Molecular Phylogeny of Artemisia (Asteraceae-Anthemideae)

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Phylogeny of Artemisia (Asteraceae-Anthemideae) Plant Ecology and Evolution 152 (3): 507–520, 2019 https://doi.org/10.5091/plecevo.2019.1583 REGULAR PAPER Molecular phylogeny of Artemisia (Asteraceae-Anthemideae) with emphasis on undescribed taxa from Gilgit-Baltistan (Pakistan) based on nrDNA (ITS and ETS) and cpDNA (psbA-trnH) sequences Adil Hussain1,*, Daniel Potter2, Sangtae Kim3, Muhammad Q. Hayat4 & Syed A.I. Bokhari1 1Department of Biological Sciences, International Islamic University Islamabad, 44000 Pakistan 2Department of Plant Sciences, College of Agricultural and Environmental Sciences, University of California Davis, 95616 USA 3School of Biological Sciences and Chemistry, Sungshin Women’s University, Korea 4Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology Islamabad, 44000 Pakistan *Corresponding author: [email protected] Background – Gilgit-Baltistan, the Northeast region of Pakistan, is well known for its floristic diversity, including members of the genus Artemisia. Artemisia is a large, taxonomically complex genus including ~500 species of both herbs and shrubs. This study was conducted to determine the phylogenetic position of ten undescribed Artemisia taxa from northern Pakistan, using nrDNA internal transcribed spacer (ITS), external transcribed spacer (ETS) and cpDNA intergenic spacer (psbA-trnH) regions. Methods – The phylogenetic relationships of 28 taxa of Artemisia using separate and combined data sets of sequences of three markers (ITS, ETS and psbA-trnH) were analysed with maximum parsimony, maximum likelihood, and Bayesian approaches. Key results – The results resolve northeastern Pakistani Artemisia, which represent five morphologically defined subgenera, into ten major clades. Subgenera Artemisia and Absinthium are shown to be polyphyletic, while Dracunculus, Pacifica and Tridentatae appear monophyletic. All species of subgenus Seriphidium are retrieved in a single clade that also includes annual species from subgenus Artemisia. In the Flora of Pakistan, Seriphidium is described as a separate genus but in this study, Seriphidium fell within the genus Artemisia. In addition, on the basis of phylogenetic analysis, we present evidence that ten as-yet undescribed taxa are present in northeastern Pakistan based on newly recognized three groups (Groups I, II and III) of taxa within the genus Artemisia. One undescribed taxon from group I was placed within the subgenus Dracunculus clade and the remaining nine taxa from groups II and III were placed in the subgenus Absinthium clade. Morphological studies coupled with modern molecular techniques may lead to a new infrageneric classification of the genusArtemisia. It will also clarify and characterize the undescribed taxa reported in this study. Keywords – Artemisia; Asteraceae; nrDNA; cpDNA; molecular phylogeny; undescribed taxa; Gilgit- Baltistan; Pakistan. INTRODUCTION species of both herbs and shrubs (Martin et al. 2003). Several species from this genus have a noteworthy economic status The genus Artemisia (family Asteraceae; tribe Anthemideae) because they exhibit antispasmodic, antiseptic, antitumor is a large taxonomically challenging group that includes ~500 antimicrobial, antimalarial, antirheumatic and hepato-protec- © 2019 The Authors. This article is published and distributed in Open Access under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original work (author and source) is properly cited. Plant Ecology and Evolution is published by Meise Botanic Garden and Royal Botanical Society of Belgium ISSN: 2032-3913 (print) – 2032-3921 (online) Pl. Ecol. Evol. 152 (3), 2019 tive properties (Terra et al. 2007; Hussain et al. 2017). The as a subgenus of Artemisia. Mahmood