<<

WhichDecisionTheory?

PavloR.Blavatskyy

InstituteofPublicFinance UniversityofInnsbruck Universitaetsstrasse15 A6020Innsbruck Austria

Phone:+43(0)5125077156 Fax:+43(0)5125072970 Email:[email protected]

Abstract.Abstract.Anewlaboratoryexperimentisdesignedtoidentifythebesttheories fordescribingdecisionsunder.Theexperimentaldesignhastwo noteworthyfeatures:arepresentativesampleofbinarychoiceproblems(forfair comparisonacrosstheories)andalotterysetwithasmallnumberofoutcomes andprobabilities(foreaseofnonparametricestimation).Wefindthatasimple ,rankdependentandexpectedutilitytheoryprovidethebest goodnessoffit.Eachtheorycanaccountforaboutaquarterofindividual choicepatterns.Mostofchoicepatternsbestrationalizedbyexpectedutility theorycanbeequallywelldescribedbyYaari'sdualmodel.Someofchoice patternsbestrationalizedbyrankdependentutilitycanbeequallywell describedbymodifiedmeanvarianceapproach.

KeyWords:KeyWords:DecisionTheory,Risk,ExpectedUtilityTheory,RankDependent Utility,Heuristic

JELClassificationCodes:JELClassificationCodes:C91,D03,D81 Theaimofthispaperistoidentifydescriptivedecisiontheoriesthat providethebestgoodnessoffittoexperimentaldata.Severalpapersalready addressedthisquestion( e.g .,HeyandOrme,1994;Hey,2001).Thepresent papercontributestothisliteratureinfouraspects. First,weusearepresentativesampleofbinarychoiceproblemsinour experiment.Incontrast,intheexistingliterature,anexperimenterhandpicks binarychoicequestionsthatsubjectsfaceinanexperiment.Suchdesignmight notbeoptimalforcomparingdifferenttheories.Forexample,expectedutility theory(EUT)isknowntobeviolatedinpairsofcommonconsequenceproblems (e.g .,Allais,1953)butnotwhentheseproblemsarelocatedintheinteriorof theprobabilitytriangle( e.g .,Conlisk,1989).Hence,bypickingtoomany(few) commonconsequenceproblemslocatedintheinterioroftheprobability triangle,anexperimenteroverestimates(underestimates)EUT'sgoodnessoffit. Second,weuseasetoflotterieswithasmallnumberofoutcomesand probabilities.Incontrast,lotterysetsusedintheexistingliteraturetypically haveonlyasmallnumberofoutcomesbutmanypossibleprobabilities.This allowsnonparametricestimationofdecisiontheorieswithsubjective parametersdefinedontheoutcomespace(suchasEUT).Yet,theorieswith subjectiveparametersdefinedontheprobabilityspace(suchasYaari(1987) dualmodel)canbeestimatedonlywithadditionalparametricassumptions.By usingalotterysetwithasmallnumberofoutcomesand probabilitieswecan estimatealldecisiontheorieswithoutanyparametricassumptions. Third,weuseadvancedeconometricmethodsthatarenotbiasedtoany particulartheory.Incontrast,theexistingliteraturetypicallyusesastrong utilitymodelofprobabilisticchoice( e.g .,Fechner,1860).EUTembeddedina strongutilitymodelcanaccountforcertaintypesofthecommonratioeffect (e.g .,Loomes,2005)andviolationsofbetweenness( e.g .,Blavatskyy,2006)that aresimplynotpossibleindeterministicEUT.Thus,astrongutilitymodel overestimatesEUT'sgoodnessoffitcomparedtononexpectedutilitytheories. Fourth,wecomparetheperformanceofnewlydevelopeddecision theorieswiththatofclassicaltheories.Inparticular,weconsiderthemodified meanvarianceapproach(Blavatskyy,2010).Wealsoconsiderthepossibilityof subjectsusingsomesimplerulesofthumbinlinewitharecentpsychological literatureon( e.g .,Brandstätteretal.,2006). Thepaperisorganizedasfollows.Section1describesthedesignand implementationofourexperiment.Section2summarizestendecisiontheories consideredinthispaper.Section3presentsoureconometricmodelofdiscrete choicebasedonalatentdependentvariable.Section4outlinesourestimation procedure.Section5summarizestheresults.Section6concludes. 1.Experiment Wedesignedourexperimenttofacilitatenonparametricestimationof varioustheories.Specifically,allriskyalternativesusedintheexperimenthave asmallnumberofoutcomesandprobabilities.SimilarasHeyandOrme(1994) andHey(2001),wedeliberatelyrestrictriskyalternativestohavenomorethan fourpossibleoutcomes.Thesefouroutcomesare€5,€20,€25and€40. Usingonlyprobabilityvalues0,0.25,0.5,0.75and1,itispossibleto construct23distinctprobabilitydistributionsovertheseoutcomes.Usingonly these23lotteries,itispossibletoconstructatotalof140binarychoice problemswherenoneofthealternativesstochasticallydominatestheother. These140problemsarepresentedinTable1intheAppendix. Theexperimentwasconductedasapaperandpencilclassroom experiment.Subjectsreceivedabookletwith140decisionproblems(listedin Table1intheAppendix).Eachproblemwasprintedonaseparatepage.For eachsubject,pageswith140problemswererearrangedinarandomorder. Probabilityinformationwasexplainedthroughtheofstandard playingcards.Figure1showsanexampleofonedecisionproblemasitwas displayedintheexperiment. [INSERTFIGURE1HERE] TheexperimentwasconductedintheUniversityofInnsbruck. Altogether,38undergraduatestudentstookpartintwoexperimentalsessions, whichwereconductedonthesameafternoon.Twentyoutof38subjects (52.6%)werefemale.Theaverageageofexperimentalparticipantswas21.5 years(minimumagewas18,maximumagewas34).Fourteenoutof38 subjects(36.8%)weremajors.Allsubjectshadnoprevious experiencewitheconomicexperiments. Subjectswereallowedtogothroughexperimentalquestionsattheir ownpacewithnotimerestriction.Afteransweringall140questions,each subjectwasaskedtospinaroulettewheel.Thenumberofsectorsonthe roulettewheelcorrespondedtothetotalnumberofquestionsaskedinthe experiment.Thequestion,whichwasrandomlyselectedontheroulettewheel, wasplayedoutforreal. Subjectswhooptedforasuremonetarypayoffintheselectedquestion simplyreceivedthisamountincash.Subjectswhooptedforalotterywere shownthecorrespondingcompositionofplayingcards.Thecardswere subsequentlyreshuffledandsubjectshadtodrawonecard.Dependingonthe suitoftheirdrawncard,theyreceivedthecorrespondingpayoff.Upon observingthesuitoftheirdrawncard,subjectsinspectedallremainingcardsto verifythatcardcompositiondidnotchangeafterreshuffling. Eachexperimentalsessionlastedaboutonehourandahalf.Aboutone thirdofthistimewasspentonusingphysicalrandomizationdevicesattheend oftheexperiment.Onaverage,subjectsearned€25.Twosubjectsearned€5, 19subjectsearned€20,8subjectsearned€25and9subjectsearned€40. 2.DecisionTheories Let X={€5,€20,€25,€40}denotethesetofpossibleoutcomesandlet Q={0,0.25,0.5,0.75,1}denotethesetofprobabilityvalues.Let L:X →Q denoteatypicallotteryusedintheexperiment, i.e., L(x)∈ Qforall x∈Xand

