Summary of Potential Oil and Gas Formations in England for Use in Groundwater Vulnerability Assessments Groundwater Programme Open Report OR/16/020

Total Page:16

File Type:pdf, Size:1020Kb

Summary of Potential Oil and Gas Formations in England for Use in Groundwater Vulnerability Assessments Groundwater Programme Open Report OR/16/020 Summary of potential oil and gas formations in England for use in groundwater vulnerability assessments Groundwater Programme Open Report OR/16/020 BRITISH GEOLOGICAL SURVEY GROUNDWATER PROGRAMME OPEN REPORT OR/16/020 Summary of potential oil and gas formations in England for use in groundwater vulnerability assessments S Loveless and N Smith The National Grid and other Ordnance Survey data © Crown Copyright and database rights 2016. Ordnance Survey Licence No. 100021290 EUL. Keywords: Oil and gas source rocks; groundwater vulnerability Bibliographical reference LOVELESS, S AND SMITH, N. 2016. Summary of potential oil and gas formations in England for use in groundwater vulnerability assessments. British Geological Survey Open Report, OR/16/020. 31pp. Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected]. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract. Maps and diagrams in this book use topography based on Ordnance Survey mapping. © NERC 2016. All rights reserved Keyworth, Nottingham British Geological Survey 2016 BRITISH GEOLOGICAL SURVEY The full range of our publications is available from BGS shops at British Geological Survey offices Nottingham, Edinburgh, London and Cardiff (Welsh publications only) see contact details below or shop online at www.geologyshop.com BGS Central Enquiries Desk Tel 0115 936 3143 Fax 0115 936 3276 The London Information Office also maintains a reference collection of BGS publications, including maps, for consultation. email [email protected] We publish an annual catalogue of our maps and other publications; this catalogue is available online or from any of the Environmental Science Centre, Keyworth, Nottingham BGS shops. NG12 5GG Tel 0115 936 3241 Fax 0115 936 3488 The British Geological Survey carries out the geological survey of email [email protected] Great Britain and Northern Ireland (the latter as an agency service for the government of Northern Ireland), and of the surrounding continental shelf, as well as basic research projects. The Lyell Centre, Research Avenue South, Edinburgh It also undertakes programmes of technical aid in geology in EH14 4AP developing countries. Tel 0131 667 1000 Fax 0131 668 2683 The British Geological Survey is a component body of the Natural email [email protected] Environment Research Council. Natural History Museum, Cromwell Road, London SW7 5BD Tel 020 7589 4090 Fax 020 7584 8270 Tel 020 7942 5344/45 email [email protected] Columbus House, Greenmeadow Springs, Tongwynlais, Cardiff CF15 7NE Tel 029 2052 1962 Fax 029 2052 1963 Maclean Building, Crowmarsh Gifford, Wallingford OX10 8BB Tel 01491 838800 Fax 01491 692345 Geological Survey of Northern Ireland, Department of Enterprise, Trade & Investment, Dundonald House, Upper Newtownards Road, Ballymiscaw, Belfast, BT4 3SB Tel 028 9038 8462 Fax 028 9038 8461 www.bgs.ac.uk/gsni/ Parent Body Natural Environment Research Council, Polaris House, North Star Avenue, Swindon SN2 1EU Tel 01793 411500 Fax 01793 411501 www.nerc.ac.uk Website www.bgs.ac.uk Shop online at www.geologyshop.com OR/16/020 Foreword This report is a short summary of onshore hydrocarbon formations identified by the British Geological Survey (BGS) in the context of the sub-surface assessment of 3D groundwater vulnerability. it has been produced as part of a joint BGS – Environment Agency (EA) project entitled “3D Groundwater Vulnerability”. i OR/16/020 Acknowledgements The authors would like to acknowledge BGS staff who have made significant contributions to this report. Jon Ford and the National Geological Model (NGM) team who’s many years of work this report, and project, is dependent on. Ricky Terrington provided the England-only version of UK3D and support with GSI3D. Melinda Lewis provided discussions around the GVS and rock units included. Holger Kessler has provided advice. Project management and direction has been provided by John Bloomfield and Rob Ward. The 3DGW Vulnerability project is a co-funded project between the British Geological Survey and the Environment Agency. The authors would like to thank the Environment Agency for their financial support for the project as well as contributing to the project vision. In particular, they would like to acknowledge the role of Ian Davey and Alwyn Hart, in proposing and supporting the joint initiative. This work has benefitted significantly from the contribution and involvement of the project Steering Group: Lynn Foord, Jan Hookey, Rudi Lui, Sara Mathews and Paul Doherty. ii OR/16/020 Contents Foreword ......................................................................................................................................... i Acknowledgements ........................................................................................................................ ii Contents ......................................................................................................................................... iii Summary ........................................................................................................................................ v 1 Introduction ............................................................................................................................ 1 1.1 potential hydrocarbon resource types ............................................................................. 1 2 Methodology ........................................................................................................................... 