Downloaded from NCBI Ge- Even Coelacanth [9, 51] Acquired the 32-Nt Deletion Within Nomes ( Except Vassetzky Et Al

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded from NCBI Ge- Even Coelacanth [9, 51] Acquired the 32-Nt Deletion Within Nomes ( Except Vassetzky Et Al Vassetzky et al. Mobile DNA (2021) 12:10 https://doi.org/10.1186/s13100-021-00238-y RESEARCH Open Access New Ther1-derived SINE Squam3 in scaled reptiles Nikita S. Vassetzky1,2* , Sergei A. Kosushkin2, Vitaly I. Korchagin1 and Alexey P. Ryskov1 Abstract Background: SINEs comprise a significant part of animal genomes and are used to study the evolution of diverse taxa. Despite significant advances in SINE studies in vertebrates and higher eukaryotes in general, their own evolution is poorly understood. Results: We have discovered and described in detail a new Squam3 SINE specific for scaled reptiles (Squamata). The subfamilies of this SINE demonstrate different distribution in the genomes of squamates, which together with the data on similar SINEs in the tuatara allowed us to propose a scenario of their evolution in the context of reptilian evolution. Conclusions: Ancestral SINEs preserved in small numbers in most genomes can give rise to taxa-specific SINE families. Analysis of this aspect of SINEs can shed light on the history and mechanisms of SINE variation in reptilian genomes. Keywords: SINEs, Retrotransposons, Squamata, Reptilia, Evolution Background sequences recognized by the enzymes of their partner Genomes are invaded by various repetitive elements, the LINE for reverse transcription/integration. most abundant of which (at least in higher eukaryotes) A typical SINE consists of the head derived from one are Long and Short INterspersed Elements (LINEs and of the cellular RNA species (tRNA, 7SL RNA, or 5S SINEs, respectively). The amplification cycle of these ret- RNA); the body, the terminal part of which is recognized rotransposons includes the transcription of their gen- by the partner reverse transcriptase (RT); and the tail, a omic copies, reverse transcription and integration into stretch of simple repeats. There are variations; certain the genome. LINEs rely on the transcription by the cel- SINEs have no body or their body contains sequences of lular RNA polymerase II, while reverse transcription and unknown origin and function (some of them called cen- integration are fulfilled by their own enzymes. SINEs do tral domains) that are shared between otherwise unre- not encode any enzymes and employ the cell machinery lated SINE families, etc. [1]. for their transcription by RNA polymerase III (pol III) LINEs are found in the genomes of all higher eukary- and the machinery of their partner LINE for their reverse otes. Clearly, SINEs cannot exist without LINEs but not transcription and integration into chromosomes. Accord- vice versa; there are rare genomes that have LINEs but ingly, SINEs have pol III promoters for transcription and lack SINEs (e.g., Saccharomyces or Drosophila). During evolution, LINE (sub)families can become inactive and their partner SINEs also cease to amplify. If another * Correspondence: [email protected] LINE family becomes active in a particular genome, re- 1Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, placement of the sequence recognized by its RT can re- Russia animate a SINE [2]. Usually, a genome harbors one or 2Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia several SINE families; some of them can be inactive and © The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Vassetzky et al. Mobile DNA (2021) 12:10 Page 2 of 10 were amplified in the ancestors. The analysis of SINE found beyond Squamata (see below). The analysis of variation in different taxa allows us to use them as their consensus sequences has revealed three major reliable phylogenetic markers [3, 4]. subfamilies that we called Squam3A, Squam3B, and The main lineages of the reptile-bird clade are scaled Squam3C. reptiles (Squamata), tuatara (Rhynchocephalia), turtles (Testudines), crocodiles (Crocodilia), and birds (Aves). Squam3 structure Squamata, the largest order of reptiles, include the fol- Squam3 is a typical SINE [13] composed of the tRNA- lowing major lineages: Serpentes (snakes), Iguania (in- derived head, the body with a central domain and the cluding iguanids, agamids, chameleons), Anguimorpha, 3′-terminus matching that of the partner LINE, and the Scincomorpha, Lacertoidea, Gekkota, and Amphisbaenia. tail, a stretch of several simple repeats. The consensus Phylogenetic relations among squamate reptiles are sequences range from 218 to 239 nt (without tail). There highly