et al. (2011) carried genus is distributed primarily in the northern hemisphere’s out a molecular phylogenetic study of Artemisia species col- temperate zones; a few Artemisia species are also found in lected from different localities of Pakistan based on restric- the southern hemisphere (Oberprieler et al. 2009). The centre tion fragment length polymorphism of the chloroplast rps11 of diversity for Artemisia is Central Asia. The earliest micro- gene. They provided evidence that hybridization occurred at fossils of the genus are known from the Miocene radiation an infrageneric level during the evolutionary process, due to (Wang 2004) and the Eocene end (Zaklinskaja 1957). which the natural classification of the genus is still a chal- Since many years, the infrageneric classification of Ar- lenging problem. temisia has offered a challenge for researchers dealing with Here, we determine the phylogenetic position of ten unde- taxonomy. These historical studies were well acknowledged scribed Artemisia taxa from northern Pakistan, using nrDNA in the previous revelations of Torrell et al. (1999) and Vallès internal transcribed spacer (ITS), external transcribed spacer & McArthur (2001). From the studies of Tournefort (1700) (ETS) and cpDNA intergenic spacer (psbA-trnH) regions. to Bremer (1994) and Ghafoor (2002), all investigations re- garding the classification and taxonomy of Artemisia were MATERIALS AND METHODS based on capitulum morphology. They documented four subgenera in the genus Artemisia (s. lat.) i.e. Artemisia, Ab- Study area sinthium, Seriphidium and Dracunculus as shown in table 1. During the course of this period, the position of Seriphidium Gilgit-Baltistan is a northeastern region of Pakistan situated between 74°–77.5°E and 34.6°–37.4°N, covering an area of as a separate genus or a subgenus of Artemisia (s. lat.) per- 2 sisted and was a subject of discussion among taxonomists. about 45 224 km . The altitude of this region ranges from For example, the generic recognition was implemented by ±1400 m to 8611 m. The area is divided into seven main Ling (1982), Bremer & Humphries (1993), Bremer (1994), districts, i.e. Gilgit, Skardu, Hunza-Nagar, Astore, Diamer, Ling (1995) and Ghafoor (2002), whereas subgeneric status Ghizer and Ghanche. This region includes world-renowned was followed by Kornkven et al. (1998, 1999), Torell et al. mountain ranges like the Karakorum, Hindu Kush and the (1999), Watson et al. (2002) and D’Andrea et al. (2003). Himalayas. There are several peaks with heights above 7000 m, including Godwin Austin (K-2, 8611 m), Rakaposhi Kornkven et al. (1998) provided a pioneering molecular (7788 m) and Deran peak (7268 m). The world’s largest phylogenetic study of Artemisia based on nrDNA internally glaciers are also found in this region, such as Baltoro Gla- transcribed spacer (ITS) with the aim of resolving its inter- cier, which extends for about 62 km with an area of 529 km2 specific associations. In their study, they supported the North (Anonymous 2003). This area is well known for a great di- American origin of Tridentatae. They concluded that Triden- versity of plants (Shinwari 2010) and is a centre for tradi- tatae could be restricted as a monophyletic group with the tional medicinal herbs (Shinwari & Gilani 2003). omission of A. palmeri A.Gray and A. bigelovii A.Gray. Sub- sequently, Torrell et al. (1999) revealed the phylogeny of ge- nus based on ITS sequences, in which they found support for Plant collection and sampling five subgenera of Artemisia: Artemisia, Seriphidium, Absin- The plant samples employed for molecular phylogenetic thium, Dracunculus and Tridentatae. These results were ad- analysis were taken from both herbarium specimens and sil- ditionally confirmed by Watson et al. (2002) and followed by ica gel dried samples collected