Groundbreaking Video Processor

Total Page:16

File Type:pdf, Size:1020Kb

Groundbreaking Video Processor Lumagenreprint 4/2/03 10:26 AM Page 22 EQUIPMENT REVIEW Lumagen Vision™ Groundbreaking Video Processor G REG R OGERS Introduction Lumagen is a new video company with an exciting goal and two Visions. It believes that existing video scalers are too expensive and intends to provide high-performance video processors at more affordable prices. The Vision™ ($999) and VisionPro™ ($1,895) are the first entries in the Lumagen product line. Both share the same video processing circuits, but the VisionPro includes addition- al input switching capabilities. The ground- their own proprietary scaling algorithms. horizontal lines of a single field. To avoid breaking Vision is the subject of this review. You might also expect a video scaler wide-area flicker a new field is displayed priced at $999 to be limited to only a single approximately 60 times per second. Product Overview output format. Instead, the Vision provides Inter-line flicker occurs along horizontal more image sizing features and display format edges because the top or bottom edge of The Vision upconverts standard-definition options than scalers many times its price. It an object appears to lie on an odd line in interlaced video to match the native, or opti- also provides YPbPr or RGB output signals, one field and an even line in another. As mal resolution of projectors, flat-panel dis- with a complete selection of sync options. odd and even fields are alternately dis- plays, and high-definition direct-view moni- The Vision does have a few limitations when played, the edge appears to move up and tors. It will produce virtually any progressive compared with far more expensive scalers. down by one line in the picture. Since odd video format from 480p to 1080p, and also It doesn’t have variable adaptive detail fields and even fields are each displayed generates 1080i for the many CRT-based enhancement, and it only upconverts standard- approximately 30 times per second, the rear-projection TVs that accept that format. definition interlaced video formats. Hence, it edge appears to blink on and off, or bob up Video upconverters are usually referred to won’t scale 480p input signals, nor deinterlace and down, at a 30 Hz rate. This is most as scalers in the consumer world, but scal- 1080i signals. But it provides a high-band- commonly called line-twitter. ing is only part of the upconversion process. width pass-through input to connect 480p or Line twitter is not limited to the edges of Analog interlaced signals must first be digi- high-definition signal sources to the display. objects. It can appear wherever there are tized and converted to a progressive format high-contrast horizontal lines in an inter- by a deinterlacing process. Then the pro- Why Deinterlace Or laced image. The addition of slow vertical gressive format is scaled to a display format Scale? motion increases the twittering as horizontal with more scan lines per frame, and finally edges move across field lines. converted back to analog component video The purpose of deinterlacing and scaling Inverse-telecine deinterlacing can eliminate to drive a high-resolution projector or monitor. is to eliminate interlaced video artifacts, and line twitter from interlaced film-sources, and When 1080i signals are required, an addi- reduce the visibility of scan lines on CRT motion-adaptive deinterlacing can reduce line tional progressive-to-interlaced step occurs projectors, or match the native resolution of twitter from original interlaced-video sources. prior to the digital-to-analog conversion. fixed-pixel displays. The larger the screen the But to reduce line twitter on interlaced dis- Every step in the upconversion process is more visible artifacts become. The most objec- plays, vertical filtering is applied in video critical to the ultimate picture quality, and tionable interlace artifacts are inter-line flicker cameras and film-to-video DVD transfers to you might expect a product at this price to (line twitter), jagged edges, and motion comb- soften horizontal edges. For that reason, cut some corners in its signal processing. ing. I’ll briefly discuss each of these artifacts. deinterlacing 480i video can never produce But that isn’t the case. The Vision uses 10- Interlaced video is composed of a the full vertical resolution that would otherwise bit oversampled analog-to-digital and digi- sequence of fields, where each field con- be possible from an unfiltered 480p source. tal-to-analog converters to maximize signal tains only the odd or the even horizontal Jagged edges (jaggies) along diagonal linearity and minimize noise. Inverse- lines of picture information. In the 480i-inter- lines are an unavoidable consequence of a telecine deinterlacing with 3-2 field pull- laced