controversial due to the conflicting signals pro- is no clear preference for a particular tRNA species vided by molecular, morphological, and paleontological (which is not uncommon among SINEs). data. Together with tuatara, the only extant representa- The body is similar to a fragment of the CORE central tive species of Rhynchocephalia, they form monophyletic domain; the pronounced similarity spans over 28 nt superorder Lepidosauria, which is the sister group to (double-overlined in Fig. 1). There is also a similarity Archelosauria, the clade that contains archosaurs (croco- with the very 3′-terminus of LINEs of the L2 clade iden- diles and birds) and turtles [5]. tified in Darevskia valentini (data not shown) and a less The first reptile SINE was found in 1990 in the pronounced similarity with L2 LINEs of Anolis caroli- Chinesepondturtle[6]; currently, we know approxi- nensis (L2-26_ACar and L2-24_ACar in Repbase). mately ten SINE families in reptiles [1] with a differ- The tail of Squam3 is largely composed of (TAAA)n or ent taxonomic distribution, e.g., Cry is limited to (CTT)n; however, certain species have (GTT)n, (ATT)n, turtles and degraded copies of AmnSINE, which was or poly(A) (Table 1). Squam3 has a very low rate of tar- active in the ancestor of amniotes [7], can be found get site duplications. This is unusual but not exceptional far beyond reptiles. Another example is Ther1 initially among SINEs and can point to an alternative cleavage described as a mammalian SINE (MIR) but renamed pattern in different DNA strands by the partner LINE later [8, 9]. Several known Ther1/MIR subfamilies endonuclease [13]. (MIRb, MIRc, and MIR_Testu) have minor differences from Ther1 except the Alligator mississippiensis’s MIR1_ Squam3 subfamilies AMi with an extended deletion. Moreover, active Ther1/ Genomic copies of SINEs are subject to random muta- MIR SINEs were found in non-avian reptiles, so ample tions; accordingly, single-nucleotide mutations can be and diverse derived SINEs could be expected in their ge- used to identify subfamilies only for highly conserved nomes [10]. This is further corroborated by active diversi- SINEs. We use extended insertions/deletions to distin- fication of reptilian L2 [11]. guish between the three major Squam3 subfamilies des- Despite active sequencing of genomes of various ignated as Squam3A, Squam3B, and Squam3C (Fig. 1). species of lizards and snakes, no detailed comparative Squam3B has a characteristic 11-nt insertion (marked in genomicstudiesofaSINEfamilyindifferenttaxaat pink in Fig. 1), and Squam3C has a characteristic 7-nt the order level are available. We discovered a new insertion (marked in blue in Fig. 1). There are also SINE named Squam3 in the genomes of Darevskia minor differences between the Squam3 subfamilies. In and Anolis lizards. Further analysis demonstrated their addition, there are sub-subfamilies; one of these distribution throughout squamates; a similar SINE (Squam3B3) has become a major variant in the two was found in the tuatara [12]butnotinotherreptiles Gekkonidae species. or birds. However, Squam3 remained unnoticed in al- Further analysis of Squam3-related sequences in the most 40 genomes of squamates. Here, we analyzed tuatara genome has revealed a similar SINE (tuaMIRa) the structure, distribution, and evolution of Squam3 with a 32-nt insertion (marked in amaranth in Fig. 1). and its relatives. This insertion restores the CORE central domain and makes the element similar to Ther1 (MIR). It should be Results noted that this deletion in Squam3 and tuaMIRс relative Squam3 identification to Ther1 is distinct from the deletion in MIR1_AMi The consensus sequence of Darevskia Squam3 was used (Fig. S2A). TuaMIR SINEs also have an 8–13-nt deletion to search the genomes of scaled reptiles. It was found in in the LINE-derived region (marked in violet in Fig. 1). all sequenced genomes (as well as in a variety of Gen- Moreover, another element (tuaMIRb) with a similar in- Bank sequences of squamate species whose genomes sertion lacks the ~ 40-nt region between the CORE and have not been sequenced; Table S1). No Squam3 was the LINE-derived region conserved in other Squam3- Vassetzky et al. Mobile DNA (2021) 12:10 Page 3 of 10 Fig. 1 Sequence alignment of Squam3 subfamilies of squamate reptiles with tuatara tuaMIR SINEs and Ther1. The tRNA-derived region, CORE central domain, LINE-derived region, and tail are indicated above the sequences. See text for other explanations and Ther1-related SINEs but has a much longer L2 reported these SINEs, so we use their nomenclature of LINE-derived region due to the 77-nt insertion (marked tuatara SINEs.
