Key Topics in Cardiac Surgery
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computational Diagnostic Techniques for Electrocardiogram Signal Analysis
sensors Review Computational Diagnostic Techniques for Electrocardiogram Signal Analysis Liping Xie * , Zilong Li, Yihan Zhou, Yiliu He and Jiaxin Zhu College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; [email protected] (Z.L.); [email protected] (Y.Z.); [email protected] (Y.H.); [email protected] (J.Z.) * Correspondence: [email protected] Received: 8 September 2020; Accepted: 4 November 2020; Published: 5 November 2020 Abstract: Cardiovascular diseases (CVDs), including asymptomatic myocardial ischemia, angina, myocardial infarction, and ischemic heart failure, are the leading cause of death globally. Early detection and treatment of CVDs significantly contribute to the prevention or delay of cardiovascular death. Electrocardiogram (ECG) records the electrical impulses generated by heart muscles, which reflect regular or irregular beating activity. Computer-aided techniques provide fast and accurate tools to identify CVDs using a patient’s ECG signal, which have achieved great success in recent years. Latest computational diagnostic techniques based on ECG signals for estimating CVDs conditions are summarized here. The procedure of ECG signals analysis is discussed in several subsections, including data preprocessing, feature engineering, classification, and application. In particular, the End-to-End models integrate feature extraction and classification into learning algorithms, which not only greatly simplifies the process of data analysis, but also shows excellent accuracy and robustness. Portable devices enable users to monitor their cardiovascular status at any time, bringing new scenarios as well as challenges to the application of ECG algorithms. Computational diagnostic techniques for ECG signal analysis show great potential for helping health care professionals, and their application in daily life benefits both patients and sub-healthy people. -
Overview of Partial Left Ventriculectomy
Prepared by ASERNIP-S NATIONAL INSTITUTE FOR CLINICAL EXCELLENCE INTERVENTIONAL PROCEDURES PROGRAMME Interventional procedure overview of Partial Left Ventriculectomy Introduction This overview has been prepared to assist members of IPAC advise on the safety and efficacy of an interventional procedure previously reviewed by SERNIP. It is based on a rapid survey of published literature, review of the procedure by specialist advisors and review of the content of the SERNIP file. It should not be regarded as a definitive assessment of the procedure. Procedure name Partial Left Ventriculectomy The Batista Procedure Specialty society Society of Cardiothoracic Surgeons of Great Britain and Ireland Executive Summary Left partial ventriculectomy (PLV) seeks to treat dilated cardiomyopathy by reducing cardiac volume and hence heart wall pressure through the resection of a portion of the left ventricle. Patients receiving it are generally suitable for cardiac transplant but unable to receive it, often for social or economic reasons. PLV is an emerging procedure and the vast majority of evidence is case series, although there has been one retrospective comparative study of PLV and transplantation. Hospital mortality was reported for up to 30% of patients and overall mortality was around 40% of patients. Thirty day survival ranged from 50% to 99%, and no significant difference was found between PLV and transplant. One-year survival ranged from 46% to 80% and three- year survival was reported in one study as 60%. Event-free survival was reported as 80% at 30 days, 49% at 1 year and 26% at three years. Use of a left ventricular assist device or relisting for cardiac surgery was reported in one study at between 5% and 15% of patients at 30 days and in 43% at 1 year and 58% at 3 years. -
Thursday Poster Assignment