during expeditions to various numerous other molecular phylogenetic revisions. The de- parts of Gilgit-Baltistan region of Pakistan as already given tailed history of molecular phylogenetic efforts on the genus in our preceding paper (Hussain et al. 2019). Provenance of is provided in table 2. These works here surveyed proposed the different populations of Artemisia studied from Northern numerous taxonomic reorganizations for the subgeneric clas- Pakistan, with their collection details are listed in table 3. sification based on molecular data and related the latter’s Thus, covering all the Northeastern Pakistani endemic Arte- outcomes with the traditional morphology-based classifica- misia taxa representing five subgenera of the genus Artemi- tions (table 1). However, the infrageneric classification has sia, including Artemisia, Absinthium, Dracunculus, Pacifica not yet been entirely fixed. This is because of the inconsist- and Seriphidium, were included, except the North American ent assignments of some taxa during phylogenetic examina- endemic A. tridentata Nutt. of which we could not get the tions with respect to the classification based on morphology. material. In the flora of Pakistan, Ghafoor (2002) treatedArtemisia Voucher specimens were deposited in the herbarium of (s. lat.) by two separate genera, Artemisia, with 25 species, Pakistan Museum of Natural History (PMNH) and the de- and Seriphidium, with 13 species. All these 38 species are tails are given in table 3. Earlier published ITS (Internal tran- recorded from the arid and semi-arid areas of Baluchistan, scribed spacer), ETS (External transcribed spacer) of nrDNA Khyber Pakhtunkhwa, North Punjab and the temperate areas and psbA-trnH (Intergenic spacer) of cpDNA sequences rep- of Gilgit-Baltistan and Kashmir territory (Ghafoor 2002). resenting all subgenera of the genus Artemisia were retrieved Within Pakistan, the
Recommended publications
  • Combinative Effect of Salvia Sclarea L., Artemisia Annua and Dracocephalum Heterophyllum B
    Vol. 7(26), pp. 1916-1925, 10 July, 2013 DOI: 10.5897/JMPR12.1043 ISSN 1996-0875 ©2013 Academic Journals Journal of Medicinal Plants Research http://www.academicjournals.org/JMPR Full Length Research Paper Combinative effect of Salvia sclarea L., Artemisia annua and Dracocephalum heterophyllum B. essential oils against Salmonella enterica in raw chicken Richa Arora, Girish Korekar, Konchok Targais, Ravi B Srivastava and Tsering Stobdan* Defence Institute of High Altitude Research, Defence R & D Organisation, Leh-Ladakh, Jammu & Kashmir, India. Accepted 9 July, 2013 Antibacterial properties of essential oils (EOs) extracted from Salvia sclarea, Artemisia annua and Dracocephalum heterophyllum against 17 food borne pathogens was studied. EOs of the three plants showed a broad spectrum of antimicrobial activity with different degrees of inhibition against the tested Gram-positive and Gram-negative bacteria. EOs of Salvia and Dracocephalum depicted bactericidal mode of action while that of Artemisia inhibited the bacteria with bacteriostatic mode. Salmonella enterica MTCC 733 was the most sensitive strain to Salvia, Artemisia and Dracocephalum EOs with minimum inhibitory concentration (MIC) values of 2000, 2000 and 8000 µg/ml, respectively. The antimicrobial activity of EOs individually and in combinations based on their respective MIC values against S. enterica was tested in raw chicken. Treatment of food sample with 20 times MIC value of S. sclarea, A. annua and D. heterophyllum EOs individually caused reduction of bacterial load to 3.36, 3.64 and 4.22 log cfu/g after 180 min. In contrast the bacterial cell loads reduced to an undetectable level by the combinative effect ( Salvia + Dracocephalum and Salvia + Artemisia ) of EOs at MIC value after 120 and 180 min, respectively.