Recommended publications
  • The First Miocene Fossils of Lacerta Cf. Trilineata (Squamata, Lacertidae) with A
    bioRxiv preprint doi: https://doi.org/10.1101/612572; this version posted April 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The first Miocene fossils of Lacerta cf. trilineata (Squamata, Lacertidae) with a comparative study of the main cranial osteological differences in green lizards and their relatives Andrej Čerňanský1,* and Elena V. Syromyatnikova2, 3 1Department of Ecology, Laboratory of Evolutionary Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, 84215, Bratislava, Slovakia 2Borissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya 123, 117997 Moscow, Russia 3Zoological Institute, Russian Academy of Sciences, Universitetskaya nab., 1, St. Petersburg, 199034 Russia * Email: [email protected] Running Head: Green lizard from the Miocene of Russia Abstract We here describe the first fossil remains of a green lizardof the Lacerta group from the late Miocene (MN 13) of the Solnechnodolsk locality in southern European Russia. This region of Europe is crucial for our understanding of the paleobiogeography and evolution of these middle-sized lizards. Although this clade has a broad geographical distribution across the continent today, its presence in the fossil record has only rarely been reported. In contrast to that, the material described here is abundant, consists of a premaxilla, maxillae, frontals, bioRxiv preprint doi: https://doi.org/10.1101/612572; this version posted April 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Fossil Lizards and Snakes from Ano Metochi – a Diverse Squamate Fauna from the Latest Miocene of Northern Greece
    Published in "Historical Biology 29(6): 730–742, 2017" which should be cited to refer to this work. Fossil lizards and snakes from Ano Metochi – a diverse squamate fauna from the latest Miocene of northern Greece Georgios L. Georgalisa,b, Andrea Villab and Massimo Delfinob,c aDepartment of Geosciences, University of Fribourg/Freiburg, Fribourg, Switzerland; bDipartimento di Scienze della Terra, Università di Torino, Torino, Italy; cInstitut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Barcelona, Spain ABSTRACT We here describe a new squamate fauna from the late Miocene (Messinian, MN 13) of Ano Metochi, northern Greece. The lizard fauna of Ano Metochi is here shown to be rather diverse, consisting of lacertids, anguids, and potential cordylids, while snakes are also abundant, consisting of scolecophidians, natricines and at KEYWORDS least two different colubrines. If our identification is correct, the Ano Metochi cordylids are the first ones Squamata; Miocene; identified from Greece and they are also the youngest representatives of this group in Europe. A previously extinction; taxonomy; described scincoid from the adjacent locality of Maramena is here tentatively also referred to cordylids, biogeography strengthening a long term survival of this group until at least the latest Miocene. The scolecophidian from Ano Metochi cannot be attributed with certainty to either typhlopids or leptotyphlopids, which still inhabit the Mediterranean region. The find nevertheless adds further to the poor fossil record of these snakes. Comparison of the Ano Metochi herpetofauna with that of the adjacent locality of Maramena reveals similarities, but also striking differences among their squamate compositions. Introduction Materials and methods Fossil squamate faunas from the southeastern edges of Europe All specimens described herein belong to the collection of the are not well studied, despite the fact that they could play a pivotal UU.
    [Show full text]
  • A New Microvertebrate Assemblage from the Mussentuchit
    A new microvertebrate assemblage from the Mussentuchit Member, Cedar Mountain Formation: insights into the paleobiodiversity and paleobiogeography of early Late Cretaceous ecosystems in western North America Haviv M. Avrahami1,2,3, Terry A. Gates1, Andrew B. Heckert3, Peter J. Makovicky4 and Lindsay E. Zanno1,2 1 Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA 2 North Carolina Museum of Natural Sciences, Raleigh, NC, USA 3 Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA 4 Field Museum of Natural History, Chicago, IL, USA ABSTRACT The vertebrate fauna of the Late Cretaceous Mussentuchit Member of the Cedar Mountain Formation has been studied for nearly three decades, yet the fossil-rich unit continues to produce new information about life in western North America approximately 97 million years ago. Here we report on the composition of the Cliffs of Insanity (COI) microvertebrate locality, a newly sampled site containing perhaps one of the densest concentrations of microvertebrate fossils yet discovered in the Mussentuchit Member. The COI locality preserves osteichthyan, lissamphibian, testudinatan, mesoeucrocodylian, dinosaurian, metatherian, and trace fossil remains and is among the most taxonomically rich microvertebrate localities in the Mussentuchit Submitted 30 May 2018 fi fi Accepted 8 October 2018 Member. To better re ne taxonomic identi cations of isolated theropod dinosaur Published 16 November 2018 teeth, we used quantitative analyses of taxonomically comprehensive databases of Corresponding authors theropod tooth measurements, adding new data on theropod tooth morphodiversity in Haviv M. Avrahami, this poorly understood interval. We further provide the first descriptions of [email protected] tyrannosauroid premaxillary teeth and document the earliest North American record of Lindsay E.
