources, and generation of by-products, i.e., the circular economy, the anthropogenic iron mine, and the energy transition. The paper also deals with emissions to air (dust, Particulate Matter, heavy metals, Persistant Organics Pollutants), water, and soil, i.e., with toxicity, ecotoxicity, epidemiology, and health issues, but also greenhouse gas emissions, i.e., climate change. The loss of biodiversity is also mentioned. All these topics are analyzed with historical hindsight and the present understanding of their physics and chemistry is discussed, stressing areas where knowledge is still lacking. In the face of all these issues, technological solutions were sought to alleviate their effects: many areas are presently satisfactorily handled (the circular economy—a historical’ practice in the case of steel, energy conservation, air/water/soil emissions) and in line with present environmental regulations; on the other hand, there are important hanging issues, such as the generation of mine tailings (and tailings dam failures), the emissions of greenhouse gases (the steel industry plans to become carbon-neutral by 2050, at least in the EU), and the emission of fine PM, which WHO correlates with premature deaths. Moreover, present regulatory levels of emissions will necessarily become much stricter.
    [Show full text]
  • A History of Tailings1
    A HISTORY OF MINERAL CONCENTRATION: A HISTORY OF TAILINGS1 by Timothy c. Richmond2 Abstract: The extraction of mineral values from the earth for beneficial use has been a human activity- since long before recorded history. Methodologies were little changed until the late 19th century. The nearly simultaneous developments of a method to produce steel of a uniform carbon content and the means to generate electrical power gave man the ability to process huge volumes of ores of ever decreasing purity. The tailings or waste products of mineral processing were traditionally discharged into adjacent streams, lakes, the sea or in piles on dry land. Their confinement apparently began in the early 20th century as a means for possible future mineral recovery, for the recycling of water in arid regions and/or in response to growing concerns for water pollution control. Additional Key Words: Mineral Beneficiation " ... for since Nature usually creates metals in an impure state, mixed with earth, stones, and solidified juices, it is necessary to separate most of these impurities from the ores as far as can be, and therefore I will now describe the methods by which the ores are sorted, broken with hammers, burnt, crushed with stamps, ground into powder, sifted, washed ..•. " Agricola, 1550 Introduction identifying mining wastes. It is frequently used mistakenly The term "tailings" is to identify all mineral wastes often misapplied when including the piles of waste rock located at the mouth of 1Presented at the 1.991. National mine shafts and adi ts, over- American. Society for Surface burden materials removed in Mining and Reclamation Meeting surface mining, wastes from in Durango, co, May 1.4-17, 1.991 concentrating activities and sometimes the wastes from 2Timothy c.
    [Show full text]
  • Smelting Iron from Laterite: Technical Possibility Or Ethnographic Aberration?
    Smelting Iron from Laterite: Technical Possibility or Ethnographic Aberration? T. O. PRYCE AND S. NATAPINTU introduction Laterites deposits (orlateriticsoilsastheyarealsocalled)arefrequently reported in Southeast Asia, and are ethnographically attested to have been used for the smelting of iron in the region (Abendanon 1917 in Bronson 1992:73; Bronson and Charoenwongsa 1986), as well as in Africa (Gordon and Killick 1993; Miller and Van Der Merwe 1994). The present authors do not dispute this evidence; we merely wish to counsel cautioninitsextrapolation.Modifyingour understanding of a population’s potential to locally produce their own iron has immediate ramifications for how we reconstruct ancient metal distribution net- works, and the social exchanges that have facilitated them since iron’s generally agreed appearance in Southeast Asian archaeological contexts during the mid-first millennium b.c. (e.g., Bellwood 2007:268; Higham 1989:190). We present this paper as a wholly constructive critique of what appears to be a prevailingperspectiveonpre-modernSoutheastAsianironmetallurgy.Wehave tried to avoid technical language and jargon wherever possible, as our aim is to motivate scholars working within the regiontogivefurtherconsiderationtoiron as a metal, as a technology, and as a socially significant medium (e.g., Appadurai 1998; Binsbergen 2005; Gosden and Marshall 1999). When writing a critique it is of course necessary to cite researchers with whom one disagrees, and we have done this with full acknowledgment that in modern archaeology no one person can encompass the entire knowledge spectrum of the discipline.1 The archaeome- tallurgy of iron is probably on the periphery of most of our colleagues’ interests, but sometimes, within the technical, lies the pivotal, and in sharing some of our insights we hope to illuminate issues of benefit to all researchers in Metal Age Southeast Asia.