∑x∈X L(x)=1.Foranylottery L,cumulativedistributionfunction FL(x)isdefined as FL(x)=∑ y∈X, x≥y L(y),forall x∈X.Similarly,decumulativedistribution function GL(x)oflottery Lisdefinedas GL(x)=∑ y∈X, y≥x L(y),forall x∈X. Foreachsubjectweestimated10decisiontheories.First,weconsider maximizationofexpected(EV).Theutilityoflottery Listhengivenby

(1) U(L)=∑ x∈X L(x)— x Therearenosubjectiveparameterstobeestimatedinthistheory. Second,weconsiderexpectedutilitytheory(EUT).InEUT,theutilityof lottery Lisgivenby

(2) U(L)=∑ x∈X L(x)— u(x), where u :X→ℝis(Bernoulli)utilityfunction.Bernoulliutilityfunctioncanbe

normalizedforanytwooutcomes.Weusenormalization u(€5)=0and u(€40)=1. oftwootheroutcomes u(€20)and u(€25)remainsubjectiveparameters tobeestimated.NotethatEVisnestedwithinEUTwithtwoparameter restrictions: u(€20)=4/7and u(€25)=5/7. Third,weconsiderYaari(1987)dualmodel(Y).Inthismodeltheutility oflottery Lisgivenby

