Geologie N° 2.Qxp

Total Page:16

File Type:pdf, Size:1020Kb

Geologie N° 2.Qxp ABSTRACTS GÉOLOGIE DE LA FRANCE, N° 2, 2007 55 ABSTRACT Variscan kinematics of the Ural and Tienshan junction area ALEXEIEV Dmitriy V. * Late Paleozoic evolution of the Ural-Tienshan junc- the Kazakhstan continent with Tarim in the latest tion area was controlled by the processes of conver- Carboniferous and with Turan in the Permian time. gence and multiply collisions between Kazakhstan, Baltica, Turan, and Tarim continents. Subduction in Principal structural assemblages and deformation ages the Valerianov arc since middle Visean till beginning within the Ural–Tienshan junction area can be defined as of the Late Carboniferous (during ~335-315 Ma) was the following. D1) Accretionary thrust folded belt of the responsible for convergence between Kazakhstan South Tienshan (since ~330 Ma in the West and since and Baltica. Duration of arc magmatism for ~20 Ma ~315 Ma in the East); D2) Laramide-style thrust-folded suggest that minimum several hundreds of kilometers belt in the SW and S of Kazakhstan in Karatau and Middle of an oceanic crust was consumed there that time. Tienshan, with major thrusts, directed toward the conti- nent (since ~315 Ma); D3) North-South trending folds in Collision of Kazakhstan started in the middle of the the W and SW of Kazakhstan, mainly Karatau ridge, over- Bashkirian age (~315 Ma). It resulted in: a) formation printing D2 structures (Permian?); D4) Left-lateral strike- of sub-meridional divergent thrust folded belt in Urals, slip faults and plunging folds within entire Tian Shan, due b) Laramide-style deformations in the Southwest and to oblique collision of Kazakhstan and Tarim (mainly Late South of the Kazakhstan continent, and c) iniciation Permian and early Mesozoic), and D5) East-West of a north-dipping subduction zone in the South of the trending compressional structures and diagonal strike-slip Kazakhstan continent within Central Tienshan. faults due to shortenning in the North-to-South direction Ongoing subduction in the South lead to collision of (Latest Triassic and Jurassic). * Geological Institute RAS, Russia GÉOLOGIE DE LA FRANCE, N° 2, 2007 57 MECHANICS OF VARISCAN OROGENY Transected Folds with opposite patterns in Terena Formation (Ossa Morena Zone, South Portugal) ARAÚJO António Alexandre * ROCHA Rodrigo Camargo * The Terena Formation is a Lower Devonian flysch the Ossa-Morena Zone and interpreted as the effect of a located in the Estremoz-Barrancos Sector (central part left lateral shearing, contemporary of the regional of the Ossa-Morena Zone, South Portugal).Taking flatening.The cartographic right transection can be advantage of the age of this unit which is contemporary explained by the generation of a near N-S trench, as the with the beginning of the Variscan orogeny, it was pos- effect of the first deformation phase (trending also N-S sible to make a geometrical study of the evolution of the but only present at lower structural levels). Several sedi- early stages of deformation. mentary features indicate that the genesis of this trench and the deposition of the Terena flysch are almost con- At the regional scale, the Terena Formation outcrops in temporaneous (strong lateral variations of facies, olis- the core of a first order syncline from the second defor- tolits of Silurian rocks). The trench shape conditioned the mation phase, with nearly 100 km long, 10 km wide and deposition of flysch facies during Lower Devonian and having an unusual “Z” shape. The relation of this first the orientation of the first order D2 syncline. The right order fold with the foliation, shows that the central part of transection results from the superposition of the NW-SE the macroscopic structure, trending nearly N-S, is tran- upright S2 cleavage on this major regional structure. sected by S2 cleavage (NW-SE), showing a right tran- section pattern. The cartographic right transection is The mesoscopic folds, observed on the upper levels of opposite to the left transection pattern showed by D2 the sedimentary sequence were not influenced