Tidal Turbines' Layout in a Stream with Asymmetry and Misalignment

Total Page:16

File Type:pdf, Size:1020Kb

Tidal Turbines' Layout in a Stream with Asymmetry and Misalignment Tidal Turbines’ Layout in a Stream with Asymmetry and Misalignment Nicolas Guillou, Georges Chapalain To cite this version: Nicolas Guillou, Georges Chapalain. Tidal Turbines’ Layout in a Stream with Asymmetry and Mis- alignment. Energies, MDPI, 2017, 10 (11), 10.3390/en10111892. hal-01672248 HAL Id: hal-01672248 https://hal.archives-ouvertes.fr/hal-01672248 Submitted on 19 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. energies Article Tidal Turbines’ Layout in a Stream with Asymmetry and Misalignment Nicolas Guillou* and Georges Chapalain Laboratoire de Génie Côtier et Environnement (LGCE), Cerema, Direction Eau Mer et Fleuves, ER, 155 rue Pierre Bouguer, Technopôle Brest-Iroise, BP 5, 29280 Plouzané, France; [email protected] * Correspondence: [email protected]; Tel.: +33-(0)2-98-05-67-39 Received: 17 October 2017; Accepted: 11 November 2017; Published: 17 November 2017 Abstract: A refined assessment of tidal currents variability is a prerequisite for successful turbine deployment in the marine environment. However, the numerical evaluation of the tidal kinetic energy resource relies, most of the time, on integrated parameters, such as the averaged or maximum stream powers. Predictions from a high resolution three-dimensional model are exploited here to characterize the asymmetry and misalignment between the flood and ebb tidal currents in the “Raz de Sein”, a strait off western Brittany (France) with strong potential for array development. A series of parameters is considered to assess resource variability and refine the cartography of local potential tidal stream energy sites. The strait is characterized by strong tidal flow divergence with currents’ asymmetry liable to vary output power by 60% over a tidal cycle. Pronounced misalignments over 20◦ are furthermore identified in a great part of energetic locations, and this may account for a deficit of the monthly averaged extractable energy by more than 12%. As sea space is limited for turbines, it is finally suggested to aggregate flood and ebb-dominant stream powers on both parts of the strait to output energy with reduced asymmetry. Keywords: tidal stream power; resource optimization; tidal eddies; tidal strait; numerical modeling; TELEMAC 3D (EDF R&D, France); western Brittany; Sein 1. Introduction The hydro-kinetic energy of tidal currents has the potential to contribute to a significant part of the exploitation of marine renewable resources in industrial countries, bringing a highly predictable power with reduced visual impacts for coastal users and communities [1]. Successful deployments of tidal kinetic energy converters require accurate resource assessments to optimize the performance, design and location of devices while reducing investor risks and improving governments energy plans. Regional sites’ selection relies usually on GIS (Geographic Information Systems) decision-aid tools to conduct a multi-criteria analysis of the physical, environmental, practical and economical constraints of tidal energy projects [2–4]. As extensive in situ observations cannot reasonably encompass the tidal hydrodynamics conditions at the regional scale, the associated resource assessments rely, most of the time, on numerical modeling tools. Besides the uncertainty of these large-scale predictions [5–7], these resource assessments consider generally a restricted number of parameters, primarily the averaged and maximum amplitude of tidal current and associated stream power, setting aside further studies about the spatial and temporal variability of available kinetic energy. However, refined investigations of tidal current variabilities are fundamental in the early stages of devices’ development, focusing, in particular, on the variations of current amplitude and directions between flood and ebb (asymmetry and misalignment). Indeed, as stream power output is related to the velocity cubed, tidal current asymmetry may strongly impact the extractable energy over a tidal cycle, by modifying the available kinetic energy between the flood and ebb phases. On the basis Energies 2017, 10, 1892; doi:10.3390/en10111892 www.mdpi.com/journal/energies Version October 11, 2017 submitted to Energies 2 of 15 ¿4 the velocity cubed, tidal