format, each field contains 240 active discrete line or pixel structure, but interlac- down detection is used to optimally deinter- (visible) lines of picture information. When ing exacerbates jaggies. Segments along a lace film sources, and motion-adaptive the fields are sequentially displayed on a diagonal edge will appear to flicker on and deinterlacing is used for original interlaced CRT monitor, we perceive that the odd and off because they lie in different interlaced video sources. Lumagen has even developed even lines create a picture with twice the fields. If there is slow vertical movement the WIDESCREEN REVIEW • ISSUE 72 Page 1/5 Lumagenreprint 4/2/03 10:27 AM Page 23 EQUIPMENT REVIEW jaggies may appear to strobe or move (run- The remote control includes On and Menu Functions ning jaggies). Standby buttons, but there is no power Interlaced combing occurs when an switch on the processor. The Vision includes The Vision has an exceptionally broad list object is in motion. Our eyes tend to track a small external power module that supplies of features, some of which are accessed the object, particularly on a wide screen. 5-volts DC through a cable to a rear panel with dedicated buttons on the remote con- Since the object appears at different loca- jack. The power module includes a sepa- trol, and others through an on-screen hierar- tions in the odd and even fields, we per- rate power cord to connect to an AC power chical menu structure. ceive the odd and even scan lines sepa- line, and an LED that indicates when the The menu functions are logically rately, rather than integrating them into a full module is receiving power. arranged into four main groups—IN, OUT, picture. Vertical and diagonal edges of MISC, and SAVE. moving objects may appear like the teeth in Inputs And Outputs a comb because each field has only half Input Features the scan lines of the frame. Even when The rear panel includes composite, S- objects aren’t in motion, a small component video, and YPbPr component video inputs The IN group submenus include COLR, of vertical jitter in the picture may cause our for standard-definition interlaced video ADJ, BIAS, NAME, and COPY. The COLR eyes to lock onto the fields and see scan sources. The Vision is compatible with NTSC, submenu provides adjustments for black lines as individual fields rather than frames. PAL, and SECAM signals. The S-video input level, contrast, color saturation, and hue. As This is far more likely on larger screens, accepts a standard 4-pin mini-DIN connec- always, it is critical to calibrate these adjust- where the scan line spacing is greater. tor while the other inputs use RCA jacks. ments for each input source with AVIA: Guide The remedy for interlace artifacts is to There is also a 15-pin D-sub (VGA style) To Home Theater or Video Essentials. The deinterlace the video and display progressive pass-through input with a 300-MHz rated PDSTL item in the ADJ submenu should be set frames. Then by scaling the video to have bandwidth for RGB or YPbPr signals. to match the black level (0 or 7.5 IRE) of the more horizontal lines per frame, the visibility of The Vision outputs RGB or YPbPr signals input signal prior to making these adjustments. the individual lines and jaggies along diago- through a 15-pin D-sub connector. It will The ADJ submenu includes SIZE, CPHASE, nal edges can be reduced or eliminated. produce RGB signals with separate H and V SHARP, PDSTL, ENHNCE, and SYNC. The sync, composite sync, or sync on green. SIZE item provides adjustments to scale and Do You Need A Any combination of H, V, or composite sync position the incoming image with respect to Scaler? polarities are selectable from the remote the output frame. This feature will allow you to control. It will output YPbPr signals with bi- remove an annoying line of vertical blanking CRT front projectors always require dein- level or tri-level sync in any output display interval data at the top of an image, or match terlacing and scaling for standard-definition format, but only 480p, 720p, 1080i, and image positions and widths for several sources. interlaced video signals, and very few of 1080p are standard SMPTE YPbPr formats. The CPHASE adjustment delays the luma them have built-in scalers. CRT projectors The rear panel jacks are a bit too tightly signal relative to the chroma signal by ±7 also have a “sweet spot,” or “golden” dis- packed together. There is little room for fin- steps at 1/4 pixel (about 18.5 nS) per step. play format that maximizes their perform- ger space while inserting or removing The SHARP adjustment provides four set- ance. The Vision has the ability to create a cables, and connectors enter the jacks at a tings. The default setting is 1, but the flat custom display format to match the “sweet slight angle because interference between frequency response setting is 0.