by the folds at a mesoscopic scale, in the axial sector of the topographic anisotropy of the basin, and therefore they major synclinal. The transection of mesoscopic folds is developed a left transection, according to the regional coherent with geometrical patterns usually described in deformation mechanisms. * Centro de Geofísica de Évora, Portugal 58 GÉOLOGIE DE LA FRANCE, N° 2, 2007 ABSTRACT New insights of the Variscan late-orogenic extension in South-Brittany: the Sarzeau Shear Zone AUGIER Romain * TURRILLOT Paul *, FAURE Michel * Together with the Quiberon Shear Zone, the Sarzeau brittle structures that are stochastically parallel. Top to Shear Zone (SSZ, Morbihan) witnesses of the late the ESE ductile shear zones were then progressively Carboniferous extensional collapse of the Variscan exhumed and replaced by shallow dipping cataclastic thickened crust. The SSZ is a km-scale normal fault shear zones when they reached the brittle field then that exhibits a kinematic and dynamic continuity from a accompanied by the formation of high angle normal deep, synmagmatic and ductile activity to a shallow fault in the hanging wall. brittle one.The SSZ is an example of an E-dipping flat- lying ductile extensional shear zone evolving into a low- Most of the last increments of extensional strain are angle brittle detachment. achieved through in the upper crust by the formation of a penetrative network of dominantly E-dipping normal A clear continuum of extensional strain from ductile to brittle faults. This N110 extensional stress field is also brittle regime is observed in both footwall and hanging responsible for the injection of N20 to N50 striking late wall. The brittle deformation is characterized by shallow Carboniferous granitic dykes interpreted as km-scale and steeply dipping normal faults associated with sub- tension gashes. The chronological and structural rela- vertical extensional joints and quartz veins. The earliest tionships with the Carnac pluton that crop out to the west brittle structures are low angle normal faults which are discussed. E of the SSZ, at least two end-members superimpose on, and reactivate, earlier ductile shear geometries of granite dykes of same strike can be distin- bands commonly located along pegmatite and aplite guished with (early?) 30 to 45° West dipping magmatic- dykes, but newly formed muscovite-rich low-angle structured ones and subvertical ones exhibiting no strain normal faults are also observed. The inversion of fault patterns. Towards the SSZ, a petro-structural analysis of slip data collected within and away from the main oriented sections showed that these dykes are carrying detachment zone (50 stations over a 45 x 20 km area) a magmatic planar and linear fabric upon which ductile shows a consistent N110 stretching for both ductile and and brittle extensional structures overprint. * Institut des Sciences de la Terre d’Orléans, France GÉOLOGIE DE LA FRANCE, N° 2, 2007 59 MECHANICS OF VARISCAN OROGENY Imaging the mantle roots of the Variscan orogen below the Paris basin: Insight from the P-wave velocity model PM0.5 AVERBUCH Olivier * PIROMALLO Claudia ** A growing number of recent seismological and geochem- As suggested in previous tomographical studies along ical studies have provided evidence for long-lived compo- ancient suture zones, these data argue for such sitional anomalies at all scales in the mantle. Such anomaly being the remnant of a Variscan LRH oceanic lithological contrasts can induce lateral seismic velocity slab that did not suffered any significant late orogenic heterogeneities in the mantle persisting over several hun- removal. As the latter apparently cuts across another dred million years, i.e. much longer than if they were exclu- superficial high-velocity anomaly located upon the Late sively due to temperature variations. Therefore, in old Devonian (ca 375 Ma) Ligerian-Massif Central (LMC) suture zones, mantle seismic tomography can significantly suture zone, it would imply an early orogenic process of help in defining ancient deeply buried slabs and thus in LMC slab