    [Show full text]
  • Chapter 11 Applications of Ore Microscopy in Mineral Technology
    CHAPTER 11 APPLICATIONS OF ORE MICROSCOPY IN MINERAL TECHNOLOGY 11.1 INTRODUCTION The extraction of specific valuable minerals from their naturally occurring ores is variously termed "ore dressing," "mineral dressing," and "mineral beneficiation." For most metalliferous ores produced by mining operations, this extraction process is an important intermediatestep in the transformation of natural ore to pure metal. Although a few mined ores contain sufficient metal concentrations to require no beneficiation (e.g., some iron ores), most contain relatively small amounts of the valuable metal, from perhaps a few percent in the case ofbase metals to a few parts per million in the case ofpre­ cious metals. As Chapters 7, 9, and 10ofthis book have amply illustrated, the minerals containing valuable metals are commonly intergrown with eco­ nomically unimportant (gangue) minerals on a microscopic scale. It is important to note that the grain size of the ore and associated gangue minerals can also have a dramatic, and sometimes even limiting, effect on ore beneficiation. Figure 11.1 illustrates two rich base-metal ores, only one of which (11.1b) has been profitably extracted and processed. The McArthur River Deposit (Figure I 1.1 a) is large (>200 million tons) and rich (>9% Zn), but it contains much ore that is so fine grained that conventional processing cannot effectively separate the ore and gangue minerals. Consequently, the deposit remains unmined until some other technology is available that would make processing profitable. In contrast, the Ruttan Mine sample (Fig. 11.1 b), which has undergone metamorphism, is relativelycoarsegrained and is easily and economically separated into high-quality concentrates.
    [Show full text]
  • ITP Mining: Energy and Environmental Profile of the U.S. Mining Industry: Chapter 4: Iron
    Energy and Environmental Profile of the U.S. Mining Industry 4 Iron The chemical element iron is the fourth most common element in the Earth's crust and the second most abundant metal. About five percent of the Earth's crust is composed of iron. The metal is chemically active and is found in nature combined with other elements in rocks and soils. In its natural state, iron is chemically bonded with oxygen, water, carbon dioxide, or sulfur in a variety of minerals. Forms of Iron Minerals, Ores, and Rocks Iron occurs mainly in iron-oxide ores. Some ores are a mixture of minerals rich in iron. Other iron ores are less rich and have a large number of impurities. The most important iron ore- forming minerals are: • Magnetite - Magnetite (Fe3O4) forms magnetic black iron ore. There are large deposits of magnetite in Russia and Sweden. • Hematite - Hematite (Fe2O3) is a red iron ore. Hematite occurs in almost all forms, from solid rock to loose earth. It is the most plentiful iron ore and occurs in large quantities throughout the world. • Goethite - Goethite (Fe2O3.H2O), a brown ore, contains iron. • Limonite - Limonite (Fe2O3.H2O) is a yellow-brown iron ore. Limonite is a collective term for impure goethite and a mixture of hydrated iron oxides. Iron 4-1 Energy and Environmental Profile of the U.S. Mining Industry Taconite contains low-grade iron in fine specks and bands. It is an extremely hard and flinty - containing about 25 - 30 percent iron. The iron in taconite occurs principally as magnetite and hematite and finely dispersed with silica in sedimentary deposits.
    [Show full text]
  • Nickel Laterite Smelting Processes and Some Examples of Recent Possible Modifications to the Conventional Route
    metals Review Nickel Laterite Smelting Processes and Some Examples of Recent Possible Modifications to the Conventional Route Ender Keskinkilic Department of Metallurgical and Materials Engineering, Atilim University, 06830 Ankara, Turkey; [email protected]; Tel.: +90-533-302-9510 Received: 16 July 2019; Accepted: 1 September 2019; Published: 3 September 2019 Abstract: The treatment of laterites has been a research hotspot in extractive metallurgy over the past decades. Industrially, the pyrometallurgical treatment of laterites is mostly accomplished with a well-established method, namely, the rotary kiln–electric arc furnace (RKEF) process, which includes three main operations—calcination, prereduction, and smelting—followed by further refining for the removal of impurities from the raw ferro-nickel. As indicated in many studies of the RKEF process, the major downside of this method is its high energy consumption. Efforts have been made to lower this consumption. Furthermore, several new processes have been proposed. Among these, low-grade ferro-nickel production is regarded as the most widely and industrially used process after traditional RKEF operation. Although not widespread, other alternative processes of industrial scale have been generated since the start of the millennium. Recently, certain innovative processes have been tested either in the laboratory or at pilot-scale. In this paper, a literature review related to the smelting of laterites is made, and an emphasis on new processes and some examples of new developments in the RKEF process are presented. Keywords: laterite; smelting; RKEF process; low-grade ferro-nickel 1. Introduction According to a review published by Diaz et al., oxide-type nickel ores accounted for 64% of land-based nickel ores, but more than 60% of nickel production was based on the matte smelting of sulfide ores in 1988 [1].