    [Show full text]
  • An Intial Estimation of the Numbers and Identification of Extant Non
    Answers Research Journal 8 (2015):171–186. www.answersingenesis.org/arj/v8/lizard-kinds-order-squamata.pdf $Q,QLWLDO(VWLPDWLRQRIWKH1XPEHUVDQG,GHQWLÀFDWLRQRI Extant Non-Snake/Non-Amphisbaenian Lizard Kinds: Order Squamata Tom Hennigan, Truett-McConnell College, Cleveland, Georgia. $EVWUDFW %LRV\VWHPDWLFVLVLQJUHDWÁX[WRGD\EHFDXVHRIWKHSOHWKRUDRIJHQHWLFUHVHDUFKZKLFKFRQWLQXDOO\ UHGHÀQHVKRZZHSHUFHLYHUHODWLRQVKLSVEHWZHHQRUJDQLVPV'HVSLWHWKHODUJHDPRXQWRIGDWDEHLQJ SXEOLVKHGWKHFKDOOHQJHLVKDYLQJHQRXJKNQRZOHGJHDERXWJHQHWLFVWRGUDZFRQFOXVLRQVUHJDUGLQJ WKHELRORJLFDOKLVWRU\RIRUJDQLVPVDQGWKHLUWD[RQRP\&RQVHTXHQWO\WKHELRV\VWHPDWLFVIRUPRVWWD[D LVLQJUHDWIOX[DQGQRWZLWKRXWFRQWURYHUV\E\SUDFWLWLRQHUVLQWKHILHOG7KHUHIRUHWKLVSUHOLPLQDU\SDSHU LVmeant to produce a current summary of lizard systematics, as it is understood today. It is meant to lay a JURXQGZRUNIRUFUHDWLRQV\VWHPDWLFVZLWKWKHJRDORIHVWLPDWLQJWKHQXPEHURIEDUDPLQVEURXJKWRQ WKH $UN %DVHG RQ WKH DQDO\VHV RI FXUUHQW PROHFXODU GDWD WD[RQRP\ K\EULGL]DWLRQ FDSDELOLW\ DQG VWDWLVWLFDO EDUDPLQRORJ\ RI H[WDQW RUJDQLVPV D WHQWDWLYH HVWLPDWH RI H[WDQW QRQVQDNH QRQ DPSKLVEDHQLDQOL]DUGNLQGVZHUHWDNHQRQERDUGWKH$UN,WLVKRSHGWKDWWKLVSDSHUZLOOHQFRXUDJH IXWXUHUHVHDUFKLQWRFUHDWLRQLVWELRV\VWHPDWLFV Keywords: $UN(QFRXQWHUELRV\VWHPDWLFVWD[RQRP\UHSWLOHVVTXDPDWDNLQGEDUDPLQRORJ\OL]DUG ,QWURGXFWLRQ today may change tomorrow, depending on the data Creation research is guided by God’s Word, which and assumptions about that data. For example, LVIRXQGDWLRQDOWRWKHVFLHQWLÀFPRGHOVWKDWDUHEXLOW naturalists assume randomness and universal 7KHELEOLFDODQGVFLHQWLÀFFKDOOHQJHLVWRLQYHVWLJDWH
    [Show full text]
  • The Sclerotic Ring: Evolutionary Trends in Squamates
    The sclerotic ring: Evolutionary trends in squamates by Jade Atkins A Thesis Submitted to Saint Mary’s University, Halifax, Nova Scotia in Partial Fulfillment of the Requirements for the Degree of Master of Science in Applied Science July, 2014, Halifax Nova Scotia © Jade Atkins, 2014 Approved: Dr. Tamara Franz-Odendaal Supervisor Approved: Dr. Matthew Vickaryous External Examiner Approved: Dr. Tim Fedak Supervisory Committee Member Approved: Dr. Ron Russell Supervisory Committee Member Submitted: July 30, 2014 Dedication This thesis is dedicated to my family, friends, and mentors who helped me get to where I am today. Thank you. ! ii Table of Contents Title page ........................................................................................................................ i Dedication ...................................................................................................................... ii List of figures ................................................................................................................. v List of tables ................................................................................................................ vii Abstract .......................................................................................................................... x List of abbreviations and definitions ............................................................................ xi Acknowledgements ....................................................................................................