break-off before the initiation of the opposite constraining geodynamical models for past orogenic sys- subduction of the LRH slab. tems. In northern France, the Paris basin corresponds to the Late Paleozoic-Mesozoic episutural basin of the Late As suggested by modelling experiments, this process Devonian-Carboniferous Variscan collisional belt. could be considered as a major driving mechanism for the exhumation of HP and UHP metamorphic com- The large-scale P-wave velocity model PM0.5 developed plexes along the LMC suture zone (unlike the low grade by Piromallo and Morelli (2003) allowed imaging the metamorphic LRH suture zone). As a whole, these new lithospheric mantle roots of the Variscan orogen below the data question the long-term evolution of subducted Paris basin, pointing to the existence of a significant high oceanic lithosphere and in the case of the Western velocity anomaly in the upper mantle. The latter fits in European Variscan belt, suggest the subduction of the map view, at ~150-200 km depth, the trace of the northern LRH oceanic slab below the previously thickened Variscan suture zone i.e. the Upper Carboniferous (ca Eovariscan crust to have played an important role in the 325 Ma) Lizard-Rheno-Hercynian (LRH) suture zone. late collapse of the belt inducing a significant amount of Moreover, it is surprisingly spatially correlated to the well- thermal erosion and softening of the overriding litho- known Paris Basin Magnetic Anomaly, however slightly sphere all over Carboniferous times. shifted to its SW extension. In cross-sections, the main high-velocity anomaly seems to extend through the lithos- Reference pheric mantle with a steep southern dip, to apparent Piromallo C. and Morelli A. (2003) - P-wave tomography of the depths greater than expected for a standard continental mantle under the Alpine-Mediterranean area. JGR 108(B2), lithosphere (about 350-400 km depth). 2065, doi:10.1029/2002JB001757.
Recommended publications
  • The Surface Reactions of Silicate Minerals
    RESEARCH BULLETIN 614 SEPTEMBER, 1956 UNIVERSITY OF MISSOURI COLLEGE OF AGRICULTURE AGRICULTURAL EXPERIMENT STATION J. H. Longwell, Director The Surface Reactions Of Silicate Minerals PART II. REACTIONS OF FELDSPAR SURFACES WITH SALT SOLUTIONS. V. E. NASH AND C. E. MARSHALL (Publication authorized September 5, 1956) COLUMBIA, MISSOURI TABLE OF CONTENTS Introduction .......... .. 3 The Interaction of Albite with Salt Solutions . .. 4 The Interaction of Anorthite with Salt Solutions ........ .. 7 Relative Effectiveness of Ammonium Chloride and Magnesium Chloride on the Release of Sodium from Albite . .. 9 Surface Interaction of Albite with Salt Solutions in Methanol . .. 13 Experiments on Cationic Fixation ............................... 16 Detailed Exchange and Activity Studies with Individual Feldspars .......... .. 19 Procedure .. .. 20 Microcline . .. 21 Albite .................................................... 22 Oligoclase . .. 23 Andesine . .. 24 Labradori te . .. 25 Bytownite ................................................. 25 Anorthite . .. 27 Discussion ........ .. 28 Summary ..................................................... 35 References .. .. 36 Most of the experimental material of this and the preceding Research Bulletin is taken from the Ph.D. Thesis of Victor Nash, University of Missouri, June 1955. The experiments on cation fixation were carried our with the aid of a research grant from the Potash Rock Company of America, Lithonia, Georgia, for which the authors wish to record their appreciation. The work was part of Department of Soils Research Project No.6, entitled, "Heavy Clays." The Surface Reactions of Silicate Minerals PART II. REACTIONS OF FELDSPAR SURFACES WITH SALT SOLUTIONS. v. E. NASH AND C. E. MARSHALL INTRODUCTION The review of literature cited in Part I of this series indicates that little is known of the interaction of feldspar surfaces with salt solutions. The work of Breazeale and Magistad (1) clearly demonstrated that ex­ change reactions between potassium and calcium occur in the case of or­ thoclase surfaces.