    [Show full text]
  • Iron and Steel: Introduction
    Iron and Steel: Introduction Iron is cheap and strong and the most used metal in the world. Iron, as produced in the blast furnace is called pig iron. This is brittle because it contains about 4% carbon and other non-metal impurities. Most of this iron is converted into a variety of steels by removing nearly all the carbon, and adding small quantities of different metals. The different steels are alloys which are mixtures of metals. They have different properties such as toughness, hardness, corrosion resistance, etc. Some background The method of using carbon to reduce iron oxide to iron was very probably discovered accidentally in prehistoric camp fires. Here, charcoal would have been the source of carbon. The iron was used to make tools and weapons and gave its name to the Iron Age. Early in the 18th century, Abraham Darby in Shropshire discovered a method of converting coal to coke as a source of carbon. This led to the modern blast furnace. In the mid-19th century, Henry Bessemer developed a steel-making process that used oxygen to burn off some of the carbon in cast iron. The Basic Oxygen Steelmaking process was introduced in the 1950s and now accounts for about two-thirds of steel production. Did you know? Stainless steel contains about 18% chromium. About three-quarters of food and drinks cans are made of steel. A car tyre contains over ½ kg of steel wire. About 400 million tonnes of steel are recycled every year worldwide. Iron and Steel: Introduction | 1 .
    [Show full text]
  • ARCHAEOLOGY DATASHEET 302 Steelmaking
    ARCHAEOLOGY DATASHEET 302 Steelmaking Introduction A single forging produced ‘shear steel’, a second operation Although an important aspect of medieval and earlier resulted in ‘double shear steel’ and so-on. societies, the manufacture of steel was industrialised during Furnace design changed over time, and also appears to the post-medieval period. Many complementary techniques have shown some regional variation. The first English steel were developed which often operated at the same time on furnaces were built at Coalbrookdale (Shropshire) by Sir the same site; there were also close links with other Basil Brooke in c1615 and c1630. These were circular in ironworking processes. This datasheet describes pre-20th plan with a central flue. They probably contained a single century steelmaking processes in the UK, their material chest and would have had a conical chimney. Other 17th- remains and metallurgical potential. century cementation furnaces were located in and around Birmingham, Wolverhampton, Stourbridge and Bristol, but Carbon steel and other alloys none of these have been excavated. The north-east became Until the late 19th century, steel was, like other types of the main area of cementation steelmaking in the late 17th iron, simply an alloy of iron and carbon (HMS datasheet and early 18th centuries. Ambrose Crowley established 201). There was considerable variation in the nature of several cementation steelworks, and others followed. Of ‘steel’ and in the properties of individual artefacts. Cast these, the oldest standing structure is at Derwentcote iron, smelted in the blast furnace usually had a carbon (County Durham), built in 1734. Unlike the West Midlands content of 5-8%, making it tough but brittle.
    [Show full text]
  • Studies of NRIM Continuous Steelmaking Process*
    UDC 669.18-932 Studies of NRIM Continuous Steelmaking Process* By Ry uichi NAKAGAWA:* S hiro YOS HIMATSU:* Taklly a UEDA:* Tatsllro M ITSUI, ** Akira FUKUZA WA:* A kira S ATO:* and TS llyoshi OZAKI** Synopsis K.)U- 13) The fundamental aspect q! the development of the NRIM multi-stage (2) Tank type continuous steelmaking process at trough type continuous steelmaking process and the results of its recent IRSID (France )14- 16) operations are presented in this jJaper. Though the scale of the plant used (3) Single stage trough type continuous steel­ was small (7.8 tlhr in hot metal flow rate), a suitable sejJaration of the making process (WORCRA process) at CRA (Austral­ steelmaking reactions to each stage of the continuous steelmaking furnace ia)17 - 20) and the know-how qf its ojJeration were satiifactorily obtained. As the (4) Single stage trough type continuous steel­ result of the separation, that is, silicon and phosphorus were mostly removed making process at Bethlehem Steel Co. (U.S.A. )21) in the first stage so that the final carbon level was controlled mainly in the second stage, the product with phosphorus as low as 0.005% (dephosjJhori­ (5) Single stage multi-chamber type continuous z ation rate 96% ) was obtained with comparable amount of lime to that steelmaking process at MISiS (U.S.S.R.)22) of the conventional batch type steelmaking processes. The industrializ a­ (6) Multi-stage trough type continuous steelmak­ tion of this process is confirmed to be feasible. ing process at NRIM (Japan)23- 34) In NRIM the research on the continuous steelmak­ I.