    [Show full text]
  • The Paradox of Nocturnality in Lizards
    The paradox of nocturnality in lizards Kelly Maree Hare A thesis submitted to Victoria University of Wellington in fulfilment of the requirement for the degree of Doctor of Philosophy in Zoology Victoria University of Wellington Te Whare Wnanga o te poko o te Ika a Mui 2005 Harvard Law of Animal Behaviour: “Under the most closely defined experimental conditions, the animal does what it damned well pleases” Anon. i n g a P e e L : o t o h P Hoplodactylus maculatus foraging on flowering Phormium cookianum STATEMENT OF AUTHORSHIP BY PHD CANDIDATE Except where specific reference is made in the main text of the thesis, this thesis contains no material extracted in whole or in part from a thesis, dissertation, or research paper presented by me for another degree or diploma. No other person’s work (published or unpublished) has been used without due acknowledgment in the main text of the thesis. This thesis has not been submitted for the award of any other degree or diploma in any other tertiary institution. All chapters are the product of investigations in collaboration with other researchers, and co-authors are listed at the start of each chapter. In all cases I am the principal author and contributor of the research. I certify that this thesis is 100,000 words or less, including all scholarly apparatus. ……………………… Kelly Maree Hare May 2005 i Abstract Paradoxically, nocturnal lizards prefer substantially higher body temperatures than are achievable at night and are therefore active at thermally suboptimal temperatures. In this study, potential physiological mechanisms were examined that may enable nocturnal lizards to counteract the thermal handicap of activity at low temperatures: 1) daily rhythms of metabolic rate, 2) metabolic rate at low and high temperatures, 3) locomotor energetics, and 4) biochemical adaptation.
    [Show full text]
  • Review of the Genus Dopasia Gray, 1853 (Squamata: Anguidae) in the Indochina Subregion
    Zootaxa 2894: 58–68 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) Review of the genus Dopasia Gray, 1853 (Squamata: Anguidae) in the Indochina subregion TRUONG QUANG NGUYEN1,2*, WOLFGANG BÖHME2, TAO THIEN NGUYEN3, QUYET KHAC LE4, KRISTIAN ROBERT PAHL2, TANJA HAUS5 & THOMAS ZIEGLER6 1Institute of Ecology and Biological Resources, 18 Hoang Quoc Viet, Hanoi, Vietnam 2 Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, D-53113 Bonn, Germany 3Vietnam National Museum of Nature, 18 Hoang Quoc Viet, Hanoi, Vietnam 4Hanoi University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Str., Thanh Xuan, Hanoi, Vietnam 5Deutsches Primatenzentrum GmbH, Leibniz-Institut für Primatenforschung, Kellnerweg 4, 37077 Göttingen, Germany 6AG Zoologischer Garten Köln, Riehler Strasse 173, D-50735 Cologne, Germany *Corresponding author. E-mail: [email protected] Abstract A review of the genus Dopasia Gray, 1853 in the Indochina subregion is provided with the first country record of D. hain- anensis for Vietnam and new distribution records for other species. In addition, we herein confirm the validity of Dopasia ludovici, previously a synonym of D. harti, based on overlooked external morphological differences. Key words: China, Vietnam, new record, morphology, taxonomy Introduction According to Uetz (2010), the genus Ophisaurus comprises 12 species grouped in three clades. The New World clade contains five species from North and Central America: Ophisaurus attenuatus Baird, 1880; O. ceroni Hol- man, 1965; O. compressus Cope, 1900; O. mimicus Palmer, 1987; and O. ventralis (Linnaeus, 1766). The Asian clade comprises six species distributed from northern India through the Indochinese peninsula southwards to Indo- nesia: Ophisaurus buettikoferi Lidth de Jeude, 1905; O.