Recommended publications
  • Problems on Video Coding
    Problems on Video Coding Guan-Ju Peng Graduate Institute of Electronics Engineering, National Taiwan University 1 Problem 1 How to display digital video designed for TV industry on a computer screen with best quality? .. Hint: computer display is 4:3, 1280x1024, 72 Hz, pro- gressive. Supposing the digital TV display is 4:3 640x480, 30Hz, Interlaced. The problem becomes how to convert the video signal from 4:3 640x480, 60Hz, Interlaced to 4:3, 1280x1024, 72 Hz, progressive. First, we convert the video stream from interlaced video to progressive signal by a suitable de-interlacing algorithm. Thus, we introduce the de-interlacing algorithms ¯rst in the following. 1.1 De-Interlacing Generally speaking, there are three kinds of methods to perform de-interlacing. 1.1.1 Field Combination Deinterlacing ² Weaving is done by adding consecutive ¯elds together. This is ¯ne when the image hasn't changed between ¯elds, but any change will result in artifacts known as "combing", when the pixels in one frame do not line up with the pixels in the other, forming a jagged edge. This technique retains full vertical resolution at the expense of half the temporal resolution. ² Blending is done by blending, or averaging consecutive ¯elds to be displayed as one frame. Combing is avoided because both of the images are on top of each other. This instead leaves an artifact known as ghosting. The image loses vertical resolution and 1 temporal resolution. This is often combined with a vertical resize so that the output has no numerical loss in vertical resolution. The problem with this is that there is a quality loss, because the image has been downsized then upsized.
    [Show full text]
  • Viarte Remastering of SD to HD/UHD & HDR Guide
    Page 1/3 Viarte SDR-to-HDR Up-conversion & Digital Remastering of SD/HD to HD/UHD Services 1. Introduction As trends move rapidly towards online content distribution and bigger and brighter progressive UHD/HDR displays, the need for high quality remastering of SD/HD and SDR to HDR up-conversion of valuable SD/HD/UHD assets becomes more relevant than ever. Various technical issues inherited in legacy content hinder the immersive viewing experience one might expect from these new HDR display technologies. In particular, interlaced content need to be properly deinterlaced, and frame rate converted in order to accommodate OTT or Blu-ray re-distribution. Equally important, film grain or various noise conditions need to be addressed, so as to avoid noise being further magnified during edge-enhanced upscaling, and to avoid further perturbing any future SDR to HDR up-conversion. Film grain should no longer be regarded as an aesthetic enhancement, but rather as a costly nuisance, as it not only degrades the viewing experience, especially on brighter HDR displays, but also significantly increases HEVC/H.264 compressed bit-rates, thereby increases online distribution and storage costs. 2. Digital Remastering and SDR to HDR Up-Conversion Process There are several steps required for a high quality SD/HD to HD/UHD remastering project. The very first step may be tape scan. The digital master forms the baseline for all further quality assessment. isovideo's SD/HD to HD/UHD digital remastering services use our proprietary, state-of-the-art award- winning Viarte technology. Viarte's proprietary motion processing technology is the best available.