    [Show full text]
  • Achillea Millefolium L
    SPECIES Achillea millefolium L. Tribe: Anthemideae Family: Asteraceae USDA CODE: Order: Asterales Subclass: Asteridae ACMI2 Class: Magnoliopsida FEIS CODE: D. Kopp 2009 San Bernardino Mtns. ACHMIL A. Montalvo 2010 Monterey Co. coast; tripinnate, pubescent form A. Montalvo 2010 Monterey Co. Subspecific taxa JepsonOnline 2010 and FNA 2010 do not recognize subspecific taxa of A. millefolium . The USDA PLANTS database (viewed Sept. 24, 2010) recognizes 12 subspecific taxa as occurring in North America: Taxon introduced and naturalized in North America (thought to be native to Europe): NRCS CODES: 1. A. m. L. var. millefolium 1. ACMIM2 Taxa native to California: 2. ACMIA 2. A. m. L. var. alpicola (Rydb.) Garrolt 3. ACMIA2 3. A. m. L. var. arenicola (Heller) Nobs 4. ACMIC 4. A. m. L. var. californica (Pollard) Jepson 5. ACMIG 5. A. m. L. var. gigantea (Pollard) Nobs 6. ACMIO 6. A. m. L. var. occidentalis (DC.) Hyl. 7. ACMIP 7. A. m. L. var. pacifica (Rydb.) G.N.Jones 8. ACMIP2 8. A. m. L. var. puberula (Rydb.) Nobs. 9. ACMIB Additional taxa outside California (mostly northerly): 10. ACMIL2 9. A. m. L. var. borealis (Bong.) Farw. 11. ACMIM5 10. A. m. L. var. litoralis (Ehrend.) Nobs 12. ACMIN 11. A. m. L. var. megacephala (Raup) Bolvin. 12. A. m. L. var. nigrescens E. Mey. Synonyms (USDA PLANTS) 2. A. alpicola (Rydb.) Rydb.; A. fusca Rydb.; A. lanulosa Nutt. ssp. alpicola (Rydb.) D.D. Keck; A. l. Nutt. var. alpicola Rydb.; A. m. L. var. fusca (Rydb.) G.N. Jones; A. subalpina Greene Taxa numbered as above 3.
    [Show full text]
  • Section 5 References
    Section 5 References 5.0 REFERENCES Akçakaya, H. R. and J. L. Atwood. 1997. A habitat-based metapopulation model of the California Gnatcatcher. Conservation Biology 11:422-434. Akçakaya, H.R. 1998. RAMAS GIS: Linking landscape data with population viability analysis (version 3.0). Applied Biomathematics, Setaauket, New York. Anderson, D.W. and J.W. Hickey. 1970. Eggshell changes in certain North American birds. Ed. K. H. Voous. Proc. (XVth) Inter. Ornith. Congress, pp 514-540. E.J. Brill, Leiden, Netherlands. Anderson, D.W., J.R. Jehl, Jr., R.W. Risebrough, L.A. Woods, Jr., L.R. Deweese, and W.G. Edgecomb. 1975. Brown pelicans: improved reproduction of the southern California coast. Science 190:806-808. Atwood, J.L. 1980. The United States distribution of the California black-tailed gnatcatcher. Western Birds 11: 65-78. Atwood, J.L. 1990. Status review of the California gnatcatcher (Polioptila californica). Unpublished Technical Report, Manomet Bird Observatory, Manomet, Massachusetts. Atwood, J.L. 1992. A maximum estimate of the California gnatcatcher’s population size in the United States. Western Birds. 23:1-9. Atwood, J.L. and J.S. Bolsinger. 1992. Elevational distribution of California gnatcatchers in the United States. Journal of Field Ornithology 63:159-168. Atwood, J.L., S.H. Tsai, C.H. Reynolds, M.R. Fugagli. 1998. Factors affecting estimates of California gnatcatcher territory size. Western Birds 29: 269-279. Baharav, D. 1975. Movement of the horned lizard Phrynosoma solare. Copeia 1975: 649-657. Barry, W.J. 1988. Management of sensitive plants in California state parks. Fremontia 16(2):16-20. Beauchamp, R.M.