    [Show full text]
  • Structural Geology of the Upper Rock Creek Area, Inyo County, California, and Its Relation to the Regional Structure of the Sierra Nevada
    Structural geology of the upper Rock Creek area, Inyo County, California, and its relation to the regional structure of the Sierra Nevada Item Type text; Dissertation-Reproduction (electronic); maps Authors Trent, D. D. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 27/09/2021 06:38:23 Link to Item http://hdl.handle.net/10150/565293 STRUCTURAL GEOLOGY OF THE UPPER ROCK CREEK AREA, INYO COUNTY, CALIFORNIA, AND ITS RELATION TO THE REGIONAL STRUCTURE OF THE SIERRA NEVADA by Dee Dexter Trent A Dissertation Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 3 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE I hereby recommend that this dissertation prepared under my direction by __________ Dee Dexter Trent______________________ entitled Structural Geology of the Upper Rock Creek Area . Tnvo County, California, and Its Relation to the Regional Structure of the Sierra Nevada ________________ be accepted as fulfilling the dissertation requirement of the degree of ____________Doctor of Philosophy_________ ___________ P). /in /'-/7. 3 Dissertation Director fJ Date After inspection of the final copy of the dissertation, the following members of the Final Examination Committee concur in its approval and recommend its acceptance:* f t M m /q 2 g ££2 3 This approval and acceptance is contingent on the candidate's adequate performance and defense of this dissertation at the final oral examination.
    [Show full text]
  • Morphogenesis of the Ourense Plains : (NW of Spain) = Morfogénesis De
    Cadernos Lab. Xeolóxico de Laxe ISSN: 0213-4497 Coruña. 2003. Vol. 28, pp. 263-283 Morphogenesis of the Ourense Plains (NW of Spain) Morfogénesis de las superficies de Orense (NW de España) YEPES TEMIÑO J.1 &. VIDAL ROMANÍ J. R.1 ABSTRACT We present a geomorphological analysis of Ourense Province (NW Spain) characterized by: a general narrowing of the fluvial network, highlands with smooth reliefs partially eroded and lowlands with residual reliefs, several extensive plains of erosion frequently limited by fractures -among which Tertiary grabens are inserted-, some “Hollow Surface”-type morphology, absence of sedimentary deposits outside the grabens, and a generalized outcrop of the Hercynian Massif substratum. Traditionally, this “piano’s key- board morphology” has been interpreted as expression of block tectonics in tensile regi- men; instead we suggest the existence of: an isostatic upheaval simultaneous to a sequen- ce of tectonic pulses of compressive regimen with activity in favour of transcurrent faults, a General Surface (R600), several plains that present a “Hollow Surface”-type mor- phology (R1600 R1400 R1000), a generalized alteration that correspond to a same process of decomposition associated to fluctuating conditions of redox equilibrium, a erosional terraces related principaly to the palaeo-fluvial nets; moreover, we propose the existen- ce of two morphoestructural lineament: the first one represented by the Fault of Vila Real (NE-SW) -a ramification of the “Basal Pyrenean Overthrust”-, that would have been active at an early moment of the tectonic sequence with a left transcurrent fault, secondly the lineament represented by the Fault of Maceda (NNW-SSE) that would be related to the “Fault System NW-SE” and would have produced a right transcurrent fault during a late tectonic pulse.
    [Show full text]
  • Reply Refer To
    IN REPLY REFER TO: UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY W A SHI NGTON 25, D. C . October 10, 1958 AEC-126/9 Mr. James E. Reeves Assistant Manager for Test Operations Albuquerque Operations Office u. s. Atomic Energy Commission P. 0. Box 5400 Albuquerque, New Mexico Dear Mr. Reeves: Transmitted herewith are ten copies of TEI -729, "The action of heat and of superheated steam on the tuff of the Oak Spring formation," by George W. Morey, August 1958. This report is part of our Nevada Test Site project. We plan to incorporate the information in TEI-729 with that in other reports on this project for publication by the Geological Survey. · Sincerely yours, -~ . ~~ ~/Vc):,R j..,- W. H. Bradley Chief Geologist UNI1rED STAIJ::'ES DEPARTMENT OF THE INTERIOR GE LOGI CAL SliRVEY THE .AC TION OF HFJ\.T A~TD OF SUPERHEATED STEAM ON ·IE~ T0~ OF TFili OAK SPRING FORMATION* George Wa Morey Augu.st 1958 Trace El ements Investiga t i ons Report 729 This preliminary report is distributed without editoria l and. technical review f or conformity ·with official standards and nomenclature . It is not f or public . inspection or quot ation. *This report concerns work done on behal f of Albuquerque Operations Office, U. s. Atomi c Energy Commission .. 2 USGS - TEI- 729 Distribution No. of copies Albuquer que Opera t:i.ons Office ( J.. :F~.. Ree·7es) o •• o " .... o .... " ... o e .. ., .. o • ., .. 10 Division of Re search, Washington (D .. R. Mi.l_er) .... .... ., ., .. o. o.......... 2 Office o.f the Commissioners, Washington (J .