    [Show full text]
  • Display's the Thing: the Real Stakes in the Conflict Over High Resolution Displays
    Display's the Thing: The Real Stakes in the Conflict Over High Resolution Displays Jeffrey Hart and Michael Borrus (c) Copyright Hart and Borrus 1992 I. Display's the Thing: The Real Stakes In the Conflict Over High- Resolution Displays In Akira Kurasawa's film _Rashomon_, several witnesses to a murder tell the story of what they saw. Despite viewing the same event, the witnesses' stories are radically different, so much so that the event itself is ultimately called into question. So has it been with the debate over the next generation of high- resolution video technology. Some look and see a bigger and better television set (high-definition television or HDTV), but usually dismiss what they see as economically (though perhaps not politically) insignificant.1 Others look and see a significant component technology (high-resolution displays or HRD) beginning to pervade a wide variety of electronic systems. They recognize in displays a technological kinship to silicon chips -- an industry with potential strategic significance for commercial and military applications. But the conflict of perspectives should not, as it did in _Rashomon_, cast doubt on the event. The high-resolution display industry is a symbol of a major transformation underway in electronics: that is, the emergence of new component, machinery, and materials technologies driven by commercial, high-volume, integrated micro-systems applications and controlled increasingly by a few integrated producers located outside the United States. This paper argues that the industrial and geographic concentration of the sourcing, development, production, and integration of electronics technologies and systems in Asia portends new patterns of industrial constraint and opportunity, with significant economic and military implications.
    [Show full text]
  • A Review and Comparison on Different Video Deinterlacing
    International Journal of Research ISSN NO:2236-6124 A Review and Comparison on Different Video Deinterlacing Methodologies 1Boyapati Bharathidevi,2Kurangi Mary Sujana,3Ashok kumar Balijepalli 1,2,3 Asst.Professor,Universal College of Engg & Technology,Perecherla,Guntur,AP,India-522438 [email protected],[email protected],[email protected] Abstract— Video deinterlacing is a key technique in Interlaced videos are generally preferred in video broadcast digital video processing, particularly with the widespread and transmission systems as they reduce the amount of data to usage of LCD and plasma TVs. Interlacing is a widely used be broadcast. Transmission of interlaced videos was widely technique, for television broadcast and video recording, to popular in various television broadcasting systems such as double the perceived frame rate without increasing the NTSC [2], PAL [3], SECAM. Many broadcasting agencies bandwidth. But it presents annoying visual artifacts, such as made huge profits with interlaced videos. Video acquiring flickering and silhouette "serration," during the playback. systems on many occasions naturally acquire interlaced video Existing state-of-the-art deinterlacing methods either ignore and since this also proved be an efficient way, the popularity the temporal information to provide real-time performance of interlaced videos escalated. but lower visual quality, or estimate the motion for better deinterlacing but with a trade-off of higher computational cost. The question `to interlace or not to interlace' divides the TV and the PC communities. A proper answer requires a common understanding of what is possible nowadays in deinterlacing video signals. This paper outlines the most relevant methods, and provides a relative comparison.
    [Show full text]
  • EBU Tech 3315-2006 Archiving: Experiences with TK Transfer to Digital
    EBU – TECH 3315 Archiving: Experiences with telecine transfer of film to digital formats Source: P/HDTP Status: Report Geneva April 2006 1 Page intentionally left blank. This document is paginated for recto-verso printing Tech 3315 Archiving: Experiences with telecine transfer of film to digital formats Contents Introduction ......................................................................................................... 5 Decisions on Scanning Format .................................................................................... 5 Scanning tests ....................................................................................................... 