    [Show full text]
  • Types of Sagebrush Updated (Artemisia Subg. Tridentatae
    Mosyakin, S.L., L.M. Shultz & G.V. Boiko. 2017. Types of sagebrush updated ( Artemisia subg. Tridentatae, Asteraceae): miscellaneous comments and additional specimens from the Besser and Turczaninov memorial herbaria (KW). Phytoneuron 2017-25: 1–20. Published 6 April 2017. ISSN 2153 733X TYPES OF SAGEBRUSH UPDATED (ARTEMISIA SUBG. TRIDENTATAE , ASTERACEAE): MISCELLANEOUS COMMENTS AND ADDITIONAL SPECIMENS FROM THE BESSER AND TURCZANINOV MEMORIAL HERBARIA (KW) SERGEI L. MOSYAKIN M.G. Kholodny Institute of Botany National Academy of Sciences of Ukraine 2 Tereshchenkivska Street Kiev (Kyiv), 01004 Ukraine [email protected] LEILA M. SHULTZ Department of Wildland Resources, NR 329 Utah State University Logan, Utah 84322-5230, USA [email protected] GANNA V. BOIKO M.G. Kholodny Institute of Botany National Academy of Sciences of Ukraine 2 Tereshchenkivska Street Kiev (Kyiv), 01004 Ukraine [email protected] ABSTRACT Corrections and additions are provided for the existing typifications of plant names in Artemisia subg. Tridentatae . In particular, second-step lectotypifications are proposed for the names Artemisia trifida Nutt., nom. illeg. (A. tripartita Rydb., the currently accepted replacement name), A. fischeriana Besser (= A. californica Lessing, the currently accepted name), and A. pedatifida Nutt. For several nomenclatural types of names listed in earlier publications as "holotypes," the type designations are corrected to lectotypes (Art. 9.9. of ICN ). Newly discovered authentic specimens (mostly isolectotypes) of several names in the group are listed and discussed, mainly based on specimens deposited in the Besser and Turczaninov memorial herbaria at the National Herbarium of Ukraine (KW). The Turczaninov herbarium is particularly rich in Nuttall's specimens, which are often better represented and better preserved than corresponding specimens available from BM, GH, K, PH, and some other major herbaria.
    [Show full text]
  • What's the Difference Between Sage and Sagebrush?
    Sagebrush in Prisons Project Newsletter Vol 1, Issue 7, September 2019 Sagebrush in Prisons is an ecological education program for incarcerated adults and youth, a partnership of the Institute for Applied Ecology, Bureau of Land Management, and State and Federal Correctional Institutions and is a part of the Sustainability in Prisons Project. What should we be doing? What’s the difference between sage and sagebrush? Written by Oregon SPP staff Sagebrush Crew to-do list: One of the most common misconceptions about the Sagebrush in Prisons program is about which species of plant we are growing. People might say: ⬜ Water daily-make sure the “Oh, you’re growing sage? I love sage, especially on potatoes or in conetainers in the corners get marinara.” Then you have to explain that “No, we aren’t growing sage the water too! spice, but sagebrush the high desert shrub.” Sagebrush and sage aren’t even related, but their common names confuse people into thinking that ⬜ Fertilize once a week- make they are. Culinary sage, or Salvia officinalis, is an herb native to the sure you rinse the leaves Mediterranean region, and is used as a spice and for its medicinal afterwards to prevent burning! properties. Sage is a member of the mint family (Lamiaceae, to botanists). But sagebrush, Artemisia tridentata, is in another family altogether, the sunflower family (Asteraceae). But of course sagebrush flowers look ⬜ Test soil pH every other nothing like sunflowers, and in fact they are wind pollinated instead of week- the ideal range is 5-8. insect pollinated. The Artemisia genus is named after Artemis, the Greek Add lime if pH is 5.0 or below.
    [Show full text]
  • On Coccidiosis in Chickens
    2 Egypt. J. Vet. Sci. Vol. 45-46, pp. 11- 24 (2014 - 2015) Clinicopathological Studies on the Effect of Artemisia cina (Sheih Baladi) on Coccidiosis in Chickens Fatma M.A. Youssef *, Hala A. Abd El-Hamid* and Effat A. El Sheshtawy** *Department of Clinical Pathology, Animal Health Research Institute and **Department of Poultry, Animal Health Research Institute, Ministry of Agriculture, Cairo, Egypt. HIS EXPERIMENT was conducted to determine the effect of …….T Artemisia cina on coccidiosis in poultry. A total of one hundred and fifty broiler chicks were divided to five equal groups, first group kept as control, second group was orally infected with 1X104of Eimeria tenella oocysts. Third group was infected with the same dose of Eimeria tenella and treated with Artemisia water extract. Fourth group was infected with the same dose of Eimeria tenella and treated by Toltrazuril and fifth group treated by Artemisia and non- infected. The birds of all groups were kept under observation for 3 weeks post infection. Group II showed increased mortality rate (16.7%), with very high oocyste shedding 12 X 104 at the 6thday post infection, increased total leucocytic count mainly heterophil, monocyte & eosinophil, and reduction of body weight as well as anemia. Liver function test showed increased in the activity of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) accompanied with hypoproteinemia and hypoalbuminemia. While, kidney function test showed increase in the level of uric acid and creatinine. Artemisia water extract treatment relatively minimize the infection, lowered mortality rate and oocyste shedding after and returned the liver and kidney function activities to normal level gradually as nearly as Toltrazuril.