current asymmetry may strongly impact the extractable energy over a tidal ¿5 cycle, by modifying the available kinetic energy between the flood and ebb phases. On the basis of ¿6 a circulation model in the Orkney archipelago (Scotland, United-Kingdom), Neill et al. [8] reported Energies 2017 10 ¿7 thus that, , 1892a 30 % asymmetry in tidal current velocity results in a 100 % asymmetry in power density.2 of 14 ¿8 Rectilinear misalignment between the flood and ebb current directions may furthermore impact the ¿9 performance of horizontal-axis turbines, designed to harvest uni-directional flow. By relying on of a circulation model in the Orkney archipelago (Scotland, UK), Neill et al. [8] reported thus that a 4¼ experimental data and a Blade Element Momentum (BEM) code, Galloway et al. [9] suggest that o 30%4½ asymmetrypower reductions in tidal may current be apparent velocity for turbine results yaw in a above100% 7.5asymmetrywith an approximate in power density. 20 % reduction Rectilinear o misalignment4¾ at 22.5 in between misalignment the flood directions. and ebb Further current effects directions may appear may on furthermore the capacity impactfactor and the structural performance o of horizontal-axis4¿ side loading [ turbines,10]. It is thus designed suggested to harvest that flow uni-directional deviations greater flow. than By 20 relyingfrom on the experimental axial turbine data and44 adirection Blade Element will compromise Momentum the structural (BEM) code, integrity Galloway of devices et al. [11 [].9] suggest that power reductions may 45 As tidal stream energy sites occupy, in a high proportion, restricted surfaces in the vicinity be apparent for turbine yaw above 7.5◦ with an approximate 20% reduction at 22.5◦ in misalignment 46 of headlands and straits characterised by complex coastline geometry and significant water-depths directions. Further effects may appear on the capacity factor and structural side loading [10]. It is thus 47 variations [12], numerical modelling at high-spatial resolution, below 100 m, are required to assess suggested that flow deviations greater than 20◦ from the axial turbine direction will compromise the 48 tidal stream power variability. However, except local studies such as simulations conducted by Neill structural integrity of devices [11]. 49 et al. [8] in Orkney archipelago, Lewis et al. [7] in the Irish sea or Guillou and Chapalain [13] 5¼ Asin tidalthe Fromveur stream Straitenergy (western sites occupy, Brittany, in France), a high few proportion, numerical modelling restricted have surfaces investigated in the the vicinity of5½ headlandsasymmetry and and straits misalignment characterized of tidal by currents, complex and coastlineits effects on geometry the generated and technical significant resource, water-depth at variations5¾ the scale [12], of numerical potential stream modeling energy atsites. high-spatial resolution, below 100 m, is required to assess tidal5¿ streamThe power present variability. investigation However, complements except these local studies studies by (1) assessing such as simulations tidal current variability conducted by Neill54 et(asymmetry al. [8] in Orkney and misalignment) archipelago, and Lewis associated et al. stream [7] in power the Irish and (2)sea identifying or Guillou the and optimal Chapalain areas [13] 55 for the implementation of tidal kinetic energy converters. The application is conducted in the “Raz in the Fromveur Strait (western Brittany, France), few numerical modeling studies have investigated 56 de Sein” (western Brittany, Figure 1), a region of interest for tidal array development along the coasts the asymmetry and misalignment of tidal currents and its effects on the generated technical resource, 57 of France (Section 2.1). The numerical approach is based on a three-dimensional (3D) circulation at the58 model scale of which potential computes stream at high-spatial energy sites. resolution the evolution of tidal current velocities in the area 59 Theof interest present (Section investigation2.2). Models complements predictions are these evaluated studies against by (1) available assessing in-s tidalitu measurements current variability of (asymmetry6¼ current and amplitude misalignment) and direction and in associated the vicinity streamof the “Raz power de Sein” and (Section (2) identifying3.1). This the local optimal assessment areas for the6½ implementationof model’s performance of tidal iskinetic supplemented energy converters. by a synoptic The compar applicationison with is established conducted database in the “Raz of de Sein”6¾ tidal (western currents. Brittany, Beyond Figure the cartography1), a region of of the interest annual for averag tidaled array and maximum development tidal along stream the powers coasts of France6¿ (Sections (Section3.2 2.1),). numerical