    [Show full text]
  • Mineral Collecting Sites in North Carolina by W
    .'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami­ nation, survey, and mapping of the geology, mineralogy, and topo­ graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora­ tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi­ fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa­ tional Series, Geologic Maps, and Special Publications.
    [Show full text]
  • Optical Properties of Common Rock-Forming Minerals
    AppendixA __________ Optical Properties of Common Rock-Forming Minerals 325 Optical Properties of Common Rock-Forming Minerals J. B. Lyons, S. A. Morse, and R. E. Stoiber Distinguishing Characteristics Chemical XI. System and Indices Birefringence "Characteristically parallel, but Mineral Composition Best Cleavage Sign,2V and Relief and Color see Fig. 13-3. A. High Positive Relief Zircon ZrSiO. Tet. (+) 111=1.940 High biref. Small euhedral grains show (.055) parallel" extinction; may cause pleochroic haloes if enclosed in other minerals Sphene CaTiSiOs Mon. (110) (+) 30-50 13=1.895 High biref. Wedge-shaped grains; may (Titanite) to 1.935 (0.108-.135) show (110) cleavage or (100) Often or (221) parting; ZI\c=51 0; brownish in very high relief; r>v extreme. color CtJI\) 0) Gamet AsB2(SiO.la where Iso. High Grandite often Very pale pink commonest A = R2+ and B = RS + 1.7-1.9 weakly color; inclusions common. birefracting. Indices vary widely with composition. Crystals often euhedraL Uvarovite green, very rare. Staurolite H2FeAI.Si2O'2 Orth. (010) (+) 2V = 87 13=1.750 Low biref. Pleochroic colorless to golden (approximately) (.012) yellow; one good cleavage; twins cruciform or oblique; metamorphic. Olivine Series Mg2SiO. Orth. (+) 2V=85 13=1.651 High biref. Colorless (Fo) to yellow or pale to to (.035) brown (Fa); high relief. Fe2SiO. Orth. (-) 2V=47 13=1.865 High biref. Shagreen (mottled) surface; (.051) often cracked and altered to %II - serpentine. Poor (010) and (100) cleavages. Extinction par- ~ ~ alleL" l~4~ Tourmaline Na(Mg,Fe,Mn,Li,Alk Hex. (-) 111=1.636 Mod. biref.
    [Show full text]
  • Educator Guide Presented by the Field Museum Education Department Fieldmuseum.Org/Gems
    Educator Guide Presented by The Field Museum Education Department fieldmuseum.org/gems INSIDE: Exhibition Introduction & Correlations to ILS Tips for Planning Your Visit • Gallery Overview & Guiding Questions Focused Field Trip Activities • Related Exhibitions & Resources The Grainger Hall of Gems is generously sponsored by The Grainger Foundation. Walking Map TIFFANY WINDOW Elementals Oxides Silicates Organics Phosphates ENTRANCE The Grainger Hall of Gems is located on the Upper Level The Field Museum • Grainger Hall of Gems Educator Guide • fieldmuseum.org/gems Page 2 Exhibition Introduction Grainger Hall of Gems The Field Museum’s newly renovated Grainger Hall of Gems takes a unique approach to understanding the natural history of precious stones. For a greater understanding of their relationships, all of the gems are arranged according to type—from organic gems such as amber, coral, and pearls, to elementals made from one type of atom, such as diamonds (pure carbon). You’ll discover how stones that sometimes appear identical, like garnets and spinels, can come from completely different chemical families. And you’ll be surprised to learn that gems that bear no resemblance to one another, like rubies and sapphires, can actually be siblings made of the same material (corundum). Each display features a gem in its three stages of transformation: as a raw crystal, as a cut and polished stone, and as a jewel It’s obvious how aquamarine got its water-inspired name when mounted in a finished ring, brooch, or necklace. You’ll also looking at this specimen, still on its matrix. © The Field Museum view gems notable for their size or rarity, including a 341-carat aquamarine and a 97.45-carat Imperial Topaz—the rarest type of topaz and the largest owned by any museum in the world! By visiting the Grainger Hall of Gems and visiting our online Gallery of Gems at fieldmuseum.org/gems, you’ll discover why gemstones have captured our hearts and inspired cultures around the world for millennia.