    [Show full text]
  • The Genus Artemisia: a 2012–2017 Literature Review on Chemical Composition, Antimicrobial, Insecticidal and Antioxidant Activities of Essential Oils
    medicines Review The Genus Artemisia: A 2012–2017 Literature Review on Chemical Composition, Antimicrobial, Insecticidal and Antioxidant Activities of Essential Oils Abhay K. Pandey ID and Pooja Singh * Bacteriology & Natural Pesticide Laboratory, Department of Botany, DDU Gorakhpur University Gorakhpur, Uttar Pradesh 273009, India; [email protected] * Correspondence: [email protected]; Tel.: +91-941-508-3883 Academic Editors: Gerhard Litscher and Eleni Skaltsa Received: 8 August 2017; Accepted: 5 September 2017; Published: 12 September 2017 Abstract: Essential oils of aromatic and medicinal plants generally have a diverse range of activities because they possess several active constituents that work through several modes of action. The genus Artemisia includes the largest genus of family Asteraceae has several medicinal uses in human and plant diseases aliments. Extensive investigations on essential oil composition, antimicrobial, insecticidal and antioxidant studies have been conducted for various species of this genus. In this review, we have compiled data of recent literature (2012–2017) on essential oil composition, antimicrobial, insecticidal and antioxidant activities of different species of the genus Artemisia. Regarding the antimicrobial and insecticidal properties we have only described here efficacy of essential oils against plant pathogens and insect pests. The literature revealed that 1, 8-cineole, beta-pinene, thujone, artemisia ketone, camphor, caryophyllene, camphene and germacrene D are the major components in most of the essential oils of this plant species. Oils from different species of genus Artemisia exhibited strong antimicrobial activity against plant pathogens and insecticidal activity against insect pests. However, only few species have been explored for antioxidant activity. Keywords: Artemisia; essential oil; chemical composition; antimicrobial; insecticidal; antioxidant 1.
    [Show full text]
  • Phylogenetic Taxonomy of Artemisia L. Species from Kazakhstan Based On
    PROCEEDINGS OF THE LATVIAN ACADEMY OF SCIENCES. Section B, Vol. 72 (2018), No. 1 (712), pp. 29–37. DOI: 10.1515/prolas-2017-0068 PHYLOGENETIC TAXONOMY OF ARTEMISIA L. SPECIES FROM KAZAKHSTAN BASED ON MATK ANALYSES Yerlan Turuspekov1,5, Yuliya Genievskaya1, Aida Baibulatova1, Alibek Zatybekov1, Yuri Kotuhov2, Margarita Ishmuratova3, Akzhunis Imanbayeva4, and Saule Abugalieva1,5,# 1 Institute of Plant Biology and Biotechnology, 45 Timiryazev Street, Almaty, KAZAKHSTAN 2 Altai Botanical Garden, Ridder, KAZAKHSTAN 3 Karaganda State University, Karaganda, KAZAKHSTAN 4 Mangyshlak Experimental Botanical Garden, Aktau, KAZAKHSTAN 5 Al-Farabi Kazakh National University, Biodiversity and Bioresources Department, Almaty, KAZAKHSTAN # Corresponding author, [email protected] Communicated by Isaak Rashal The genus Artemisia is one of the largest of the Asteraceae family. It is abundant and diverse, with complex taxonomic relations. In order to expand the knowledge about the classification of Kazakhstan species and compare it with classical studies, matK genes of nine local species in- cluding endemic were sequenced. The infrageneric rank of one of them (A. kotuchovii) had re- mained unknown. In this study, we analysed results of sequences using two methods — NJ and MP and compared them with a median-joining haplotype network. As a result, monophyletic origin of the genus and subgenus Dracunculus was confirmed. Closeness of A. kotuchovii to other spe- cies of Dracunculus suggests its belonging to this subgenus. Generally, matK was shown as a useful barcode marker for the identification and investigation of Artemisia genus. Key words: Artemisia, Artemisia kotuchovii, DNA barcoding, haplotype network. INTRODUCTION (Bremer, 1994; Torrel et al., 1999). Due to the large amount of species in the genus, their classification is still complex Artemisia of the family Asteraceae is a genus with great and not fully completed.