6 The Results .......................................................................................................... 7 Observations of the influence of elements of film by specialists ........................................ 7 Observations on the results of the formal evaluations .................................................... 7 Overall conclusions .............................................................................................. 7 APPENDIX : Details of the Tests and Results ................................................................... 9 3 Archiving: Experiences with telecine transfer of film to digital formats Tech 3315 Page intentionally left blank. This document is paginated for recto-verso printing 4 Tech 3315 Archiving: Experiences with telecine transfer of film to digital formats Archiving: Experience with telecine transfer of film to digital formats
    [Show full text]
  • Video Processor, Video Upconversion & Signal Switching
    81LumagenReprint 3/1/04 1:01 PM Page 1 Equipment Review Lumagen VisionPro™ Video Processor, Video Upconversion & Signal Switching G REG R OGERS Lumagen VisionPro™ Reviewer’s Choice The Lumagen VisionPro™ Video Processor is the type of product that I like to review. First and foremost, it delivers excep- tional performance. Second, it’s an out- standing value. It provides extremely flexi- ble scaling functions and valuable input switching that isn’t included on more expen- sive processors. Third, it works as adver- tised, without frustrating bugs or design errors that compromise video quality or ren- Specifications: der important features inoperable. Inputs: Eight Programmable Inputs (BNC); Composite (Up To 8), S-Video (Up To 8), Manufactured In The U.S.A. By: Component (Up To 4), Pass-Through (Up To 2), “...blends outstanding picture SDI (Optional) Lumagen, Inc. Outputs: YPbPr/RGB (BNC) 15075 SW Koll Parkway, Suite A quality with extremely Video Processing: 3:2 & 2:2 Pulldown Beaverton, Oregon 97006 Reconstruction, Per-Pixel Motion-Adaptive Video Tel: 866 888 3330 flexible scaling functions...” Deinterlacing, Detail-Enhancing Resolution www.lumagen.com Scaling Output Resolutions: 480p To 1080p In Scan Line Product Overview Increments, Plus 1080i Dimensions (WHD Inches): 17 x 3-1/2 x 10-1/4 Price: $1,895; SDI Input Option, $400 The VisionPro ($1,895) provides two important video functions—upconversion and source switching. The versatile video processing algorithms deliver extensive more to upconversion than scaling. Analog rithms to enhance edge sharpness while control over input and output formats. Video source signals must be digitized, and stan- virtually eliminating edge-outlining artifacts.
    [Show full text]
  • High-Quality Spatial Interpolation of Interlaced Video
    High-Quality Spatial Interpolation of Interlaced Video Alexey Lukin Laboratory of Mathematical Methods of Image Processing Department of Computational Mathematics and Cybernetics Moscow State University, Moscow, Russia [email protected] Abstract Deinterlacing is the process of converting of interlaced-scan video sequences into progressive scan format. It involves interpolating missing lines of video data. This paper presents a new algorithm of spatial interpolation that can be used as a part of more com- plex motion-adaptive or motion-compensated deinterlacing. It is based on edge-directional interpolation, but adds several features to improve quality and robustness: spatial averaging of directional derivatives, ”soft” mixing of interpolation directions, and use of several interpolation iterations. High quality of the proposed algo- rithm is demonstrated by visual comparison and PSNR measure- ments. Keywords: deinterlacing, edge-directional interpolation, intra- field interpolation. 1 INTRODUCTION (a) (b) Interlaced scan (or interlacing) is a technique invented in 1930-ies to improve smoothness of motion in video without increasing the bandwidth. It separates a video frame into 2 fields consisting of Figure 1: a: ”Bob” deinterlacing (line averaging), odd and even raster lines. Fields are updated on a screen in alter- b: ”weave” deinterlacing (field insertion). nating manner, which permits updating them twice as fast as when progressive scan is used, allowing capturing motion twice as often. Interlaced scan is still used in most television systems, including able, it is estimated from the video sequence. certain HDTV broadcast standards. In this paper, a new high-quality method of spatial interpolation However, many television and computer displays nowadays are of video frames in suggested.