(3) U(L)=∑ x∈X [w(GL(x)) w(1 FL(x))]— x, where w:Q→[0,1]isaprobabilityweightingfunctionsatisfying w(0)=0and w(1)=1.TherearethreesubjectiveparameterstobeestimatedinYaari'sdual model: w(0.25), w(0.5)and w(0.75).EVisnestedwithinYwiththreeparameter restrictions w(0.25)=0.25, w(0.5)=0.5and w(0.75)=0.75. Fourth,weconsiderQuiggin(1981)rankdependentutility(RDU).Inthe contextofourexperiment,RDUcoincideswithcumulativeprospecttheory (TverskyandKahneman,1992).InRDUtheutilityoflottery Lisgivenby

(4) U(L)=∑ x∈X [w(GL(x)) w(1 FL(x))]— u(x), where w:Q→[0,1]isaprobabilityweightingfunctionsatisfying w(0)=0and w(1)=1and u :X→ℝis(Bernoulli)utilityfunctionnormalizedsothat u(€5)=0 and u(€40)=1.TherearefivesubjectiveparameterstobeestimatedinRDU: w(0.25), w(0.5), w(0.75), u(€20)and u(€25).EUTisnestedwithinRDUwith threeparameterrestrictions w(0.25)=0.25, w(0.5)=0.5and w(0.75)=0.75.Yis nestedwithinRDUwithtwoparameterrestrictions: u(€20)=4/7and u (€25)=5/7. Fifth,weconsidermodifiedmeanvarianceapproach(MV)recently proposedbyBlavatskyy(2010).InMVtheutilityoflottery Lisgivenby

(5) U(L)=∑ x∈X L(x)— u(x)0.5 ρ—∑ y∈X L(y)—|∑ x∈X L(x)— u(x) u(y)|, where u :X→ℝisutilityfunctionnormalizedsothat u(€5)=0and u(€40)=1and ρ∈[1,1]isaparametercapturingindividual'sattitudetoutilitydispersion. TherearethreesubjectiveparameterstobeestimatedinMV: u(€20), u(€25) and ρ.EUTisnestedwithinMVwithoneparameterrestriction: ρ=0. Sixth,weconsiderChew(1983)weightedutility(WU).Inthecontextof ourexperiment(wherelotteriesareindependentrandomvariables),WUis mathematicallyequivalenttotheory(Bell,1982;LoomesandSugden, 1982)andskewsymmetricbilinearutilitytheory(Fishburn,1982).InWUthe utilityoflottery Lisgivenby

∑x∈X L(x)— u(x)— v(x) (6) U(L)=, ∑x∈X L(x)— v(x)

where u :X→ℝisutilityfunctionnormalizedsothat u(€5)=0and u(€40)=1and v :X→ℝisaweightingfunctionsatisfying v(€5)=1and v(€40)=1.Therearefour subjectiveparameterstobeestimatedinWU: u(€20), u(€25), v(€20)and v(€25).

EUT is nested within WU withtwo parameter restrictions: v(€20 )= 1and v(€25 )= 1. Seventh,weconsiderquadraticutility(QU)theoryproposedbyChewet al.(1991).InQUtheutilityoflottery Lisgivenby

(7) U(L)=∑ x∈X ∑y∈X L(x)— L(y)— φ(x,y), wherefunction φ:X×X→ℝisnormalizedsothat φ(€5,€5)=0and φ(€40,€40)=1. ThereareeightsubjectiveparameterstobeestimatedinQU.EUTisnested withinQUwithsixparameterrestrictions: φ(x,y)=0.5 u(x)+0.5 u(y). Eighth,weconsiderdisappointmentaversion(DA)theoryproposedby Gul(1991).InDAtheutilityoflottery Lisgivenby L(€20)— u(€20)—(1+ β)+ L(€25)— u(€25)—(1+ β)+ L(€40) ,if0≤ U(L)≤ u(€20)  1+ β—[ L(€5)+ L(€20)+ L(€25)]  L(€20)— u(€20)—(1+ β)+ L(€25)— u(€25)+ L(€40) (8) U(L)= ,if u(€20)≤ U(L)≤ u(€25)  1+ β—[ L(€5)+ L(€20)]  L(€20)— u(€20)+ L(€25)— u(€25)+ L(€40) ,if u(€25)≤ U(L)≤1  1+ β—L(€5) where β>1isaparametercapturingdisappointmentaversionorseeking. TherearethreesubjectiveparameterstobeestimatedinDA: u(€20), u(€25) and β.EUTisnestedwithinDAwithoneparameterrestriction: β=0. Ninth,weconsiderprospectivereference(PR)theoryproposedby Viscusi(1989).InPRtheutilityoflottery Lisgivenby