Recommended publications
  • Tidal Turbine Array Optimization Based on the Discrete Particle
    China Ocean Eng., 2018, Vol. 32, No. 3, P. 358–364 DOI: https://doi.org/10.1007/s13344-018-0037-6, ISSN 0890-5487 http://www.chinaoceanengin.cn/ E-mail: [email protected] Tidal Turbine Array Optimization Based on the Discrete Particle Swarm Algorithm WU Guo-weia, WU Hea, *, WANG Xiao-yonga, ZHOU Qing-weia, LIU Xiao-manb aNational Ocean Technology Center, Tianjin 300112, China bSatellite Environment Center, Ministry of Environmental Protection, Beijing 100094, China Received May 18, 2017; revised February 11, 2018; accepted March 23, 2018 ©2018 Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature Abstract In consideration of the resource wasted by unreasonable layout scheme of tidal current turbines, which would influence the ratio of cost and power output, particle swarm optimization algorithm is introduced and improved in the paper. In order to solve the problem of optimal array of tidal turbines, the discrete particle swarm optimization (DPSO) algorithm has been performed by re-defining the updating strategies of particles’ velocity and position. This paper analyzes the optimization problem of micrositing of tidal current turbines by adjusting each turbine’s position, where the maximum value of total electric power is obtained at the maximum speed in the flood tide and ebb tide. Firstly, the best installed turbine number is generated by maximizing the output energy in the given tidal farm by the Farm/Flux and empirical method. Secondly, considering the wake effect, the reasonable distance between turbines, and the tidal velocities influencing factors in the tidal farm, Jensen wake model and elliptic distribution model are selected for the turbines’ total generating capacity calculation at the maximum speed in the flood tide and ebb tide.
    [Show full text]
  • Cost Assessment Methodology and Economic Viability of Tidal Energy Projects
    energies Article Cost Assessment Methodology and Economic Viability of Tidal Energy Projects Eva Segura 1, Rafael Morales 1,* and José A. Somolinos 2 1 Escuela de Ingenieros Industriales de Albacete, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; [email protected] 2 Escuela Técnica Superior de Ingenieros Navales, Universidad Politécnica de Madrid, 28040 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-967-599-200 (ext. 2542); Fax: +34-967-599-224 Received: 15 September 2017; Accepted: 6 November 2017; Published: 9 November 2017 Abstract: The exploitation of technologies with which to harness the energy from ocean currents will have considerable possibilities in the future thanks to their enormous potential for electricity production and their high predictability. In this respect, the development of methodologies for the economic viability of these technologies is fundamental to the attainment of a consistent quantification of their costs and the discovery of their economic viability, while simultaneously attracting investment in these technologies. This paper presents a methodology with which to determine the economic viability of tidal energy projects, which includes a technical study of the life-cycle costs into which the development of a tidal farm can be decomposed: concept and definition, design and development, manufacturing, installation, operation and maintenance and dismantling. These cost structures are additionally subdivided by considering their sub-costs and bearing in mind the main components of the tidal farm: the nacelle, the supporting tidal energy converter structure and the export power system. Furthermore, a technical study is developed in order to obtain an estimation of the annual energy produced (and, consequently, the incomes generated if the electric tariff is known) by considering its principal attributes: the characteristics of the current, the ability of the device to capture energy and its ability to convert and export the energy.
