3 Occurrence of tuite and ahrensite in Zagami and their significance 4 for shock-histories recorded in martian meteorites 5 6 Lixin Gu1, 2, 3, Sen Hu1, 3*, Mahesh Anand4, 5, Xu Tang1, 2, 3, Jianglong Ji1, 3, 6, Bin Zhang 7, 7 Nian Wang1, 3, 6, Yangting Lin1, 3, 6 8 9 1Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, 10 Chinese Academy of Sciences, Beijing, 100029, China 11 2Electron Microscopy Laboratory, Institute of Geology and Geophysics, Chinese Academy of 12 Sciences, Beijing, 100029, China 13 3Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 10029, China 14 4School of Physics Sciences, The Open University, Milton Keynes, MK5 6AA, UK 15 5Department of Earth Sciences, The Natural History Museum, London, SW7 5BD, UK 16 6University of Chinese Academy of Sciences, Beijing, 100049, China 17 7Analytical and Testing Center of Chongqing University, Chongqing 400044, China 18 19 *Corresponding author. E-mail:
[email protected]. 19 Beituchengxi Road 20 Chaoyang District, Beijing, China, 100029. 21 22 23 2 24 ABSTRACT 25 We report on the discovery of two high-pressure minerals, tuite and ahrensite, 26 located in two small shock-induced melt pockets (SIMP #1 and #2) in the Zagami 27 martian meteorite, coexisting with granular and acicular stishovite and seifertite. Tuite 28 identified in this study has two formation pathways: decomposition of apatite and 29 transformation of merrillite under high P-T conditions. Chlorine bearing products, 30 presumably derived from the decomposition of apatite, are concentrated along the 31 grain boundaries of tuite grains.