(9) U(L)=λ—∑ x∈X L(x)— u(x)+(1λ)—∑ x∈X sign (L(x))— u(x)/∑ x∈X sign (L(x)), where u :X→ℝisutilityfunctionnormalizedsothat u(€5)=0and u(€40)=1, λ∈[0,1], sign (q)=1if q>0and sign (q)=0if q=0.Therearethreesubjective parameterstobeestimatedinPR: u(€20), u(€25)andλ.EUTisnestedwithinPR withoneparameterrestriction:λ=1. Tenth,weconsiderthepossibilityofdecisionstobedrivenbysome simpleheuristic.Atleasttwoobservationsfromourexperimentandearlier studies(HeyandOrme,1994;Hey,2001)pointinthisdirection.Ontheone hand,despitealargenumberofquestions,subjectscopewiththeexperiment extremelyquickly.Typically,theyneedlessthan30secondsforeachdecision. Onlyfastandfrugalheuristicscanresultinsuchspeedydecisionmaking. Ontheotherhand,whenexaminingthebestfittingparametersofEUT andRDUwenoticedaninterestingfact.Quiteafewsubjectsbehavedasifthey maximizedanextremelyriskaverseutilityfunction u(€5)=0and u(€20)= u(€25) =u(€40)=1.Inotherwords,thesesubjectsapparentlyminimizedtheprobability ofthelowestoutcome.Thisistheseconddecisioncriterionintherecently proposedpriorityheuristic(Brandstätteretal.,2006).Unfortunately,the priorityheuristicitselfcannotbeestimatedonourdataset.Forexample,the priorityheuristicisinconclusiveinadecisionproblemdepictedonFigure1. Inthecontextofourexperiment,itisveryeasy(i.e.,withlittlecognitive effort)toapplythefollowingsimpleruleofthumb(abbreviatedasH): a)pickalotterywithasmallerprobabilityofthelowestoutcome€5; b)iftwolotteriesyieldthelowestoutcome€5withthesameprobability, thenpickalotterywiththehighestprobabilityofthegreatestoutcome€40. NotethatthereisnoconceptofutilityvalueinH(asitistypicalinthe psychologicalliteratureonheuristics).Therearenosubjectiveparameterstobe estimatedinH.Hisnotnestedinanyotherdecisiontheory. 3.EconometricModelofDiscreteChoice Beforepresentingoureconometricmodelofdiscretechoicebasedona latentdependentvariableweneedtointroducethefollowingnotation.Eachof 140decisionproblemsusedintheexperimentisabinarychoicebetweentwo lotteries Land R.Foranytwolotteries Land R,lottery L∨Ryieldsoutcome x∈X withaprobability

(10) min{ FL(x), FR (x)}+max{ GL(x), GR (x)}1. Lottery L∨R istheleastupperboundonlotteries Land R intermsof firstorderstochasticdominance.Lottery L∨Rstochasticallydominatesboth L and Randthereisnootherlotterythatstochasticallydominatesboth Land R butthatisstochasticallydominatedby L∨R.