    [Show full text]
  • Analysis of the Optimal Deployment Location for Tidal Energy Converters
    EGY9197_grabs ■ 24 August 2016 ■ 1/1 Energy xxx (2016) 1 5 Contents lists available at ScienceDirect 6 7 Energy 8 9 10 journal homepage: www.elsevier.com/locate/energy 11 12 13 14 15 1 16 2 17 3 Highlights 4 Two areas of high tidal stream exergy are identified in the Ria de Vigo region. The energy output of two TEC farms, based on different turbines, is estimated. 15% of the 22.5 MW hourly extractable power per site can be tapped by the farms. The estimated power output is between. Q3 Depending on the used TEC, the farms can feed between 4411 and 6638 Spanish homes. http://dx.doi.org/10.1016/j.energy.2016.06.055 0360-5442/© 2016 Elsevier Ltd. All rights reserved. Please cite this article in press as: Mestres M, et al., Analysis of the optimal deployment location for tidal energy converters in the mesotidal Ria de Vigo (NW Spain), Energy (2016), http://dx.doi.org/10.1016/j.energy.2016.06.055 EGY9197_proof ■ 24 August 2016 ■ 1/9 Energy xxx (2016) 1e9 55 Contents lists available at ScienceDirect 56 57 Energy 58 59 60 journal homepage: www.elsevier.com/locate/energy 61 62 63 64 65 1 Analysis of the optimal deployment location for tidal energy 66 2 67 3 converters in the mesotidal Ria de Vigo (NW Spain) 68 4 69 a, b, * b a, b a, b 5 Q5 Marc Mestres , Maria Grin~o , Joan Pau Sierra , Cesar Mosso€ 70 6 a 71 7 International Centre for Coastal Resources Research (CIIRC), c/Jordi Girona 1-3, Modul D1, 08034 Barcelona, Spain b Laboratori d’Enginyeria Marítima (LIM-UPC), Universitat Politecnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Modul D1, 08034 Barcelona, Spain 72 8 73 9 74 10 article info abstract 75 11 76 12 Article history: The potential power output expected from the installation of a tidal farm near the mesotidal Ria de Vigo 77 13 Received 23 February 2016 (NW Spain) is assessed using two different tidal stream energy converters (TEC).
    [Show full text]
  • Tidal Farm Electric Energy Production in the Tagus River Civil Engineering
    Tidal Farm Electric Energy Production in the Tagus River José Maria Simões de Almeida de Sousa Ceregeiro Thesis to obtain the Master of Science Degree in Civil Engineering Supervisors: Prof. Manuel Guilherme Caras Atlas Duarte Pinheiro Dr. Francisco Javier Campuzano Guillen Examination Committee Chairperson: Prof. Rodrigo de Almada Cardoso Proença de Oliveira Supervisor: Prof. Manuel Guilherme Caras Atlas Duarte Pinheiro Member of the Committee: Prof. Ramiro Joaquim de Jesus Neves May 2019 Declaration I declare that this document is an original work of my own authorship and that it fulfills all the requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa. Acknowledgements Few words can truly convey just how grateful I am. Firstly, I would like to thank my parents. Thank you for having provided me and my siblings with one of the best educations a person could ask for, both at home and in school. Thank you for motivating me and for granting me the freedom to choose whichever college degree I thought would make me happier. You are the reason why I am where I am, and I owe you everything. I’m certain that Life will make sure that your efforts payed off. Secondly, to my younger brother and sister: thank you for validating my inner child and for making sure that there is never a dull moment at home. Next, to my girlfriend: few people in this world see me for who I truly am, and you sit at the very top of the ones that know me best. Thank you for supporting me when I most needed it, for always being there for me and for being my best friend.
    [Show full text]
  • Energy Check Sein
    2015-10-30 ENERGY CHECK ON SEIN Energy Check on Sein 1 Introduction 1 2 A brief description 2 3 Energy calculations 4 4 Conclusion 4 1 Introduction In 2015, Sein joined the SMILEGOV1 a clear picture of the island’s energy project through its membership in consumption, its emissions and how it l’Association Les Îles du Ponant (AIP) is it supplied with energy, moving into and subsequently in the European an action plan for a more sustainable Small Islands Federation (ESIN). The future, and to invite the island to join 2 objectives of SMILEGOV, funded by the the Pact of Islands . European Commission, is to establish 1 http://www.sustainableislands.eu/ 2 http://www.islepact.eu/html/index.aspx 1 (6) ENERGY CHECK ON SEIN Christian Pleijel [email protected] Tel +358-457-342 88 25 ENERGY CHECK ON SEIN Being late arrivers in the project, the Christian Pleijel, Vice President of work with Sein has been focused on ESIN (European Small Islands Federa- checking the island’s status and plans, tion) and Denis Bredin, Director of the not proposing actions, and to use this AIP, have compiled this limited audit knowledge to enhance the total pro- of the energy situation on Sein 2015. ject knowledge of small islands energy Islands are miniatures of the world, needs and solutions. solitary, clearly separated from the There are excellent data on energy mainland by the sea. Being small, dis- and emissions on Sein in the AIP do- tant and vulnerable, an island needs to cuments « Profil Énergie et Gaz à effet plan and develop itself in a cohesive de serre – Sein » (2014), « Transition and continuous manner, handling the Énergétique des îles du Ponant – complexity of local, regional and Eu- Sein”( 2014), « Monographie Sein ropean politics, combining micro and 2103 », and « Atlas des îles de macro scale.