    [Show full text]
  • Venom On-A-Chip: a Fast and Efficient Method for Comparative Venomics
    toxins Article Venom On-a-Chip: A Fast and Efficient Method for Comparative Venomics Giulia Zancolli 1,*, Libia Sanz 2, Juan J. Calvete 2 and Wolfgang Wüster 1,* 1 Molecular Ecology and Fisheries Genetics Lab, School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK 2 Venomics and Structural Proteomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Jaume Roig 11, Valencia 46010, Spain; [email protected] (L.S.); [email protected] (J.J.C.) * Correspondence: [email protected] (G.Z.); [email protected] (W.W.) Academic Editor: Kevin Arbuckle Received: 20 April 2017; Accepted: 24 May 2017; Published: 28 May 2017 Abstract: Venom research has attracted an increasing interest in disparate fields, from drug development and pharmacology, to evolutionary biology and ecology, and rational antivenom production. Advances in “-omics” technologies have allowed the characterization of an increasing number of animal venoms, but the methodology currently available is suboptimal for large-scale comparisons of venom profiles. Here, we describe a fast, reproducible and semi-automated protocol for investigating snake venom variability, especially at the intraspecific level, using the Agilent Bioanalyzer on-chip technology. Our protocol generated a phenotype matrix which can be used for robust statistical analysis and correlations of venom variation with ecological correlates, or other extrinsic factors. We also demonstrate the ease and utility of combining on-chip technology with previously fractionated venoms for detection of specific individual toxin proteins. Our study describes a novel strategy for rapid venom discrimination and analysis of compositional variation at multiple taxonomic levels, allowing researchers to tackle evolutionary questions and unveiling the drivers of the incredible biodiversity of venoms.
    [Show full text]
  • NHBSS 061 1G Hikida Fieldg
    Book Review N$7+IST. BULL. S,$0 SOC. 61(1): 41–51, 2015 A Field Guide to the Reptiles of Thailand by Tanya Chan-ard, John W. K. Parr and Jarujin Nabhitabhata. Oxford University Press, New York, 2015. 344 pp. paper. ISBN: 9780199736492. 7KDLUHSWLOHVZHUHÀUVWH[WHQVLYHO\VWXGLHGE\WZRJUHDWKHUSHWRORJLVWV0DOFROP$UWKXU 6PLWKDQG(GZDUG+DUULVRQ7D\ORU7KHLUFRQWULEXWLRQVZHUHSXEOLVKHGDV6MITH (1931, 1935, 1943) and TAYLOR 5HFHQWO\RWKHUERRNVDERXWUHSWLOHVDQGDPSKLELDQV LQ7KDLODQGZHUHSXEOLVKHG HJ&HAN-ARD ET AL., 1999: COX ET AL DVZHOODVPDQ\ SDSHUV+RZHYHUWKHVHERRNVZHUHWD[RQRPLFVWXGLHVDQGQRWJXLGHVIRURUGLQDU\SHRSOH7ZR DGGLWLRQDOÀHOGJXLGHERRNVRQUHSWLOHVRUDPSKLELDQVDQGUHSWLOHVKDYHDOVREHHQSXEOLVKHG 0ANTHEY & GROSSMANN, 1997; DAS EXWWKHVHERRNVFRYHURQO\DSDUWRIWKHIDXQD The book under review is very well prepared and will help us know Thai reptiles better. 2QHRIWKHDXWKRUV-DUXMLQ1DEKLWDEKDWDZDVP\ROGIULHQGIRUPHUO\WKH'LUHFWRURI1DWXUDO +LVWRU\0XVHXPWKH1DWLRQDO6FLHQFH0XVHXP7KDLODQG+HZDVDQH[FHOOHQWQDWXUDOLVW DQGKDGH[WHQVLYHNQRZOHGJHDERXW7KDLDQLPDOVHVSHFLDOO\DPSKLELDQVDQGUHSWLOHV,Q ZHYLVLWHG.KDR6RL'DR:LOGOLIH6DQFWXDU\WRVXUYH\KHUSHWRIDXQD+HDGYLVHGXV WRGLJTXLFNO\DURXQGWKHUH:HFROOHFWHGIRXUVSHFLPHQVRIDibamusZKLFKZHGHVFULEHG DVDQHZVSHFLHVDibamus somsaki +ONDA ET AL 1RZ,DPYHU\JODGWRNQRZWKDW WKLVERRNZDVSXEOLVKHGE\KLPDQGKLVFROOHDJXHV8QIRUWXQDWHO\KHSDVVHGDZD\LQ +LVXQWLPHO\GHDWKPD\KDYHGHOD\HGWKHSXEOLFDWLRQRIWKLVERRN7KHERRNLQFOXGHVQHDUO\ DOOQDWLYHUHSWLOHV PRUHWKDQVSHFLHV LQ7KDLODQGDQGPRVWSLFWXUHVZHUHGUDZQZLWK H[FHOOHQWGHWDLO,WLVDYHU\JRRGÀHOGJXLGHIRULGHQWLÀFDWLRQRI7KDLUHSWLOHVIRUVWXGHQWV
    [Show full text]
  • Venomics of Trimeresurus (Popeia) Nebularis, the Cameron Highlands Pit Viper from Malaysia: Insights Into Venom Proteome, Toxicity and Neutralization of Antivenom