Foranytwolotteries Land R,lottery L∧R yieldsoutcome x∈Xwitha probability

(11) max{ FL(x), FR (x)}+min{ GL(x), GR (x)}1. Lottery L∧Risthegreatestlowerboundonlotteries Land R intermsof firstorderstochasticdominance.Both Land Rstochasticallydominatelottery L∧Randthereisnootherlotterythatisstochasticallydominatedbyboth Land Rbutthatstochasticallydominates L∧R. Existingliterature(e.g.,HeyandOrme,1994;Hey,2001)typically employsthefollowingeconometricmodelofdiscretechoicebasedonalatent dependentvariable.Adecisionmakerchooseslottery Loverlottery Rif (12) U (L) U(R)≥ ξ, where ξisarandomvariable(withzeromean)thatisindependentlyand identicallydistributedacrossalllotterypairs.Model(12)hasatleastthree shortcomings: a)thedistributionofrandomerror ξisaffectedbyarbitraryaffine transformationofutilityfunction; b)standardmicroeconomicnotionofriskaversionisnotdefined(see Wilcox,2011); c)firstorderstochasticdominanceisviolated. Otherexistingmodelsofprobabilisticchoicesharesomeofthese shortcomings.Forexample,problema)appliesalsotoLuce'schoicemodel (Luce,1957;HoltandLaury,2002)andthemodelofBlavatskyy(2009,2011) withanonhomogeneoussensitivityfunction φ(.).Problemc)appliesalsotoa tremblemodel(HarlessandCamerer,1994),heteroscedasticFechnermodel (e.g.,Hey,1995;BuschenaandZilberman,2000;Blavatskyy,2007)anda contextualutilitymodelofWilcox(2008,2010). Anotherpopulareconometricmodelisarandomapproach (e.g.,Falmagne,1985;LoomesandSugden,1995)includingrandomutility (e.g.,GulandPesendorfer,2006).Unfortunately,randompreference/utility approachallowsforintransitivechoicecycles(similartotheCondorcet's ).Suchcyclesarenormativelyunappealingandrarelyobservedinthe data( e.g.,Rieskampetal.,2006,p.648). Inthispaperweuseamodificationofmodel(12)whichavoidsproblems a)c).First,considerthecasewhenlottery Lstochasticallydominateslottery R. Inthiscase, U(L) U(R)= U(L∨R) U(L∧R).Thus,toavoidviolationsof stochasticdominance,weneedtomakesurethattherealizationofarandom variable ξisnevergreaterthanthedifference U(L∨R) U(L∧R).Inotherwords, inequality(12)mustbealwayssatisfiedif Lstochasticallydominates R.Thus, stochasticdominanceimposesanupperboundonpossibleerrors: (13) ξ≤ U(L∨R) U(L∧R). Second,considerthecasewhen Rstochasticallydominates L.Inthis case, U(L) U(R)= U(L∧R) U(L∨R).Toavoidviolationsofstochastic dominance,weneedtomakesurethattherealizationofarandomvariable ξis neverlessthanthedifference U(L∧R) U(L∨R).Inotherwords,inequality(12) mustalwaysholdwithareversedsignif Rstochasticallydominates L.Thus, stochasticdominancealsoimposesalowerboundonpossibleerrors: (14) ξ≥ U(L∧R) U(L∨R). Inequalities(13)and(14)implythatrandomvariable ξmustbe distributedonaboundedinterval.Ingeneral,thisintervalvariesacrosslottery pairs.Thus,randomvariable ξcannotbeindependentlyandidentically distributedacrossalllotterypairs.Yet,itispossibletowriterandomerror ξas ε—[ U(L∨R) U(L∧R)].Inequalities(13)and(14)arethenbothsatisfiedifrandom variable εisindependentlyandidenticallydistributedontheinterval[1,1]. Notethatwealsosolveshortcominga)ofmodel(12).Multiplyingutility function U(.)byanarbitrarypositiveconstantdoesnotaffectthedistributionof randomerror ε. Tosummarize,weusethefollowingeconometricmodelofdiscrete choice.Adecisionmakerchooseslottery Loverlottery Rif (15) U(L) U(R)≥ ε—[ U(L∨R) U(L∧R)], where εisarandomvariablesymmetricallydistributedaroundzeroonthe interval[1,1].Let Φ:[1,1]→[0,1]bethecumulativedistributionfunctionof randomerror ε.Adecisionmakerthenchooses Lover Rwithprobability(16).  U(L) U(R)  (16) P (L,R )= Φ    U(L∨R) U(L∧R) 

Weassumethat Φ( v)= Iη,η(0.5+0.5 v)forall v∈[1,1],where Iη,η(.)isthe cumulativedistributionfunction( aka theregularizedincompletebetafunction) ofasymmetricbetadistributionwithparameters ηand η.Betadistributionis quiteflexibleandincludestheuniformdistribution( η=1),unimodal distribution( η>1)andbimodal(Ushaped)distribution( η<1)asspecialcases.

Subjectiveparameter η∈ℝ +canbeinterpretedasameasureofnoise.If η→+∞ thenmodel(16)convergestoadeterministicdecisiontheory. Wecanusemodel(16)forestimatingalldecisiontheoriesconsideredin section2exceptforasimpleheuristicHwhichlacksutilityfunction U(.).Since Halreadyspecifiesadeterministicchoicerule,wecaneasilyextenditintoa modelofprobabilisticchoiceasfollows.Adecisionmakerchooseslottery L overlottery Rwithprobability(17). η, if L(€5)< R (€5) or L(€5)= R (€5)and L(€40)> R (€40) (17) P (L,R )=  1 η, if L(€5)> R (€5) or L(€5)= R (€5)and L(€40)< R (€40)