    [Show full text]
  • Tide Distribution and Tapping Into Tidal Energy 293 Implemented in the 240 MW TPP at La Rance, Brittany, France, in 1967 (Gibrat 1966)
    Invited paper Tide distribution and OCEANOLOGIA, 46 (3), 2004. tapping into tidal energy pp. 291{331. C 2004, by Institute of Oceanology PAS. KEYWORDS Tides Extreme tides Energy conservation Tidal power plants Zygmunt Kowalik Institute of Marine Science, University of Alaska, Fairbanks, AK, 99775, USA; e-mail:ff[email protected] Manuscript received 17 June 2004, reviewed 30 July 2004, accepted 19 August 2004. Abstract Tidal power along tidal shores has been used for centuries to run small tidal mills. Generating electricity by tapping tidal power proved to be very successful only in the last century through the tidal power plant constructed in 1967 in La Rance, France. This used a large barrier to generate the sea level head necessary for driving turbines. Construction of such plants evolved very slowly because of prohibitive costs and concerns about the environmental impact. Developments in the construction of small, efficient and inexpensive underwater turbines admit the possibility of small scale operations that will use local tidal currents to bring electricity to remote locations. Since the generation of such electricity is concerned with the tidal energy in local water bodies, it is important to understand the site- specific energy balance, i.e., the energy flowing in through open boundaries, and the energy generated and dissipated within the local domain. The question is how to tap the tidal energy while keeping possible changes in the present tidal regimes to a minimum. The older approach of constructing barrages may still be quite useful in some locations. The basics of such tidal power plants constructed in a small bay are analyzed in order to understand the principal parameter for tidal plant evaluation, i.e., the power produced.
    [Show full text]
  • Multi-Criteria Assessment of Wave and Tidal Power Along the Atlantic Coast of the Southeastern Usa
    MULTI-CRITERIA ASSESSMENT OF WAVE AND TIDAL POWER ALONG THE ATLANTIC COAST OF THE SOUTHEASTERN USA A Dissertation Presented to The Academic Faculty by Zafer Defne In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Civil and Environmental Engineering Georgia Institute of Technology May 2010 MULTI-CRITERIA ASSESSMENT OF WAVE AND TIDAL POWER ALONG THE ATLANTIC COAST OF THE SOUTHEASTERN USA Approved by: Dr. Kevin Haas, Committee Chair Dr. Emanuele Di Lorenzo School of Civil and Environmental School of Earth and Atmospheric Sciences Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Dirk Schaefer Dr. Hermann Fritz, Committee Co-Chair School of Mechanical Engineering School of Civil and Environmental Georgia Institute of Technology Engineering Georgia Institute of Technology Date Approved: January 5, 2010 Dr. Paul Work School of Civil and Environmental Engineering Georgia Institute of Technology ACKNOWLEDGMENTS I would like to express my immense gratitude to my advisors Dr. Kevin Haas and Dr. Hermann Fritz for giving me the opportunity to do this research, and for their guidance throughout the entire study. Their invaluable comments are much appreciated. I am deeply thankful to Dr. Haas for his contributions in developing the fundamentals of this study and for his patience during our long discussions. I would like to extend my thanks to Dr. Paul Work, Dr. Emanuele Di Lorenzo and Dr. Dirk Schaefer for serving as the committee members. Their time, effort, and comments are greatly appreciated. A special thanks goes to Dr. John Warner for helping me with my questions on ROMS modeling and my colleague Dr.