    [Show full text]
  • Exposing Digital Forgeries in Interlaced and De-Interlaced Video Weihong Wang, Student Member, IEEE, and Hany Farid, Member, IEEE
    1 Exposing Digital Forgeries in Interlaced and De-Interlaced Video Weihong Wang, Student Member, IEEE, and Hany Farid, Member, IEEE Abstract With the advent of high-quality digital video cameras and sophisticated video editing software, it is becoming increasingly easier to tamper with digital video. A growing number of video surveillance cameras are also giving rise to an enormous amount of video data. The ability to ensure the integrity and authenticity of this data poses considerable challenges. We describe two techniques for detecting traces of tampering in de-interlaced and interlaced video. For de-interlaced video, we quantify the correlations introduced by the camera or software de-interlacing algorithms and show how tampering can disturb these correlations. For interlaced video, we show that the motion between fields of a single frame and across fields of neighboring frames should be equal. We propose an efficient way to measure these motions and show how tampering can disturb this relationship. I. INTRODUCTION Popular websites such as YouTube have given rise to a proliferation of digital video. Combined with increasingly sophisticated users equipped with cellphones and digital cameras that can record video, the Internet is awash with digital video. When coupled with sophisticated video editing software, we have begun to see an increase in the number and quality of doctored video. While the past few years has seen considerable progress in the area of digital image forensics (e.g., [1], [2], [3], [4], [5], [6], [7]), less attention has been payed to digital video forensics. In one of the only papers in this area, we previously described a technique for detecting double MPEG compression [8].
    [Show full text]
  • Deinterlacing Network for Early Interlaced Videos
    1 Rethinking deinterlacing for early interlaced videos Yang Zhao, Wei Jia, Ronggang Wang Abstract—In recent years, high-definition restoration of early videos have received much attention. Real-world interlaced videos usually contain various degradations mixed with interlacing artifacts, such as noises and compression artifacts. Unfortunately, traditional deinterlacing methods only focus on the inverse process of interlacing scanning, and cannot remove these complex and complicated artifacts. Hence, this paper proposes an image deinterlacing network (DIN), which is specifically designed for joint removal of interlacing mixed with other artifacts. The DIN is composed of two stages, i.e., a cooperative vertical interpolation stage for splitting and fully using the information of adjacent fields, and a field-merging stage to perceive movements and suppress ghost artifacts. Experimental results demonstrate the effectiveness of the proposed DIN on both synthetic and real- world test sets. Fig. 1. Illustration of the interlaced scanning mechanism. Index Terms—deinterlacing, early videos, interlacing artifacts this paper is to specifically design an effective deinterlacing network for the joint restoration tasks of interlaced frames. I. INTRODUCTION The traditional interlaced scanning mechanism can be de- Interlacing artifacts are commonly observed in many early fined as Y = S(X1; X2), where Y denotes the interlaced videos, which are caused by interlacing scanning in early frame, S(·) is the interlaced scanning function, and X1; X2 television systems, e.g., NTSC, PAL, and SECAM. As shown denote the odd and even fields. Traditional deinterlacing in Fig. 1, the odd lines and even lines of an interlaced frame are methods focus on the reversed process of S(·), which can scanned from two different half-frames, i.e., the odd/top/first be roughly divided into four categories, i.e., temporal inter- field and the even/bottom/second field.
    [Show full text]
  • Using Enhancement Data to Deinterlace 1080I HDTV
    Using enhancement data to deinterlace 1080i HDTV The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Andy L. Lin and Jae S. Lim, "Using enhancement data to deinterlace 1080i HDTV", Proc. SPIE 7798, 77980B (2010). © 2010 Copyright SPIE--The International Society for Optical Engineering As Published http://dx.doi.org/10.1117/12.859876 Publisher SPIE Version Final published version Citable link http://hdl.handle.net/1721.1/72133 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Using Enhancement Data to Deinterlace 1080i HDTV Andy L. Lina, Jae S. Limb aStanford University, 450 Serra Mall Stanford, CA 94305 bResearch Lab of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue., Cambridge, MA USA 02139 ABSTRACT When interlaced scan (IS) is used for television transmission, the received video must be deinterlaced to be displayed on progressive scan (PS) displays. To achieve good performance, the deinterlacing operation is typically computationally expensive. We propose a receiver compatible approach which performs a deinterlacing operation inexpensively, with good performance. At the transmitter, the system analyzes the video and transmits an additional low bit-rate stream. Existing receivers ignore this information. New receivers utilize this stream and perform a deinterlacing operation inexpensively with good performance. Results indicate that this approach can improve the digital television standard in a receiver compatible manner. Keywords: Deinterlace, receiver compatible, 1080i, 1080/60/IS, HDTV, motion adaptive deinterlacing, enhancement data 1.
