Building Envelope and Thermal Storage
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Solar Energy: State of the Art
Downloaded from orbit.dtu.dk on: Sep 27, 2021 Solar energy: state of the art Furbo, Simon; Shah, Louise Jivan; Jordan, Ulrike Publication date: 2003 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Furbo, S., Shah, L. J., & Jordan, U. (2003). Solar energy: state of the art. BYG Sagsrapport No. SR 03-14 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Editors: Simon Furbo Louise Jivan Shah Ulrike Jordan Solar Energy State of the art DANMARKS TEKNISKE UNIVERSITET Internal Report BYG·DTU SR-03-14 2003 ISSN 1601 - 8605 Solar Energy State of the art Editors: Simon Furbo Louise Jivan Shah Ulrike Jordan Department of Civil Engineering DTU-bygning 118 2800 Kgs. Lyngby http://www.byg.dtu.dk 2003 PREFACE In June 2003 the Ph.D. course Solar Heating was carried out at Department of Civil Engineering, Technical University of Denmark. -
DSM Pocket Guidebook Volume 1: Residential Technologies DSM Pocket Guidebook Volume 1: Residential Technologies
IES RE LOG SIDE NO NT CH IA TE L L TE A C I H T N N E O D L I O S G E I R E S R DSML Pocket Guidebook E S A I I D VolumeT 1: Residential Technologies E N N E T D I I A S L E R T E S C E H I N G O O L L O O G N I H E C S E T R E L S A I I D T E N N E T D I I A S L E R T E S C E H I N G O O L Western Area Power Administration August 2007 DSM Pocket Guidebook Volume 1: Residential Technologies DSM Pocket Guidebook Volume 1: Residential Technologies Produced and funded by Western Area Power Administration P.O. Box 281213 Lakewood, CO 80228-8213 Prepared by National Renewable Energy Laboratory 1617 Cole Boulevard Golden, CO 80401 August 2007 Table of Contents List of Tables v List of Figures v Foreword vii Acknowledgements ix Introduction xi Energy Use and Energy Audits 1 Building Structure 9 Insulation 10 Windows, Glass Doors, and Sky lights 14 Air Sealing 18 Passive Solar Design 21 Heating and Cooling 25 Programmable Thermostats 26 Heat Pumps 28 Heat Storage 31 Zoned Heating 32 Duct Thermal Losses 33 Energy-Efficient Air Conditioning 35 Air Conditioning Cycling Control 40 Whole-House and Ceiling Fans 41 Evaporative Cooling 43 Distributed Photovoltaic Systems 45 Water Heating 49 Conventional Water Heating 51 Combination Space and Water Heaters 55 Demand Water Heaters 57 Heat Pump Water Heaters 60 Solar Water Heaters 62 Lighting 67 Incandescent Alternatives 69 Lighting Controls 76 Daylighting 79 Appliances 83 Energy-Efficient Refrigerators and Freezers 89 Energy-Efficient Dishwashers 92 Energy-Efficient Clothes Washers and Dryers 94 Home Offices -
A Comprehensive Review of Thermal Energy Storage
sustainability Review A Comprehensive Review of Thermal Energy Storage Ioan Sarbu * ID and Calin Sebarchievici Department of Building Services Engineering, Polytechnic University of Timisoara, Piata Victoriei, No. 2A, 300006 Timisoara, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-256-403-991; Fax: +40-256-403-987 Received: 7 December 2017; Accepted: 10 January 2018; Published: 14 January 2018 Abstract: Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground, and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included. Keywords: storage system; phase-change materials; chemical storage; cold storage; performance 1. Introduction Recent projections predict that the primary energy consumption will rise by 48% in 2040 [1]. On the other hand, the depletion of fossil resources in addition to their negative impact on the environment has accelerated the shift toward sustainable energy sources. -
Solar Combisystems
Method and comparison of advanced storage concepts A Report of IEA Solar Heating and Cooling programme - Task 32 “Advanced storage concepts for solar and low energy buildings” Report A4 of Subtask A December 2007 Jean-Christophe Hadorn Thomas Letz Michel Haller Method and comparison of advanced storage concepts Jean-Christophe Hadorn, BASE Consultants SA, Geneva, Switzerland Thomas Letz INES Education, Le Bourget du Lac, France Contribution on method: Michel Haller Institute of Thermal Engineering Div. Solar Energy and Thermal Building Simulation Graz University of Technology Inffeldgasse 25 B, A-8010 Graz A technical report of Subtask A BASE CONSULTANTS SA 8 rue du Nant CP 6268 CH - 1211 Genève INES - Education Parc Technologique de Savoie Technolac 50 avenue du Léman BP 258 F - 73 375 LE BOURGET DU LAC Cedex 3 Executive Summary This report presents the criteria that Task 32 has used to evaluate and compare several storage concepts part of a solar combisystem and a comparison of storage solutions in a system. Criteria have been selected based on relevance and simplicity. When values can not be assessed for storage techniques to new to be fully developped, we used more qualitative data. Comparing systems is always a very hard task. Boundary conditions and all paramaters must be comparable. This is very difficult to achieve when 9 analysts work around the world on similar systems but with different storage units. This report is an attempt of a comparison. Main generic results that we can draw with some confidency from the inter comparison of systems are: - The drain back principle increases thermal performances because it does not use of a heat exchanger in the solar loop and increases therefore the efficiency of the solar collector. -
What Is a Typical Energy Consumption?