    [Show full text]
  • Wines from Sierra De La Culebra
    Wines from Sierra de la Culebra Wines from Sierra de la Culebra Index INTRODUCTION HISTORY LOCATION Map Unesco’s Biosphere Reserve Soil Climate VINEYARDS Grape varieties WINES AND WINERIES Wines from Sierra de la Culebra INTRODUCTION Wines from Sierra de la Culebra is the brand that binds together all the wines produced in Sierra de la Culebra area, in the North-West of Spain, province of Zamora (Castilla y León). Grape growing and winemaking activities exist in the area since ancient times. Traditionally, every family owns a piece of vineyard that was planted by their ancestors and cared with love by their family members through the years. This is what we inherited and the basis we will build on. Wines from Sierra de la Culebra is a quality brand created to distinguish the wines we produce in our region and its unique character. In the following pages you will learn who we are, where we come from and what makes us unique. Wines from Sierra de la Culebra brand is owned by the four wineries currently operating in the area (Bodega Aliste, Bodegas Ramayal, Bodega Castro Mendi and Cepas de la Culebra). We all produce crafted quality wines that reflect the place where the grapes grow while respecting our environment and our inherited winemaking tradition. Furthermore, to guarantee the quality of our wines, every bottle produced in the area that matches the usage of the brand regulations we have set, has a distinctive label in the back of the bottle, with its own unique identification number. Wines from Sierra de la Culebra brand is just the beginning of our journey as we intend to pursue a quality figure accredited by the European Union for the wines produced in our region.
    [Show full text]
  • The Sierra Nevada Batholith a Synthesis. of Recent Work Across the Central Part
    I _; The Sierra Nevada Batholith A Synthesis. of Recent Work Across the Central Part By PAUL C. BATEMAN, LORIN ~- CLARK, N. KING HUBER, JAMES G. MOORE, and C. DEAN RINEHART SHORTER CONTRIBU.TIONS TO GENERAL GEOLOGY· G E 0 L 0 G I CAL SURVEY P R 0 FE S S I 0 N A L PAPER 414-D Prepared in cooperation with the State of Caltfornia, Division of Mines and Geology · ti II R fA u 0 F u' N f I ._rBRARV SPUI\ANf:.. !NASH. JUN 31971 . ·~-~ - ~ ... -- --s PtfASf RfT,fJR~ fO liBRARY UNITED S.TATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 CONTENTS Page Abstract------------------------------------------- D1 Constitution' of the batho1ith-Continued Introduction ______________________________________ _ 2 Contact relations _______________ ~ ______ - -- _----- D22 Genernl geologic relations _______________________ _ 2 Contacts between different granitic rocks _____ - 22 Previous geologic work _________________________ _ 4 Contacts between granitic rocks and meta- Acknowledgments _____________________________ _ 5 morphic rocks or diorite ___________ -- __ ---- 22 Wu.llrocks u.nd roof rocks ___________________________ _ 5 Felsic dike swarms __________________ - ___ -------- 24 Pu.leozoic rocks ________________________________ _ 5 Mafic dike swarms _________________________ ----- 25 Mesozoic rocks ________________________________ _ 6 Structure
    [Show full text]
  • Petrography and Engineering Properties of Igneous Rocks