Again,subjectiveparameter η∈[0.5,1]canbeinterpretedasameasure ofnoise.If η=1thenadecisionmakerliteraryappliesheuristicHinevery decisionproblem.If η=0.5thenadecisionmakerchoosesatrandom. 4.EstimationProcedure Estimationisdoneseparatelyforeachsubject.Subjectiveparametersof tendecisiontheoriesplusnoiseparameter ηareestimatedbymaximizingtotal loglikelihood(formulas(16)and(17)showthelikelihoodofonedecision). NonlinearoptimizationissolvedintheMatlab7.2package(basedonthe NelderMeadsimplex). Webeginbyestimatingtwodecisiontheorieswithnosubjective parameters:EVandH.Thesetwotheoriesarethencomparedintermsoftheir goodnessoffittotherevealedchoicepatternofeachsubject.WeuseVuong likelihoodratiotestforstrictlynonnestedmodels(seeVuong(1989)and AppendixA.2inLoomesetal.(2002)fortechnicaldetails).Ifoneofthe theoriesprovidesasignificantlybetterfit(at5%significancelevel)thanthe other,itistentativelylabeledasthebestdescriptorforthecorresponding subject.Iftwotheoriesdonotsignificantlydifferintermsoftheirgoodnessof fit,botharetentativelylabeledasthebestdescriptors. Next,weconsiderEUTandYandcomparetheirgoodnessoffitwiththat ofthebestdescriptor(s).Weusestandardlikelihoodratiotestfornested modelsandVuonglikelihoodratiotestforstrictlynonnestedmodels.Inthe lattercase,AkaikeinformationcriterionisusedtopenalizeEUTorYfora greaternumberofparameters.IfEUT(orY)significantlyoutperformsthebest descriptor(s),ittentativelybecomesthebestdescriptor.IfbothEUTandY significantlyoutperformthebestdescriptor(s),thenEUTandYarecompared witheachotherusingVuonglikelihoodratiotestforoverlappingmodels. Finally,weconsiderallremainingnonexpectedutilitytheoriesfrom section2andrepeatthesameroutineasforEUTandY.Attheendofthis exercise,foreachsubjectweidentifyoneorseveraldecisiontheoriessuchthat noneoftheremainingtheoriesprovidesasignificantlybettergoodnessoffitto thesubject'srevealedchoicepattern. 5.Results Figure2summarizesestimationresults.Therearethreebestfitting decisiontheories:EUT,RDUandH.Eachofthesetheoriescanaccountforabout aquarterofindividualchoicepatterns.Mostofchoicepatternsbest rationalizedbyEUTcanbeequallywelldescribedbyY.Someofchoicepatterns bestrationalizedbyRDUcanbeequallywelldescribedbyMV. [INSERTFIGURE2HERE] Atthesametime,therearethreedecisiontheories(EV,DAandPR)that always( i.e .,foreverysubject)provideasignificantlyworsegoodnessoffitthan someothertheory.Twomoretheories(QUandWU)providethebest descriptiononlyforoneortwosubjects.Thus,wecanconfidentlydeleteEV, DA,PR,QUandWUfromthelistofpromisingdescriptivedecisiontheories. [INSERTFIGURE3HERE] Figure3showsestimatedbestfittingBernoulliutilityfunctionsinEUT forthosesubjectsforwhomEUTturnedouttobethebestdescriptingdecision theory.Formostofthesesubjects,thebestfittingutilityfunctionisconcave, i.e.subjectsrevealriskaversebehavior.Onlyonesubjectbehavedasif maximizingaconvexutilityfunction. [INSERTFIGURE4HERE] Figure4showsestimatedbestfittingBernoulliutilityfunctionsinRDU forthosesubjectsforwhomRDUturnedouttobethebestdescriptingdecision theory.Formanysubjectsthebestfittingutilityfunctionisconcavebutwe observealotofheterogeneity.Threesubjects(#3,#12and#15)behaveasif maximizinganextremelyriskaverseutilityfunction u(€5)=0and u(€20)= u(€25)= u(€40)=1.Theyapparentlyminimizedtheprobabilityofthelowest outcomebutusedsomeotherheuristicthanH. [INSERTFIGURE5HERE] Figure5showsestimatedbestfittingprobabilityweightingfunctionsin RDU.Formanysubjectsthebestfittingprobabilityweightingfunctionturns outtobeaconcavefunction.Onlyonesubject(#20)revealedaconvex probabilityweightingfunction.AtextbookinverseSshapedprobability weightingfunctionisfoundonlyforonesubject(#10).Twosubjects(#12and #34)behaveasiftheyhaveanSshapedprobabilityweightingfunction. 