What is a typical Energy Consumption? • Information in the public domain about ‘average’ consumption • Averages are made from many different variations! The Australian Energy Market Commission The Victorian Government Typical energy consumption depends on: • The number of people • The type of housing • The energy mix • The lifestyle • Information in the following graphics is supplied by switchon.gov.vic.au Household 1 Occupants Energy Type Dwelling Type Household includes: Electric hot water Electric heating and cooling Electric cooking Swimming pool All Electric House 2 plasma TV 3 computers Dishwasher Annual power cost: $3,289.64 Clothes dryer 15,014.8 kWh What is the breakdown? • Every household is different, but an ‘average’ gives a basic idea of where it could be consumed • This household uses an average of 41 kWh per day, average cost = $9.01 per day • Heating and cooling is not used all year round, so real ‘daily’ consumption is much higher A ‘ball-park’ break-down of energy use Source: DPI Switch On website/Baseline Energy Estimates 2008, DEWHA ‘Household 1’ Type of consumption Percentage Kilowatt-hours per day Stand-by power 3 1.2 Heating and cooling 38 15.6 Water heating 25 10.3 Other appliances (including pool) 16 6.6 Fridges and freezers 7 2.9 Lighting 7 2.9 Cooking 4 1.6 Total 100% 41.1 kWh/day Household 2 Occupants Energy Type Dwelling Type Household includes: Electric hot water Electric heating and cooling Electric cooking Plasma TV All Electric House Computer Dishwasher Clothes dryer Annual power cost: $1,808.54 -
Electric Heating Load Forecasting Method Based on Improved Thermal Comfort Model and LSTM
energies Article Electric Heating Load Forecasting Method Based on Improved Thermal Comfort Model and LSTM Jie Sun 1, Jiao Wang 1, Yonghui Sun 1, Mingxin Xu 1, Yong Shi 1, Zifa Liu 2 and Xingya Wen 2,* 1 State Grid Inner Mongolia Eastern Electric Power Co., Ltd., Economic and Technical Research Institute, Hohhot 010011, China; [email protected] (J.S.); [email protected] (J.W.); [email protected] (Y.S.); [email protected] (M.X.); [email protected] (Y.S.) 2 School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China; [email protected] * Correspondence: [email protected]; Tel.: +86-18810119275 Abstract: The accuracy of the electric heating load forecast in a new load has a close relationship with the safety and stability of distribution network in normal operation. It also has enormous implications on the architecture of a distribution network. Firstly, the thermal comfort model of the human body was established to analyze the comfortable body temperature of a main crowd under different temperatures and levels of humidity. Secondly, it analyzed the influence factors of electric heating load, and from the perspective of meteorological factors, it selected the difference between human thermal comfort temperature and actual temperature and humidity by gray correlation analysis. Finally, the attention mechanism was utilized to promote the precision of combined adjunction model, and then the data results of the predicted electric heating load were obtained. In the verification, the measured data of electric heating load in a certain area of eastern Inner Mongolia were used. The results showed that after considering the input vector with most relative factors such as temperature and human thermal comfort, the LSTM network can realize the accurate prediction of the electric Citation: Sun, J.; Wang, J.; Sun, Y.; Xu, M.; Shi, Y.; Liu, Z.; Wen, X. -
CK & CKT 15 E Surface-Mounted Electric Fan Heaters | Engineering Specification Sheet
ENGINEERING SPECIFICATION SHEET Simply the Best CK & CKT 15 E Surface-Mounted Electric Fan Heaters Description Stiebel Eltron CK wall-mounted electric heaters are designed for installation where quick heat is needed, such as bathrooms, kitchens, bedrooms, hallways, playrooms and garages in new construction and renovation projects. They have an ultra-quiet fan and will replace existing recess- mount heaters. A built-in thermostat has a frost protection setting. CK heaters will work with wall thermostats in rooms larger than 215 sq. ft. (20 sq. m.) The CKT adds a 60 minute timer designed to temporarily output maximum heat to quickly warm a space. When the timer goes off the unit CK without timer reverts to the thermostat setting to maintain comfort. CKT with timer Specifications Model Item number CK 15 E 074058 CKT 15 E 230345 Phase single Voltage 120 V Wattage 1500 W Amperage 12.5 A Rated output 5122 Btu/hr Certified to ANSI/UL Air volume 106 cfm Std. 2021 Recommended circuit breaker size 15 A Conforms to CAN/CSA Minimum wire size 14 AWG Std. 22.2 No. 46 Heating element nichrome wire Thermostat bimetal type High limit bimetal type Motor 18 W shaded pole Blower galvanized steel, squirrel cage type Dimensions HEIGHT 18˝ (460 mm) x WIDTH 13¼˝ (335 mm) x DEPTH 4⅞˝ (123 mm) Weight 8.0 lb (4.4 kg) Housing stove enameled sheet steel / plastic Color Alpine White with black grill Due to our continuous process of engineering and technological advancement, specifications may change without notice. Temperature range 45 – 86 °F (7 – 30 °C) | Frost protection setting 45 °F (7 °C) Operating noise 49.7 dB(a) rev. -