    [Show full text]
  • Twenty Years of Salt Marsh Succession on a Dutch Coastal Barrier Island
    Journal of Coastal Conservation 3: 9-18, 1997 © EUCC; Opulus Press Uppsala. Printed in Sweden - Twenty years of salt-marsh succession on the coastal barrier island of Schiermonnikoog - 9 Twenty years of salt marsh succession on a Dutch coastal barrier island van Wijnen*, H.J., Bakker, J.P. & de Vries, Y. Laboratory of Plant Ecology, University of Groningen, P.O. Box 14, NL-9750 AA Haren, The Netherlands; *Corresponding author; Tel. + 31 50 3632238; Fax +31 50 3632273; E-mail [email protected] Abstract. After a formerly grazed salt marsh was released ized by an increasing thickness of the clay layer towards from cattle grazing, changes in plant species composition the older zones (van Wijnen & Bakker 1997; Olff et al. were monitored for 20 yr, using vegetation maps and perma- in press). nent plots. Three areas, differing in age and nutrient status The thickness of the clay layer is positively corre- were compared. The number of plant species and plant com- lated with the total nitrogen pool (Olff et al. 1997). munities decreased. Elymus athericus (Elytrigia pungens) be- came dominant in most plant communities after 5 - 20 yr on Hence older marshes have more nitrogen in the soil and the oldest and most productive salt marsh. In younger areas it a higher above-ground standing crop (Bakker et al. 1993; took more time for E. athericus to become dominant. At least van de Koppel et al. 1996). The salt marsh on Schier- 7 cm of clay seemed to be a prerequisite for this plant species monnikoog seems to parallel the beach plain succession to increase in dominance.
    [Show full text]
  • Achene Micro-Morphology of Anthemis (Asteraceae) and Its Allies in Iran with Emphasis on Systematics
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY 1560–8530/2007/09–3–486–488 http://www.fspublishers.org Achene Micro-morphology of Anthemis (Asteraceae) and its Allies in Iran with Emphasis on Systematics ABDOLKARIM CHEHREGANI1 AND NATEGHEH MAHANFAR Laboratory of Plant, Cell and Molecular Biology, Department of Biology, Faculty of Sciences, Bu-Ali University, Hamedan, Iran 1Correspondence author’s e-mail: [email protected] ABSTRACT Anthemideae is a large tribe of Astraceae and poses difficulties in recognizing and classifying its members based on morphological characters. This research was focused on evaluating achene peculiarities for systematic purpose. Achene micro- morphological characteristics such as size, shape, papuse, sulcuse, lacune, etc., were considered useful in species recognition. Lacunas characters in each studied taxa were specific and regarded as good separator character in the studied taxa of this tribe. Based on data, Tanacetum kotschyi was considered as a problematic species that needs to be studied further. Key Words: Anthemideae; Anthemis; SEM; Achene; Systematic INTRODUCTION were deposited in Tehran University Herbarium and Bu-Ali Sina University (Table I). The achenes were coated with a Anthemideae is the seventh largest tribe of Asteraceae thin layer of gold-paladium and studied with a JEOL-840 with about 109 genera and 1740 species worldwide Scanning Electron Microscope (Japan) at Sanati Sharif (Bremer, 1994; Tahir et al., 2002). The tribe and shows a University, Tehran, Iran. Achene morphological and micro- temperate distribution (Heywood & Humphries, 1977; morphological characters such as size, shape, papuse, Bremer & Humphries, 1993; Francisco-Ortega et al., 2001). sulcuse, lacune and etc., were compared with prepared The members of this tribe have been studied by several micrograph.