Corresponding Author Paper Title Board Assignment Number ‐ Thursday Classification of Typical Developing and Autism Spectrum Disorder Using Connectivity A.R., Jac Fredo Matrix and Support Vector Machine 111 Abbaszadeh, Behrooz Probabilistic Prediction of Epileptic Seizures Using SVM 220 Abe, Takuto Surrogate Modeling for Neuroprotective Focal Brain Cooling Device 110 Comprehensive Comparison of 2D vs. 3D Resource Usage in Large Volumetric Medical Agris, Jacob Image Segmentation 109 On Smartphone Sensability of Bi‐Phasic User Intoxication Levels from Diverse Walk Agu, Emmanuel Types in Standardized Field Sobriety Tests 327 The Effect of Perceived Sound Quality of Speech in Noisy Speech Perception by Akbarzadeh, Sara Normal Hearing and Hearing Impaired Listeners 370 Towards the Development of an Optrode Biopotential Sensor: Characterization Using Al Abed, Amr in Vitro Cardiac Tissue Recordings 108 Spatially Filtered Low‐Density EMG and Time‐Domain Descriptors Improves Hand Al‐Jumaily, Adel Movement Recognition 419 Optimizing Stimulation Strategies for Retinal Electrical Stimulation: A Modelling Study Alqahtani, Abdulrahman 287 An Automatic Navigation and Pressure Monitoring for Guided Insertion Procedure Alsunaydih, Fahad Nasser 326 A Statistical Determination of the Energy Delivered to Muscular Tissue in Amador, Alejandro Electrostimulation Protocols 149 Analysis of Muscle Fatigue During Exercise and Exercise Combined with Electrostimulation 151 Signal‐To‐Noise Ratio Determination in a Hybrid System of Electrostimulation and Electromiography 150 Continuous Prediction of Cognitive State Using a Marked‐Point Process Modeling Amidi, Yalda Framework 286 Antônio Freire Teixeira, Marcos Automatic Counting of Erythrocytes Using Image Processing 153 Feature Extraction from Radiographic Images for Bone Age Identification 152 Arantes, Ana Paula Bittar Britto Towards the Improvement of Algorithms Used in Robot‐Assisted Therapies 107 Arce‐Diego, José L. -
Reduction Ventriculoplasty for Dilated Cardiomyopathy : the Batista Procedure Shahram Salemy Yale University
Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 1999 Reduction ventriculoplasty for dilated cardiomyopathy : the Batista procedure Shahram Salemy Yale University Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Recommended Citation Salemy, Shahram, "Reduction ventriculoplasty for dilated cardiomyopathy : the Batista procedure" (1999). Yale Medicine Thesis Digital Library. 3123. http://elischolar.library.yale.edu/ymtdl/3123 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. SlDDCITOM VENTRICULOPIASTy FOR DILATED CARDIOMYOPATHY THE BATISTA PROCEDURE W«M * (e,yx»> ShaLramSalemy YALE DNIVERSriY YALE UNIVERSITY CUSHING/WHITNEY MEDICAL LIBRARY Permission to photocopy or microfilm processing of this thesis for the purpose of individual scholarly consultation or reference is hereby granted by the author. This permission is not to be interpreted as affecting publication of this work or otherwise placing it in the public domain, and the author reserves all rights of ownership guaranteed under common law protection of unpublished manuscripts. Signature of Author Date REDUCTION VENTRICULOPLASTY FOR DILATED CARDIOMYOPATHY: THE BATISTA PROCEDURE Shahram Salemy B.S., George Tellides M.D., Ph.D., and John A. Elefteriades M.D. February 5, 1999 r 113 f'Uh (e(e.cl 0 REDUCTION VENTRICULOPLASTY FOR DILATED CARDIOMYOPATHY: THE BATISTA PROCEDURE. -
Ventricular Repolarization Components on the Electrocardiogram Cellular Basis and Clinical Significance Gan-Xin Yan, MD, PHD, Ramarao S
View metadata, citation and similar papers at core.ac.uk brought to you by CORE Journal of the American College of Cardiology providedVol. by Elsevier 42, No. - 3,Publisher 2003 Connector © 2003 by the American College of Cardiology Foundation ISSN 0735-1097/03/$30.00 Published by Elsevier Inc. doi:10.1016/S0735-1097(03)00713-7 STATE-OF-THE-ART PAPER Ventricular Repolarization Components on the Electrocardiogram Cellular Basis and Clinical Significance Gan-Xin Yan, MD, PHD, Ramarao S. Lankipalli, MD, James F. Burke, MD, FACC, Simone Musco, MD, Peter R. Kowey, MD, FACC Wynnewood, Pennsylvania Ventricular repolarization components on the surface electrocardiogram (ECG) include J (Osborn) waves, ST-segments, and T- and U-waves, which dynamically change in morphol- ogy under various pathophysiologic conditions and play an important role in the development of ventricular arrhythmias. Our primary objective in this review is to identify the ionic and cellular basis for ventricular repolarization components on the body surface ECG under normal and pathologic conditions, including a discussion of their clinical significance. A specific attempt to combine typical clinical ECG tracings with transmembrane electrical recordings is made to illustrate their logical linkage. A transmural voltage gradient during initial ventricular repolarization, which results from the presence of a prominent transient ϩ outward K current (Ito)-mediated action potential (AP) notch in the epicardium, but not endocardium, manifests as a J-wave on the ECG. The J-wave is associated with the early repolarization syndrome and Brugada syndrome. ST-segment elevation, as seen in Brugada syndrome and acute myocardial ischemia, cannot be fully explained by using the classic concept of an “injury current” that flows from injured to uninjured myocardium. -