    [Show full text]
  • Tidal & Current Energy Resources in Ireland
    Tidal & Current Energy Resources in Ireland CONTENTS EXECUTIVE SUMMARY 3 1.0 INTRODUCTION 14 1.1 Strategic Targets 15 1.2 Electricity Consumption 15 1.3 Report Format 16 2.0 THEORETICAL RESOURCE 19 2.1 Tidal Regime 19 2.2 Sources of Tidal Stream Data 20 2.3 Computational Models 21 2.4 Model Verification 22 2.5 Hydraulic Constraints 22 2.6 Theoretical Power 23 2.7 Device Spacing 24 2.8 Theoretical Resource Evaluation 25 2.9 Summary 25 3.0 TECHNICAL RESOURCE 32 3.1 Summary of Existing Technology 32 3.1.1 Rotational Machines – Horizontal AxisTurbines – ‘Free Stream’ 33 3.1.2 Rotational Machines – Horizontal Axis Turbines – Shrouded 36 3.1.3 Rotational Machines – Vertical Axis– ‘Free Stream’ 36 3.1.4 Rotational Machines – Vertical Axis – Shrouded 38 3.1.5 Reciprocating machines 39 3.1.6 Future Research 40 3.2 Foundations 40 3.3 Tidal Stream Farm Electrical Systems 42 3.4 Technical Resource Evaluation 44 3.5 Summary 45 1 4.0 PRACTICAL RESOURCE 50 4.1 Construction and Physical Constraints 50 4.1.1 Water Depth 50 4.1.2 Wave Climate of Offshore Site 50 4.1.3 Geotechnical Stability for Sub-Base Structures 51 4.1.4 Defined Area Restrictions 51 4.2 Practical Resource Evaluation 53 4.3 Summary 54 5.0 ACCESSIBLE RESOURCE 60 5.1 Environmental Issues 60 5.1.1 Characteristics of Tidal Energy Devices 60 5.1.2 Scoping of Environmental Issues 61 5.2 Statutory Permissions and Planning Legislation 64 5.2.1 Republic of Ireland Legislation 64 5.2.2 Coastal Developments 64 5.2.3 Environmental Impact Assessment 65 5.2.4 National Monuments Act 1930-94 65 5.2.5
    [Show full text]
  • Towards a Tidal Farm in Banks Strait, Tasmania: Influence of Tidal Array on Hydrodynamics
    energies Article Towards a Tidal Farm in Banks Strait, Tasmania: Influence of Tidal Array on Hydrodynamics Christelle Auguste 1,* , Philip Marsh 1, Jean-Roch Nader 1, Remo Cossu 2 and Irene Penesis 1 1 Australian Maritime College, University of Tasmania, Launceston, TAS 7250, Australia; [email protected] (P.M.); [email protected] (J.-R.N.); [email protected] (I.P.) 2 School of Civil Engineering, University of Queensland, St Lucia, QLD 4072, Australia; [email protected] * Correspondence: [email protected] Received: 14 September 2020; Accepted: 1 October 2020; Published: 13 October 2020 Abstract: The development of tidal energy in Australia is still a challenge with few studies performed on the characterisation of the resource, due to the difficulty to acquire data and uncertainties about the influence of this anthropogenic activity on the marine environment. Changes in flow could lead to alterations in sediment transport and have further influence on the marine habitat. A case study in a promising area, Banks Strait (Australia), was created using high resolution 2D and 3D models validated against in situ data to investigate changes to hydrodynamic conditions with two scenarios of tidal farms (100 and 300 turbines). Comparison between 2D and 3D is performed to find the best compromise between model accuracy and computational time for preliminary assessment. Changes to current speed and bed shear stress over a 35 day period were found to be localised around the tidal farms and did not extent more than 7 km from the farm (300 turbines) for both 2D and 3D.