    ENGINEERil~G MONOGRAPHS No. I United States Department of the Interior BUREAU OF RECLAMATION PETROGRAPIIY AND ENGINEERING· PROPER11ES OF IGNEOUS ROCKS hy Rit~bard C. 1\lielenz Denver, Colorado October 1948 95 cents (R.evised September 1961) United States Department of the Interior STEWART L. UDALL, Secretacy Bureau of Reclamation FLOYD E. DOMINY, Commissioner G~T BLOODGOOD, Assistant Commissioner and Chief Engineer Engineering Monograph No. 1 PETROGRAPHY AND ENGINEERING PROPERTIRES ·OF IGNEOUS RO<;:KS by Richard C. Mielenz Revised 1959. by William Y. Holland Head. Petrographic Laboratory Section Chemical Engineering Laboratory Branch Commissioner's Office. Denver Technical Infortnation Branch Denver Federal Center Denver, Colorado ENGINEERING MONOGRAPHS are published in limited editions for the technical staff of the Bureau of Reclamation and interested technical circles in Government and private agencies. Their purpose is to record devel­ opments, innovations, .and progress in the engineering and scientific techniques and practices that are employed in the planning, design, construction, and operation of Rec­ lamation structures and equipment. Copies 'may be obtained from the Bureau of Recla- · mation, Denver Federal Center, Denver, Colon.do, and Washington, D. C. Excavation and concreting of altered zones in rhyolite dike in the spillway foundation. Davis Damsite. Arizona-Nevada. Fl'ontispiece CONTENTS Page Introduction . 1 General Basis of Classification of Rocks . 1 Relation of the Petrographic Character to the Engineering Properties of Rocks . 3 Engineering J?roperties of Igneous Rocks ................................ :. 4 Plutonic Rocks . 4 Hypabyssal Rocks . 6 Volcanic Rocks..... 7 Application of Petrography to Engineering Problems of the Bureau of Reclamation . 8 A Mineralogic and Textural Classification of Igneous Rocks .
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • 44. K-Metasomatism and the Origin of Ba- and Inclusion- Zoned Orthoclase Megacrysts in the Papoose Flat Pluton, Inyo Mountains, California, USA
    1 ISSN 1526-5757 44. K-metasomatism and the origin of Ba- and inclusion- zoned orthoclase megacrysts in the Papoose Flat pluton, Inyo Mountains, California, USA Lorence G. Collins and Barbara J. Collins July 31, 2002 email:[email protected] Abstract In the Papoose Flat pluton in the Inyo Mountains of California the orthoclase megacrysts are suggested to form by K-metasomatism because microfracturing of a few normally zoned plagioclase crystals channeled introduced K-bearing fluids to these places, thereby promoting K-metasomatism and localized growth to form the megacrysts. Isochemical recrystallization to produce the megacrysts from preexisting stressed orthoclase and plagioclase crystals is ruled out because the original relatively undeformed granodiorite of the Papoose Flat pluton contained only 8-13 vol. % orthoclase that could not have been reorganized into more than 19 vol. % orthoclase in the groundmass and megacrysts and because original biotite was insufficient to supply enough K. An outside K source is required. Si- metasomatism of biotite to form quartz would have supplied some of the K. Concentrically oriented plagioclase inclusions that occur parallel to Ba-K growth zones in the megacrysts are shown to be formed from primary groundmass minerals, some of which were broken into fragments but others were not microfractured. The occurrences of myrmekite inside the megacrysts, scalloped edges on all surfaces of many plagioclase inclusions, sodic rims on irregular plagioclase inclusions against outer surfaces of former faces of the orthoclase, and disoriented inclusions that are not parallel to growth zones provide evidence for the primary origin of the inclusions. Rare trails of inclusions through the megacrysts indicate that the megacrysts are porphyroblasts and not residual phenocrysts (porphyroclasts).
    [Show full text]