Design of a Heat Pump Assisted Solar Thermal System Kyle G
Purdue University Purdue e-Pubs International High Performance Buildings School of Mechanical Engineering Conference 2014 Design of a Heat Pump Assisted Solar Thermal System Kyle G. Krockenberger Purdue University, United States of America / Department of Mechanical Engineering Technology, [email protected] John M. DeGrove [email protected] William J. Hutzel [email protected] J. Christopher Foreman [email protected] Follow this and additional works at: http://docs.lib.purdue.edu/ihpbc Krockenberger, Kyle G.; DeGrove, John M.; Hutzel, William J.; and Foreman, J. Christopher, "Design of a Heat Pump Assisted Solar Thermal System" (2014). International High Performance Buildings Conference. Paper 146. http://docs.lib.purdue.edu/ihpbc/146 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/ Herrick/Events/orderlit.html 3572 , Page 1 Design of a Heat Pump Assisted Solar Thermal System Kyle G. KROCKENBERGER 1*, John M. DEGROVE 1*, William J. HUTZEL 1, J. Chris FOREMAN 2 1Department of Mechanical Engineering Technology, Purdue University, West Lafayette, Indiana, United States. [email protected], [email protected], [email protected] 2Department of Electrical and Computer Engineering Technology, Purdue University, West Lafayette, Indiana, United States. [email protected] * Corresponding Author ABSTRACT This paper outlines the design of an active solar thermal loop system that will be integrated with an air source heat pump hot water heater to provide highly efficient heating of a water/propylene glycol mixture. -
Calorex Non-Ducted Swimming Pool Dehumidifiers
Image kindly supplied by Origin Leisure Calorex non-ducted swimming pool dehumidifiers Take control of your swimming pool environment Ideal for indoor pool applications including Domestic, Therapy, Health Clubs and Hotel & Spa pools, the Calorex range of non-ducted dehumidifiers, are the only choice when it comes to efficiency, reliability and performance. Protect your pool building Calorex dehumidifiers cleverly convert the energy Using a Calorex dehumidifier minimises the need to locked up in the moisture into heat used to heat the introduce and heat the cold outdoor air into the pool An indoor swimming pool is a wonderful leisure room. The free heat recovered by dehumidification hall to dehumidify, which can be costly. and exercise environment, but there are many is not only “green”, but it accelerates the drying important factors to consider when planning and process, keeps the boiler off for longer, reduces Models designing a pool. the evaporation from the pool and creates a warm Available as wall mount or through wall Even when you cannot see it, moisture in the form dry environment. models (TTW), for installation outside of the of water vapour is all around us in the air. The pool hall, the Calorex range of dehumidifiers also humidity in the air, if not controlled, will cause Efficient offer air heating via LPHW (low pressure hot water) corrosion, mould and bacteria growth. Calorex dehumidifiers are exceptionally efficient, or Electric Resistance Heating. recovering the latent energy that is contained in the When left unchecked, moisture damage in The dehumidifiers within this brochure are moisture and delivering it back to the pool hall in swimming pool buildings causes major subject to a 2 year manufacturer’s warranty, the form of heat. -
Thermal Calculation and Experimental Investigation of Electric Heating and Solid Thermal Storage System