    [Show full text]
  • Islay Tidal Energy Project
    REQUEST FOR SCOPING OPINION BY DP MARINE ENERGY LIMITED in respect of ISLAY TIDAL ENERGY PROJECT Environmental Impact Assessment Scoping Report May 2009 Submitted by DP Marine Energy Ltd Registered Office: Mill House, Buttevant, Co Cork, Ireland Registered in Ireland No 456838 Directors Maureen De Pietro and Simon De Pietro Tel: (+353) (0) 2223955 Fax: (+353) (0) 2223027 e-mail: [email protected] web: www.dpenergy.com ISLAY TIDAL ENERGY FARM – SCOPING DOCUMENT Table of Contents: 1.0 Introduction 1 1.1 Scope and Method Proposal 1 1.2 Legislation and Guidance 2 1.2.1 Legislation 2 1.2.1.1 Electricity Act 1989 – Section 36 2 1.2.1.2 Food and Environmental Protection Act 1985 – Section 5 2 1.2.1.3 Coastal Protection Act 1949 – Section 34 2 1.2.1.4 Marine Works (Environmental Impact Assessment) Regulations 2007 2 1.2.1.5 Water Environment and Water Services (Scotland) Act 2003 3 1.2.2 Guidance 3 2.0 Project Description 4 2.1 Site Description 4 2.1.1 Location and Scale 4 2.1.2. Navigation 4 2.1.3. Water Depths 4 2.1.4. Resource 4 2.1.5 Environmental Constraints 4 2.2 Proposed Development 5 2.2.1 Tidal Farm – Outline Development Strategy 5 2.2.1.1 Fundamental Criteria 5 2.2.1.2 Technology Options 5 2.2.1.3 Technology Neutral Approach - Purpose 5 2.2.1.4 Technology Neutral Approach – Effect on the EIA 6 2.2.1.5 Islay Technology Approach 7 2.2.2 Tidal Farm – Islay Strategy 7 2.2.2.1 Phase 1 – Approximately 7.5MW Installed Capacity 8 2.2.2.2 Phase 2 - Approximately 50MW Installed Capacity 8 2.2.2.3 Phase 3 – Approximately 400MW Installed
    [Show full text]
  • The Impact of Tidal Energy Extraction Is Estuaries: Analysis of the Influence of Channel Geometry
    ORE Open Research Exeter TITLE The influence of channel geometry on tidal energy extraction in estuaries AUTHORS Garcia-Oliva, M; Djordjević, S; Tabor, GR JOURNAL Renewable Energy DEPOSITED IN ORE 20 October 2016 This version available at http://hdl.handle.net/10871/23988 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication The impact of tidal energy extraction is estuaries: analysis of the influence of channel geometry. Miriam Garcia-OlivaI , Slobodan Djordjevic, Gavin R. Tabor College of Engineering, Mathematics and Physical Sciences University of Exeter, North Park Road, Exeter, EX4 4QF, United kingdom Abstract Macro-tidal estuaries in the UK not only have a high tidal range but also present strong currents in some cases, where tidal farms could be used for energy extraction but not forgetting about the associated environmental impacts beforehand. The purpose of this study is to delimit the influence that the geometry of the channel could have over the impact of a tidal farm deployed in the estuary. A hydrodynamic model (Mike21) has been used to create several cases of idealised estuaries with dimensions based on a group of locations suitable for tidal energy extraction in the UK. The maximum changes in low and high water levels with the tidal farm have been identified for each case and located within the estuary. The changes in the time for the low and high tides in a point inside the estuary have also been analysed.
    [Show full text]
  • Wave and Tidal Renewable Northwest Project
    Wave and Tidal Renewable Northwest Project experience in the field, WAVE AND TIDAL ENERGY IN THE NORTHWEST “Oregon and Washington adequate R&D funding, have the best wave energy Total Annual U.S. Incident Wave 2,110 terawatt- and proactive public pol- resource in the lower 48 Energy hours icy support, the costs of states … and could eventu- wave and tidal technolo- Technology: Wave Energy Tidal Energy ally generate several thou- gies are expected to fol- Current Levelized ~10-30 ~8-12 sand megawatts from wave low the same rapid de- power.” Cost (2006$) cents/kWh cents/kWh crease in price that wind Future Levelized ~5-6 cents/kWh ~4-6 cents/kWh energy has experienced. plore construction of North Amer- Cost (2006$) ica’s first utility-scale wave energy Potential facility off the coast of Reedsport, Resource Type Variable, Variable, highly Worldwide potential for Oregon. With the support of the predictable predictable wave and tidal power is Oregon Department of Energy, Ore- enormous, however, local kWh = kilowatt-hours. 1 terawatt-hour = 1 billion kWh. gon State University is also seeking Sources: see endnote 1. geography greatly influ- funding to build a national wave en- ences the electricity gen- ergy research facility near Newport, What Is Wave and eration potential of each technology. Oregon. Several tidal power projects Tidal Energy? Wave energy resources are best be- are also being explored in the region. In addition to its abundant solar, wind tween 30º and 60º latitude in both Tacoma Power has secured a prelimi- and geothermal resources, the Pacific hemispheres, and the potential tends nary permit to explore a tidal power Northwest is also uniquely situated to to be the greatest on western coasts.
    [Show full text]