    [Show full text]
  • Driving Investments in Ore Beneficiation and Scrap Upgrading to Meet an Increased Demand from the Direct Reduction-EAF Route
    Mineral Economics https://doi.org/10.1007/s13563-021-00267-2 ORIGINAL PAPER Driving investments in ore beneficiation and scrap upgrading to meet an increased demand from the direct reduction-EAF route Rutger Gyllenram1,2 & Niloofar Arzpeyma2 & Wenjing Wei1,2 & Pär G. Jönsson1 Received: 15 January 2021 /Accepted: 15 April 2021 # The Author(s) 2021 Abstract The pressure on the steel industry to reduce its carbon footprint has led to discussions to replace coke as the main reductant for iron ore and turn to natural gas, bio-syngas or hydrogen. Such a major transition from the blast furnace-basic oxygen furnace route, to the direct reduction-electric arc furnace route, for steel production would drastically increase the demand for both suitable iron ore pellets and high-quality scrap. The value for an EAF plant to reduce the SiO2 content in DRI by 2 percentage points and the dirt content of scrap by 0.3 percentage points Si was estimated by using the optimization and calculation tool RAWMATMIX®. Three plant types were studied: (i) an integrated plant using internal scrap, (ii) a plant using equal amounts of scrap and DRI and (iii) a plant using a smaller fraction of DRI in relation to the scrap amount. Also, the slag volume for each plant type was studied. Finally, the cost for upgrading was estimated based on using mainly heuristic values. A conservative estimation of the benefit of decreasing the silica content in DRI from 4 to 2% is 20 USD/t DRI or 15 USD/t DR pellets and a conservative figure for the benefit of decreasing the dirt in scrap by 0.3 percentage points Si is 9 USD/t scrap.
    [Show full text]
  • Blended Cement Mixed with Basic Oxygen Steelmaking Slag (BOF) As an Alternative Green Building Material
    materials Article Blended Cement Mixed with Basic Oxygen Steelmaking Slag (BOF) as an Alternative Green Building Material Assel Jexembayeva 1,2, Talal Salem 1, Pengcheng Jiao 3,4,*, Bozhi Hou 3 and Rimma Niyazbekova 2 1 Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA; [email protected] (A.J.); [email protected] (T.S.) 2 Technical Faculty, Saken Seifullin Kazakh Agro Technical University, Astana 010011, Kazakhstan; [email protected] 3 Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan 316021, China; [email protected] 4 Engineering Research Center of Oceanic Sensing Technology and Equipment, Zhejiang University, Ministry of Education, Hangzhou 310000, China * Correspondence: [email protected] Received: 13 June 2020; Accepted: 4 July 2020; Published: 9 July 2020 Abstract: Portland cement tends to exhibit negative environmental impacts; thus, it is required to find measures that will improve its green credentials. In this study, we report a blended Portland slag cement as an alternative environmentally-friendly building material in order to reduce the total carbon footprint resulted from the production of the ordinary Portland cement (OPC), which may resolve the environmental issues associated with carbon dioxide emissions. The ordinary Portland cement type I enhanced by basic oxygen steelmaking slag (BOF) is produced and casted into cubic and beam-like samples for the compressive and three-point bending tests, and the compressive and flexural strengths are experimentally measured. Numerical simulations are conducted to compare with the experimental result and satisfactory agreements are obtained. X-ray diffraction (XRD) investigations and porosity tests are then carried out using the semi-adiabatic calorimetry, which indicates that 5% BOF is the optimal ratio to accelerate the hydration process while increasing the amount of hydration products, especially at the early curing age of 3 days.
    [Show full text]
  • Beneficiation of Oil Shale by Froth Flotation: Critical Review
    Send Orders for Reprints to [email protected] The Open Mineral Processing Journal, 2014, 7, 1-12 1 Open Access Beneficiation of Oil Shale by Froth Flotation: Critical Review S., Al-Thyabat1,*, E. Al-Zoubi2, H. Alnawafleh1 and K. Al-Tarawneh1 1Department of Mining Engineering, Al-Hussein Bin Talal University, Jordan 2Department of Chemistry - Al-Hussein Bin Talal University, Jordan Abstract: Oil shale beneficiation by froth flotation hasn’t received enough attention in the last two decades. The reason was the economics of the process as well as its environmental impact. However, the recent surge in oil price and recent developments in fine grinding technologies may improve the efficiency of oil shale beneficiation by such process. In this work, oil shale concentration by froth flotation technique was critically reviewed. It was found that most of the work was conducted by conventional mechanical flotation using non-ionic collector such as kerosene. Flotation has more pronounced effect on flotation of low grade oil shale; Almost 95% of ash forming minerals were removed to enrich oil shale concentrate by factor of 2-4 with 60-95 % kerogen recovery and approximately 50-300 % increase in oil yield (L/tonne) .Oil shale retorting economics showed that beneficiation reduced the capital cost for pyrolysis and fractionation by 250 % and spent shale disposal by 270%. However, these saving are offset by the cost of beneficiation (grinding, flotation, and dewatering). Therefore, the key for economical oil shale concentration process is the reduction of fine grinding costs. Keywords: Flotation, Oil shale, oil shale beneficiation. 1. INTRODUCTION matrix weight [9].
    [Show full text]