    [Show full text]
  • Optimizing Brightsign Video Quality Summary Introduction
    Optimizing BrightSign Video Quality The BrightSign "compact" models are capable of producing excellent high quality High Definition video output. However, video quality can be reduced if a system isn't configured properly. This document describes what affects video quality, and how to ensure you get the best results. Summary 1. Avoid downscaling video. For example don’t display content authored for 1080i with 720p display mode. Instead, match the content authored resolution and output display mode. Another example, don't display 720p video (1280 x 720) in a zone window that is smaller (e.g. 1024 x 576). Instead, author the content to match the zone window resolution, or author it smaller so it "scales up". 2. Use a true progressive output mode i.e. neither 1080i nor 1080p60 (1080p30 is fine). 3. Pick a display with a native resolution that is the same as your output mode because a display that has a native mode of 1280x720 will scale content when displaying at 1920x1080. 4. Turn off overscan or select a monitor or mode that doesn't overscan at your chosen output mode. 5. Use progressive video content at the same frame rate as the output mode. Author your content to match your display resolution and frame rates when possible. For example, if you are using video that's 25fps, then use an output resolution that's 25, 50, or 75. 6. Use 1080p50 or 1080p60 with care; choose instead 720p or 1080p30 to avoid any de- interlacing flicker. Introduction For optimal video quality the amount of processing performed on the video has to be minimized both in the Brightsign and in the display to which it is connected.
    [Show full text]
  • Simply Ravishing
    SIMPLY RAVISHING High-Definition Video Processing in a Single Cable Connection. DVD 480i Satellite Receiver Audio/Video Processing 480i Hub/Switcher HD Receiver 1080i 720p DVR 480i A/V Receiver Video Game Consoles 720p 480i VCR 480i SIMPLY RAVISHING Laser Disc 480i HD DVD Player 1080i PC Notebook XGA iScan VP20 DVDO iScan VP Series The iScan™ VP20 and the iScan™ VP30 are high-definition video processors that convert standard definition, high definition and PC signals to one output resolution which is carried over a single connection to your display. The iScan VP20 and VP30 have many output resolutions between 480p and 1080p, including those needed for most popular displays. In addition to processing video, both the iScan VP20 and VP30 are audio/video hubs that will automatically delay the audio so that the video and audio are maintained perfectly in sync. Video Reference Series Technologies Flat Panel Display Front Projector Rear Projection Display Direct View Display Video Reference Series technologies are Compatible with Plasma, LCD, LCoS, DLP and CRT-based display technologies cutting edge video processing technologies that are designed in-house at Anchor Bay Technologies. RPTV Plasma Display LCD/LCOS Display DLP • VRS Precision Deinterlacing™ – World Class SD Deinterlacing Projector — 480i/576i Source, Motion & Edge Adaptive Deinterlacer — Game Modes with very low latency 832 x 680 — Reliable 2:2 pull-down detection for 50Hz countries 1366 x 768 1024 x 768 1280 x 720 1920 x 1080 — Edge adaptive processing for smooth diagonal edges — Arbitrary cadence detection (any:any) LCD/LCOS Display — Detection of multiple source types within a frame (video titles over film) — Bad edit detection to minimize artifacts caused by sequence breaks in film content • VRS Precision Video Scaling II™ — 10-bit Scaling — Enhanced Sharpness Control VRS Precision Deinterlacer The Precision Deinterlacing Card improves the 480i/576i deinterlacing and elevates the iScan VP Series to “Best-in-Class” Performance.
    [Show full text]