    toxins Article Venomics of Trimeresurus (Popeia) nebularis, the Cameron Highlands Pit Viper from Malaysia: Insights into Venom Proteome, Toxicity and Neutralization of Antivenom Choo Hock Tan 1,*, Kae Yi Tan 2 , Tzu Shan Ng 2, Evan S.H. Quah 3 , Ahmad Khaldun Ismail 4 , Sumana Khomvilai 5, Visith Sitprija 5 and Nget Hong Tan 2 1 Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; 2 Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; [email protected] (K.Y.T.); [email protected] (T.S.N.); [email protected] (N.H.T.) 3 School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; [email protected] 4 Department of Emergency Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Kuala Lumpur, Malaysia; [email protected] 5 Thai Red Cross Society, Queen Saovabha Memorial Institute, Bangkok 10330, Thailand; [email protected] (S.K.); [email protected] (V.S.) * Correspondence: [email protected] Received: 31 December 2018; Accepted: 30 January 2019; Published: 6 February 2019 Abstract: Trimeresurus nebularis is a montane pit viper that causes bites and envenomation to various communities in the central highland region of Malaysia, in particular Cameron’s Highlands. To unravel the venom composition of this species, the venom proteins were digested by trypsin and subjected to nano-liquid chromatography-tandem mass spectrometry (LC-MS/MS) for proteomic profiling. Snake venom metalloproteinases (SVMP) dominated the venom proteome by 48.42% of total venom proteins, with a characteristic distribution of P-III: P-II classes in a ratio of 2:1, while P-I class was undetected.
    [Show full text]
  • Testing the Role of Climate in Speciation: New Methods and Applications to Squamate Reptiles (Lizards and Snakes)
    Received: 17 December 2017 | Accepted: 17 April 2018 DOI: 10.1111/mec.14717 ORIGINAL ARTICLE Testing the role of climate in speciation: New methods and applications to squamate reptiles (lizards and snakes) Tereza Jezkova1,2 | John J. Wiens1 1Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Abstract Arizona Climate may play important roles in speciation, such as causing the range fragmenta- 2Department of Biology, Miami University, tion that underlies allopatric speciation (through niche conservatism) or driving diver- Oxford, Ohio gence of parapatric populations along climatic gradients (through niche divergence). Correspondence Here, we developed new methods to test the frequency of climate niche conservatism Tereza Jezkova, Department of Ecology and Evolutionary Biology, University of Arizona, and divergence in speciation, and applied it to species pairs of squamate reptiles Tucson, AZ 85721. (lizards and snakes). We used a large-scale phylogeny to identify 242 sister species Email: [email protected] pairs for analysis. From these, we selected all terrestrial allopatric pairs with sufficient Funding information occurrence records (n = 49 pairs) and inferred whether each originated via climatic NIH IRACDA PERT fellowship, Grant/Award Number: K12 GM000708; NSF, Grant/ niche conservatism or climatic niche divergence. Among the 242 pairs, allopatric pairs Award Number: DE 1655690 were most common (41.3%), rather than parapatric (19.4%), partially sympatric (17.7%), or fully sympatric species pairs (21.5%). Among the 49 selected allopatric pairs, most appeared to have originated via climatic niche divergence (61–76%, depending on the details of the methods). Surprisingly, we found greater climatic niche divergence between allopatric sister species than between parapatric pairs, even after correcting for geographic distance.
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]