6.Conclusion Thispaperfindsclearevidencethatpeopleusefastandfrugalheuristics whenmakingdecisionsunderrisk.Specifically,weidentifiedonesimple heuristic.Firstandforemost,peopleminimizetheprobabilityoftheworst outcome.Ifriskyalternativesyieldthesamechanceoftheworstoutcome,then peoplemaximizetheprobabilityofthebestoutcome.For10outof38subjects (26.32%)thissimpleheuristiccorrectlypredictsatleast130outof140revealed choices(92.86%).Foronesubject(#6)itevenrationalizes139outof140 revealedchoices(99.29%).Theheuristicachievessuchastonishinggoodnessof fitdespitethefactthatithasnosubjectiveparameterstobeestimated. Havingsuccessfullyidentifiedtheruleofthumbthatpeopleuse,we shouldnotbesurprisedthatitfitsthedatabetterthansophisticated mathematicaldecisiontheoriesdo.Yet,therealchallengeistofindwhich heuristicpeopleuse.Differentpeoplemightusedifferentheuristicsinthesame decisionproblem.Eventhesameindividualislikelytousedifferentheuristics indifferentdecisioncontexts.Thus,behavioralshouldperhaps answerthequestion:"Whichheuristic?"ratherthan"Whichdecisiontheory?".In themeanwhile,whenacorrectheuristicinaspecificdecisioncontextisnot known,assumingthatpeoplebehaveasifmaximizingutilityfunctionaccording tosomemathematicaldecisiontheoryremainsthesecondbestsolution. Amongstandarddecisiontheories,expectedutilityandrankdependent utilityprovidethebestgoodnessoffit.Eachtheorycanbestdescribethe revealedchoicesofaboutaquarterofallsubjects.Mostofchoicepatternsbest rationalizedbyexpectedutilitytheorycanbeequallywelldescribedbyYaari's dualmodel.Someofchoicepatternsbestrationalizedbyrankdependentutility canbeequallywelldescribedbymodifiedmeanvarianceapproach.Atthe sametime,maximizationofexpectedvalue,Gul'sdisappointmentaversion theoryandprospectivereferencetheorydotnotfitanyofrevealedchoice patterns.Onecansafelyconcludethatallthreebelongtotheshelvesofthe historyofeconomicthought. Anewexperimentaldesignintroducedinthispapercanbeusedfor nonparametricestimationofvariousdecisiontheories(cf.Figure4and5for rankdependentutility).Traditionalmethodsofutilityelicitationrelyona revealedindifferencerelation( e.g .,WakkerandDeneffe,1996).Yet,thereisno incentivecompatiblemethodtodetectindifferenceusingonlyasmallnumber ofsimplebinarychoicequestions.Thus,utilityelicitationistypicallyconducted underhypotheticalincentives( e.g .,Abdellaoui,2000;BleichrodtandPinto, 2000).Ourexperimentaldesignovercomesthisproblem.Insteadoflookingfor fewhardtodetectindifferencepoints,weasksubjectsmanybinarychoice questionsthatimposeamaximumnumberofconstraintsonfewunknown subjectiveparameters.Thelatterarethenestimatedbyeconometricmethods. References Abdellaoui,Mohammed(2000)"Parameterfreeelicitationofutilityand probabilityweightingfunctions"ManagementScience46,1497–1512 Allais,Maurice(1953)“LeComportementdel’HommeRationneldevant leRisque: Critique desPostulatesetAxiomesdel’EcoleAméricaine” Econometrica 21212121,503546 Bell,David(1982)"RegretinDecisionMakingunder" OperationsResearch 202020,96198120 Blavatskyy,Pavlo(2006)“Violationsofbetweennessorrandomerrors?” EconomicsLetters ,Vol.91,pp.3438 Blavatskyy,Pavlo(2007)“StochasticExpectedUtilityTheory” Journalof RiskandUncertainty ,Vol.34,pp.259286 Blavatskyy,Pavlo(2009)“PreferenceReversalsandProbabilisticChoice” JournalofRiskandUncertainty ,Vol.39(3),pp.237250 Blavatskyy,Pavlo(2010)“ModifyingtheMeanVarianceApproachto AvoidViolationsofStochasticDominance” ManagementScience ,56565656, 2050205 Blavatskyy,Pavlo(2011)“AModelofProbabilisticChoiceSatisfying FirstOrderStochasticDominance” ManagementScience ,forthcoming Bleichrodt,HanandJoseLuisPinto(2000)"Aparameterfreeelicitation oftheprobabilityweightingfunctioninmedicaldecisionanalysis"Management