    [Show full text]
  • Artemisia Annua L.)
    New Crop FactSHEET www.hort.purdue.edu/newcrop/cropfactsheets/artemisia.pdf Annual Wormwood (Artemisia annua L.) Contributors: Jorge Ferreira & Jules Janick Copyright © 2009. All Rights Reserved. Quotation from this document should cite and acknowledge the contributors. 1. Common Names 2. Scientific Names 3. Uses 4. Origin 5. Crop Status 1. Toxicities 2. Traditional Medicinal Uses 6. Botany 1. Taxonomy 2. Morphology and Floral Biology 3. Ecology 4. Secondary Metabolites 7. Crop Culture (Horticulture) 8. Horticulture 1. In vitro Production 2. Field Production 9. Germplasm 10. Key References 11. Selected Experts Common Names English: annual wormwood, sweet annie, sweet wormwood Chinese: qinghao, huag hua hao Scientific Names Species: Artemisia annua L. Family: Asteraceae (Compositae) Uses Traditional and Artisanal Used traditionally in China to treat fevers and hemorrhoids. Used in the crafting of aromatic wreaths, as a flavoring for spirits such as vermouth, and as a source of essential oils for the perfume industry. Human (pharmacological and antioxidant activities) Mainly as the source of artemisinin (qinghaosu), an important natural sesquiterpene lactone with antimalarial effect against susceptible and multi-drug resistant Plasmodium spp. Current research also shows that artemisinin drugs are effective against cancer, Leishmania (Yang and Liew, 1993; Sen et al., 2007), Trypanosoma (Mishina et al., 2007), and some viruses (Khan et al., 1991; Li et al., 2005). In addition, A. annua has a high content of flavonoid compounds which are responsible for its high antioxidant activity. There are potential uses of the Artemisia annua plant extracts for humans and livestock based on the synergistic effects of flavonoids, artemisinin precursors, etc., including antimalarial effects reported for the A.
    [Show full text]
  • Abies Bracteata Revised 2011 1 Abies Bracteata (D. Don) Poit
    Lead Forest: Los Padres National Forest Forest Service Endemic: No Abies bracteata (D. Don) Poit. (bristlecone fir) Known Potential Synonym: Abies venusta (Douglas ex Hook.) K. Koch; Pinus bracteata D. Don; Pinus venusta Douglas ex Hook (Tropicos 2011). Table 1. Legal or Protection Status (CNDDB 2011, CNPS 2011, and Other Sources). Federal Listing Status; State Heritage Rank California Rare Other Lists Listing Status Plant Rank None; None G2/S2.3 1B.3 USFS Sensitive Plant description: Abies bracteata (Pinaceae) (Fig. 1) is a perennial monoecious plant with trunks longer than 55 m and less than 1.3 m wide. The branches are more-or-less drooping, and the bark is thin. The twigs are glabrous, and the buds are 1-2.5 cm long, sharp-pointed, and non- resinous. The leaves are less than 6 cm long, are dark green, faintly grooved on their upper surfaces, and have tips that are sharply spiny. Seed cones are less than 9 cm long with stalks that are under15 mm long. The cones have bracts that are spreading, exserted, and that are 1.5–4.5 cm long with a slender spine at the apex. Taxonomy: Abies bracteata is a fir species and a member of the pine family (Pinaceae). Out of the fir species growing in North America (Griffin and Critchfield 1976), Abies bracteata has the smallest range and is the least abundant. Identification: Many features of A. bracteata can be used to distinguish this species from other conifers, including the sharp-tipped needles, thin bark, club-shaped crown, non-resinous buds, and exserted spine tipped bracts (Gymnosperms Database 2010).
    [Show full text]