energies Article Thermal Calculation and Experimental Investigation of Electric Heating and Solid Thermal Storage System Haichuan Zhao 1, Ning Yan 1,*, Zuoxia Xing 1, Lei Chen 1 and Libing Jiang 2 1 School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China; [email protected] (H.Z.); [email protected] (Z.X.); [email protected] (L.C.) 2 Shenyang Lanhao New Energy Technology Company, Shenyang 110006, China; [email protected] * Correspondence: [email protected]; Tel.: +86-159-0982-6968 Received: 7 August 2020; Accepted: 2 October 2020; Published: 9 October 2020 Abstract: Electric heating and solid thermal storage systems (EHSTSSs) are widely used in clean district heating and to flexibly adjust combined heat and power (CHP) units. They represent an effective way to utilize renewable energy. Aiming at the thermal design calculation and experimental verification of EHSTSS, the thermal calculation and the heat transfer characteristics of an EHSTSS are investigated in this paper. Firstly, a thermal calculation method for the EHSTSS is proposed. The calculation flow and calculation method for key parameters of the heating system, heat storage system, heat exchange system and fan-circulating system in the EHSTSS are studied. Then, the instantaneous heat transfer characteristics of the thermal storage system (TSS) in the EHSTSS are analyzed, and the heat transfer process of ESS is simulated by the FLUENT 15 software. The uniform temperature distribution in the heat storage and release process of the TSS verifies the good heat transfer characteristics of the EHSTSS. Finally, an EHSTSS test verification platform is built and the historical operation data of the EHSTSS is analyzed. -
Reference System, Germany Solar Combisystem for Multi-Family House INFO Sheet a 10
Reference System, Germany Solar Combisystem for Multi-Family House INFO Sheet A 10 Definition of reference solar combi system for multifamily houses (MFH), Description: Germany Date: July 2018 Authors: Sonja Helbig (ISFH), Oliver Mercker (ISFH), Federico Giovannetti (ISFH) Download possible at: http://task54.iea-shc.org/ Introduction This document describes the reference solar combi system for domestic hot water preparation and space heating in multifamily houses (MFH) in Germany. The system is modelled with TRNSYS to calculate the fuel consumption and electric energy needed to provide the required domestic hot water and space heating as well as the substituted fuel provided by the combi system. Using these results the levelized cost of heat (LCOH) for the substituted fuel is calculated using eq. 1 and the reference costs for the investment of the system, installation, fuel and electricity costs. System model and cost assumptions are based on [1] and [2]. Hydraulic Scheme of the System Key data Collector area 33 m² Heat store volume 1500 l Location/ Wuerzburg, weather data Germany Hemispherical Ghem,hor irradiance on =1120 kWh/(m2 a) horizontal surface Lifetime of system 25 years Levelized Cost of Heat (LCoH) LCoHsol,fin solar part without VAT 0.112 € LCoHconv,fin conventional part without VAT 0.103 € LCoHov,fin complete system without VAT 0.105 € 1 Reference System, Germany Solar Combisystem for Multi-Family House INFO Sheet A 10 Details of the System Location Wuerzburg, Germany Type of system Combisystem Weather data TRY 2 - hemispherical -
Are You Considering Electric Heating? Go for Our Conforto Furnaces
ARE YOU CONSIDERING ELECTRIC HEATING? GO FOR OUR CONFORTO FURNACES HIBOY SERIES KHE & LOWBOY SERIES KLE • ComfortMax Modulation feature: - Targets ideal length of time in a heating cycle to ensure constant even temperatures. - Automatically adjusts heat output to prevent overshooting the thermostat set point, thereby providing energy savings plus comfort. - Automatic multi-staged heating for those chilly days. - Provides full heating capacity on those colder days. • Quiet Comfort feature: - During continuous low speed fan operation, this feature will activate one of the heating elements at 50% of its capacity for a maximum period of three hours unless a call for heat is made by the thermostat. - Will maintain a more even and comfortable ambient temperature. • Two-stage a/c plus heat pump ready. • Optional high efficiency ECM motors. LOWBOY SERIES KLE • The KLE format allows quick and easy replacement NEW VERSION onto existing lowboy oil furnace, while ensuring optimal performance. • Two stage a/c plus heat pump ready. • Optional high efficiency ECM motor. KHE Electric Furnace KLE Electric Furnace CONTINUOUS MODULATION TECHNOLOGY GREAT WARRANTIES FOR GREATER SAVINGS The technologically advanced electric 5-year warranty on all furnaces, KHE & KLE are designed with electrical components. Adapt the heating power to the building’s a state-of-the-art electronic control. heat loss. With Conforto’s power modulation, PEACE OF MIND only the required amount of energy will WIDE RANGE With 64+ years of experience, Granby be used to supply the heating load. Total Our Conforto series have ratings Industries is known for its quality products and heating costs are thus optimized throughout ranging from 10 to 27 KW.