Determinants of Myocardial Lactate Production During Acetylcholine
ORIGINAL RESEARCH Determinants of Myocardial Lactate Production During Acetylcholine Provocation Test in Patients With Coronary Spasm Koichi Kaikita, MD, PhD; Masanobu Ishii, MD; Koji Sato, MD, PhD; Masafumi Nakayama, MD, PhD; Yuichiro Arima, MD, PhD; Tomoko Tanaka, MD, PhD; Koichi Sugamura, MD, PhD; Kenji Sakamoto, MD, PhD; Yasuhiro Izumiya, MD, PhD; Eiichiro Yamamoto, MD, PhD; Kenichi Tsujita, MD, PhD; Megumi Yamamuro, MD, PhD; Sunao Kojima, MD, PhD; Hirofumi Soejima, MD, PhD; Seiji Hokimoto, MD, PhD; Kunihiko Matsui, MD, MPH; Hisao Ogawa, MD, PhD Background-—Myocardial lactate production in the coronary circulation during acetylcholine (ACh)-provocation test (abbreviated as lactate production) provides supporting evidence for coronary spasm–induced myocardial ischemia. The purpose of this study was to examine the clinical features, predictive factors, and prognosis of patients with coronary vasospastic angina (VSA) and lactate production. Methods and Results-—We examined all 712 patients who underwent both myocardial lactate measurement during ACh- provocation test in the left coronary artery and genetic screening test of a –786T/C polymorphism in the 50-flanking region of the endothelial nitric oxide synthase (eNOS) gene between January 1991 and December 2010. Lactate production was observed in 252 of the 712 patients and in 219 of 356 VSA patients diagnosed by ACh-provocation test. Compared with lactate production– negative VSA patients, the lactate production–positive counterparts were more likely to be nonsmoker female diabetics with – 786T/C eNOS polymorphism (61% vs 31%, P<0.001, 62% vs 34%, P<0.001, 24% vs 14%, P=0.016, and 25% vs 15%, P=0.018, respectively). Multivariable logistic regression analysis identified female sex, diabetes mellitus, and –786T/C eNOS polymorphism to correlate with lactate production (odds ratio 3.51, 95% CI 2.16 to 5.70, P<0.001; odds ratio 2.53, 95% CI 1.38 to 4.65, P=0.003; and odds ratio 1.85, 95% CI 1.02 to 3.35, P=0.044, respectively). -
Tively Assess Myocardial Function: New Hypothesis and Validation Experiment Regarding the U Wave
Journal of ISSN:2378-6914 Heart and Cardiology OPEN ACCESS Research Article DOI: 10.15436/2378-6914.20.2813 Changing Electrocardiogram Waveforms to Quantita- tively Assess Myocardial function: New Hypothesis and Validation Experiment regarding the U Wave Kenneth Tsan He1*, Helena Ai He2 1Princeton International School of Mathematics and Science, 11th grade student, 19 Lambert Drive, Princeton 2Princeton International School of Mathematics and Science, 10th grade student, 19 Lambert Drive, Princeton *Corresponding author: Kenneth Tsan He, Princeton International School of Mathematics and Science, 11th grade student, 19 Lambert Drive, Princeton, NJ, Tel: 08540; 1-732-705-0282; Email: [email protected] Abstract A hypothesis regarding the U wave is proposed, where the collision of the heart apex and chest wall causes delayed repolar- ization of some myocardial cells due to compression and deformation, leading to the presence of the U wave on ECG. Under normal conditions, the stronger the myocardial contractility, the greater the mass of the heart, the closer the distance to the chest wall, the more intense the apex beat, the more cells deformed and repolarization delayed, and the longer the delay time. To test the hypothesis, 41 high school student volunteers participated in a clinical trial. The results showed that when the position was changed from the supine position to the left lateral position, the U wave increased significantly (0.24±0.095×0.1 mv, a=99%), the T wave significantly decreased (-1.3±0.74×0.1 mv, a=99%), the time difference between the two peaks significantly increased (0.38±0.12×40 ms, a= 99%), indicating a strong co-rrelation between those three values ( r= 0.87 and 0.39). -