Science46,1485–1496 Brandstätter,Eduard,GerdGigerenzerandRalphHertwig(2006)"The PriorityHeuristic:MakingChoiceswithoutoffs"PsychologicalReview, Vol.113(2),pp.409432 Buschena,DavidandDavidZilberman(2000)“GeneralizedExpected Utility,HeteroscedasticError,andPathDependenceinRiskyChoice” Journalof RiskandUncertainty ,Vol. 20,pp.6788 Chew,SooHong(1983)"AGeneralizationoftheQuasilinearMeanwith ApplicationstotheMeasurementofIncomeInequalityandDecisionTheory ResolvingtheAllaisParadox" Econometrica 51515151,10651092 Chew,SooHong,LarryG.EpsteinandUziSegal(1991)"Mixture SymmetryandQuadraticUtility" Econometrica 59595959,139163 Conlisk,John(1989)“ThreeVariantsontheAllaisExample” American EconomicReview 79(3)79(3)79(3),392407 Falmagne,JeanClaude(1985)“ElementsofPsychophysicalTheory” OxfordUniversityPress,NewYork Fechner,Gustav(1860)“ElementsofPsychophysics”NewYork:Holt, RinehartandWinston Fishburn,Peter(1982)"NontransitiveMeasurableUtility" Journalof MathematicalPsychology 26262626,3167 Gul,Faruk(1991)"ATheoryofDisappointmentAversion" Econometrica Vol.59,pp.667686 Gul,FarukandWolfgangPesendorfer(2006)“RandomExpectedUtility” Econometrica ,Vol.71(1),pp.121146 Harless,DavidandColinCamerer(1994)“ThePredictiveUtilityof GeneralizedExpectedUtilityTheories” Econometrica 62626262:12511289 Hey,John(1995)“Experimentalinvestigationsoferrorsindecision makingunderrisk” EuropeanEconomicReview ,Vol.39,pp.633640 Hey,John(2001)“Doesrepetitionimproveconsistency?” Experimental Economics ,Vol.4,pp.554 Hey,JohnandChrisOrme(1994)"InvestigatingGeneralisationsof ExpectedUtilityTheoryUsingExperimentalData" Econometrica ,Vol.62,pp. 12911326 Holt,CharlesandSusanLaury(2002)"RiskAversionandIncentive Effects" AmericanEconomicReview 929292(5),1644165592 Loomes,Graham(2005)“Modellingthestochasticcomponentof behaviourinexperiments:someissuesfortheinterpretationofdata” ExperimentalEconomics ,Vol.8,pp.301323 Loomes, GrahamandRobertSugden (1982) "Regrettheory: An alternativetheoryofrationalchoiceunderuncertainty" EconomicJournal ,92929292(4444), 805–24 Loomes,GrahamandRobertSugden(1995)“Incorporatingastochastic elementintodecisiontheories” EuropeanEconomicReview ,Vol.39,pp.641 648 Loomes,Graham,PeterMoffattandRobertSugden(2002)“A microeconomictestofalternativestochastictheoriesofriskychoice” Journalof RiskandUncertainty ,Vol.24,pp.103130 Luce,Duncan(1959)“Individualchoicebehavior”NewYork:Wiley Quiggin,John(1981)“Riskperceptionandriskaversionamong Australianfarmers” AustralianJournalofAgriculturalRecourseEconomics ,Vol. 25,pp.160169 Rieskamp,Joerg,JeromeBusemeyerandBarbaraMellers(2006) "ExtendingtheBoundsof:EvidenceandTheoriesofPreferential Choice" JournalofEconomicLiterature ,Vol.XLIV,pp.631661 Tversky,AmosandDanielKahneman(1992)“Advancesinprospect theory:Cumulativerepresentationofuncertainty” JournalofRiskand Uncertainty 5555,297323 Viscusi,Kip(1989)“ProspectiveReferenceTheory:Towardan Explanationofthe” JournalofRiskandUncertainty 2222,235264 Vuong,Quang(1989)“Likelihoodratiotestsformodelselectionand nonnestedhypotheses” Econometrica ,Vol. 57,pp.307333 WakkerP.PeterandDanielDeneffe(1996)“ElicitingvonNeumann– Morgensternutilitieswhenprobabilitiesaredistortedorunknown”Management Science42,1131–1150 Wilcox,Nathaniel(2008)“Stochasticmodelsforbinarydiscretechoice underrisk:Acriticalprimerandeconometriccomparison”inJ.C.CoxandG.W. Harrison,eds., ResearchinExperimentalEconomicsVol.12:RiskAversionin Experiments pp.197292.Bingley,UK:Emerald Wilcox,Nathaniel(2011)“‘Stochasticallymoreriskaverse:’Acontextual theoryofstochasticdiscretechoiceunderrisk” Journalof forthcoming Yaari,Menahem(1987)“TheDualTheoryofChoiceunderRisk” Econometrica 55555555,95115