TAKING HEART from 20 YEARS of PROGRESS P10 Dear Colleagues
INSIDE THIS ISSUE Introducing the Wound Care for Tetralogy of Cardiovascular ‘No Option’ Fallot in Adults Specialty Network Patients – p14 – p17 – p3 Cardiac Consult Heart and Vascular News from Cleveland Clinic | Fall 2014 | Vol. XXIV No. 3 TAKING HEART FROM 20 YEARS OF PROGRESS p10 Dear Colleagues: Cardiac Consult is a forward-thinking publication. But in this issue’s cover story (p. 10), we look back over the past 20 years of cardiovascular achievement. The piece is both a fun way to take stock of how our discipline has evolved and a not-so-subtle reminder that for every one of those 20 years, Cleveland Clinic has been ranked No. 1 for heart care in U.S. News & World Report’s “Best Hospitals” survey. If you wonder how Cleveland Clinic is able to consistently earn this standing year after year, the remaining articles in this issue might give some clues. The feature on p. 3 profiles our new Cardiovascular Specialty Network and other heart care-focused affiliations and alliances with hospitals and Cardiac Consult offers updates on advanced providers nationwide. The network and affiliations are made possible by diagnostic and management techniques Cleveland Clinic’s standardized approach to patient care. Our cardiovascu- from specialists in Cleveland Clinic’s Sydell and Arnold Miller Family Heart & Vascular lar specialists strive for predictable outcomes through close observation of Institute. Please direct correspondence to: data, evidence-based practices and continuous quality improvement. These Medical Editors specialists’ services are coordinated elements of a single Heart & Vascular Amar Krishnaswamy, MD Institute comprising cardiovascular and thoracic surgery, vascular surgery, [email protected] and cardiovascular medicine. -
1 IJTCVS, Jan–Mar, 2002
IJTCVS 2002; 18: 1 IJTCVS, Jan–Mar, 2002 Prevention of Phrenic Nerve Palsy During CABG "OP-CAB" Surgery – An Initial Experience of Puri D, Puri N, Dhaliwal RS, Gupta PK 1 22 Cases with Indigenous Equipments 3 CTV Surgery PGIMER, Chandigarh & Anatomy Srivastava CP, Devgarha S, Singh R, Nathani V, Sharma A, IGMC Shimla Kushwaha KK, Mathur BM Department of CTVS, SMS Medical College and Hospital, Jaipur Introduction: Close proximity of phrenic nerves to internal mammary arteries and pericardium makes them liable to injury during Introduction: Minimal invasive CABG is getting more popular CABG. Injury can occur directly due to transection or secondary to all over the world. It has the advantage of decreased blood loss, rapid compromised vascularity or hypothermia. recovery and short hospital stay. Thus if offer chances for CABG in Methods: We studied in detail the intra thoracic course of IMA sick and elderly patients. and phrenic nerves in 100 cadavers. This information was utilized Methods: "OP-CAB" was performed in 22 cases of CAD admitted while harvesting IMA during CABG. The pericardiophrenic branch in department of CTVS, SMS Hospital, Jaipur from October 1998 to of IMA, a major source of blood supply to the phrenic nerves was October 2001. Out of the 22 cases 15 cases had 1 graft and 7 cases had preserved. Intermittent cooled saline (4°C) was used for topical cooling 2 grafts with average of 1.5. instead of ice slush. Elevation of hemidiaphragm on postoperative Results: Mean age of patients for "OP-CAB" has been 55±10 years. chest roentgenogram and paradoxical movements of diaphragm on All patients had significantly shorter post-op length of stay in hospital fluoroscopy were taken as evidence of phrenic nerve palsy. -
Post Op Fall 98
FALL 1998 Number 8 POSTNews Update from the Department of Surgery Op UNIVERSITY.HOSPITAL.AND.MEDICAL.CENTER.AT.STONY.BROOK INTRODUCING DR. COLLIN E.M. BRATHWAITE Our New Chief of Trauma/ Surgical Critical Care e are very pleased to in- troduce Collin E.M. WBrathwaite, MD, who joined our faculty in August as chief of the Division of Trauma/Surgical Critical Care. He comes to Stony Brook from Allegheny University of the Health Sciences (formerly the Medical College of Pennsylvania and Hahnemann University) in Philadel- phia, PA, through which he served as chief of trauma and co-director of the intensive care unit of Crozer-Chester Medical Center. Dr. Collin E.M. Brathwaite attending to a As the new director of our Re- patient in the surgical intensive care unit. Dr. Brathwaite was recently gional (Level I) Trauma Center, Dr. recognized by Philadelphia Brathwaite will coordinate the contin- Magazine (1996) as one of the ued growth and development of our efficiency of our highly specialized “Top Docs” in trauma surgery program. University Hospital earned surgical intensive care unit (SICU), based on the preferences of its designation as a Level I Trauma which provides advanced tertiary Center in 1993, and has since as- physicians, and honored by medical care to critically ill adult sumed a vital leadership role in the the Pennsylvania Division patients. optimization of care given injured pa- of the American Trauma Society Our SICU offers ventilatory tients on Long Island. which bestowed on him its management using all modalities of Dr. Brathwaite is committed to 1997 Recognition Award respiratory support, including positive the multidisciplinary team approach for Trauma Prevention. -
Dysrhythmias
CARDIOVASCULAR DISORDERS DYSRHYTHMIAS I. BASIC PRINCIPLES OF CARDIAC CONDUCTION DISTURBANCES A. Standard ECG and rhythm strips 1. Recordings are obtained at a paper speed of 25 mm/sec. 2. The vertical axis measures distance; the smallest divisions are 1 mm ×1 mm. 3. The horizontal axis measures time; each small division is 0.04 sec/mm. B. Normal morphology Courtesy of Dr. Michael McCrea 1. P wave = atrial depolarization a. Upright in leads I, II, III, aVL, and aVF; inverted in lead aVR b. Measures <0.10 seconds wide and <3 mm high c. Normal PR interval is 0.12–0.20 seconds. 2. QRS complex = ventricular depolarization a. Measures 0.06-0.10 seconds wide b. Q wave (1) <0.04 seconds wide and <3 mm deep (2) Abnormal if it is >3 mm deep or >1/3 of the QRS complex. c. R wave ≤7.5 mm high 3. QT interval varies with rate and sex but is usually 0.33–0.42 seconds; at normal heart rates, it is normally <1/2 the preceding RR interval. 4. T wave = ventricular repolarization a. Upright in leads I, II, V3–V6; inverted in aVR b. Slightly rounded and asymmetric in configuration c. Measures ≤5 mm high in limb leads and ≤10 mm high in the chest leads 5. U wave = a ventricular afterpotential a. Any deflection after the T wave (usually low voltage) b. Same polarity as the T wave c. Most easily detected in lead V3 d. Can be a normal component of the ECG e. Prominent U waves may indicate one of the following: (1) Hypokalemia (<3 mEq/L) (2) Hypercalcemia (3) Therapy with digitalis, phenothiazines, quinidine, epinephrine, inotropic agents, or amiodarone (4) Thyrotoxicosis f. -
The Enigmatic Sixth Wave of the Electrocardiogram: the U Wave
Cardiology Journal 2008, Vol. 15, No. 5, pp. 408–421 Copyright © 2008 Via Medica REVIEW ARTICLE ISSN 1897–5593 The enigmatic sixth wave of the electrocardiogram: The U wave Andrés Ricardo Pérez Riera1, Celso Ferreira1, Celso Ferreira Filho1, Marcelo Ferreira1, Adriano Meneghini1, Augusto Hiroshi Uchida2, Edgardo Schapachnik3, Sergio Dubner4, Li Zhang5 1For International VCG Investigators, ABC Faculty of Medicine (FMABC), Foundation of ABC (FUABC), Santo André, Brazil 2Heart Institute of the University of São Paulo Medical School, São Paulo, Brazil 3Dr. Cosme Argerich Hospital, Buenos Aires, Argentina 4Clínica and Maternidad Suizo Argentina, Buenos Aires, Argentina 5Main Line Health Heart Center, Jefferson Medical College, Philadelphia, PA, USA Electro-Vectorcardigraphic Section, ABC Medical School, ABC Foundation, Santo André, São Paulo, Brazil Abstract The U wave is the last, inconstant, smallest, rounded and upward deflection of the electrocar- diogram. Controversial in origin, it is sometimes seen following the T wave with the TU junction along the baseline or fused with it and before P of the following cycle on the TP segment. In this review we will study its temporal location related to monophasic action potential, cardiac cycle and heart sounds, polarity, voltage or amplitude, frequency and shape- contour. We will analyze the clinical significance of negative, alternant, prominent U wave, and the difference between T wave with two peaks (T1–T2) and true U wave. Finally we will analyze the four main hypotheses about the source of U wave: repolarization of the intraven- tricular conducting system or Purkinje fibers system, delayed repolarization of the papillary muscles, afterpotentials caused by mechanoelectrical hypothesis or mechanoelectrical feedback, and the prolonged repolarization in the cells of the mid-myocardium (“M-cells”).