2 3 Potential hydrocarbon groups .............................................................................................. 2 3.1 Conventional hydrocarbons ............................................................................................ 8 3.2 Coal bed methane (CBM) ............................................................................................. 14 3.3 Shale gas and oil ........................................................................................................... 16 3.4 Underground Coal Gasification (UCG) ........................................................................ 19 References .................................................................................................................................... 20 Appendix 1 ................................................................................................................................... 21 Appendix 2 ................................................................................................................................... 22 iii OR/16/020 TABLES Table 1 Groups identified as prospective for oil and gas, coal bed methane (CBM) and shale oil and gas and underground coal gasification (UCG) ................................................... 3 iv OR/16/020 Summary The joint Environment Agency (EA) and BGS project “3D Groundwater Vulnerability” (3D GWV) will develop a methodology for attributing vulnerability of groundwater to pollution from sub-surface oil and gas exploration and production activities, including unconventional, conventional and hybrid plays. It will also take account of Coal Bed Methane (CBM) and Underground Coal Gasification (UCG) exploration, in addition to both near surface and deeper aquifers and groundwater. Outputs will include descriptions and visual representations of potential sources of sub-surface contamination of groundwater from different sources of hydrocarbons. These outputs are designed for use by the EA, Defra, other government departments, local planning authorities, environmental consultants and the public. The project will involve creating an attributed version of UK3D for England with source rock formations and aquifers identified. This report describes the hydrocarbon bearing units in England. The units have been identified primarily from three BGS reports commissioned by DECC (the Department for Energy and Climate Change) in 2013 (DECC, 2013a; 2013b; 2013c) and three additional area-specific reports on shale gas prospectivity in the Bowland Shale (Andrews, 2013), the Weald (Andrews, 2014) and the Wessex area (Greenhalgh, 2016). Note that this report is not intended to be an exhaustive summary of the occurrence of hydrocarbon units in England, rather a high-level overview for hydrogeologists interested in the potential for groundwater contamination. If further detailed information is required about the hydrocarbon characteristics of the units the reader should refer to the source documents (and references therein). The source documents identify units that have potential as conventional oil and gas reservoirs and source rocks (DECC, 2013a), for Coal Bed Methane (CBM) (DECC, 2013b) and shale gas (DECC, 2013c). There is no similar report for Underground Coal Gasification (UCG) and therefore coal units have been identified from (DECC, 2013b). This report gives a summary of the potential hydrocarbon resource types; identifies or attributes specific hydrocarbon source rocks on the Generalised Vertical Section (GVS), which identifies the main geologic units for England from BGS’ National Geological Model (NGM) (UK3D v2015 and Waters et al., 2016); and, summarises features
Recommended publications
  • Conceptualising Groundwater Flow Systems at a National (British Mainland) Scale
    Conceptualising groundwater flow systems at a national (British mainland) scale Brighid Ó Dochartaigh and BGS Hydro-JULES team 11 September 2019 Seeking answers to 2 questions: How can an integrated & holistic approach to modelling terrestrial hydrology – including groundwater – improve: 1. Simulation of major flooding events, such as 2013-14 floods? 2. Assessment of water resources under drought conditions? Centre for Ecology & Hydrology | Hydro-JULES Conceptualising groundwater flow systems at a national (British mainland) scale 2 British mainland (WP4.1) 3D Parameterising Deep geological Saturated GW domain – Unsaturated framework Zone code technique Zone code model Conceptual FY18/19 models of groundwater (GW) flow Parameterising Model Sub-surface GW domain – instance code application FY19/20 Results Centre for Ecology & Hydrology | Hydro-JULES Conceptualising groundwater flow systems at a national (British mainland) scale 3 Britain’s diverse geology and hydrogeology Centre for Ecology & Hydrology | Hydro-JULES Conceptualising groundwater flow systems at a national (British mainland) scale 4 3D Geological Framework Model +1.5 km to -15 km 1:625,000 scale mapping Newell 2019 Centre for Ecology & Hydrology | Hydro-JULES Conceptualising groundwater flow systems at a national (British mainland) scale 5 Model includes 3D information from: borehole geology & geophysics; pre-existing cross sections; geological history & structure; seismic data Centre for Ecology & Hydrology | Hydro-JULES Conceptualising groundwater flow systems at a national (British mainland) scale 6 Geology: a physical framework for groundwater flow Centre for Ecology & Hydrology | Hydro-JULES Conceptualising groundwater flow systems at a national (British mainland) scale 7 Key groundwater conceptual model parameters Geology Geography Surface water Groundwater Aquifer Chemistry Flow Aquifer Topographic relief Recharge quantity, Groundwater flow Aquifer properties: e.g.
    [Show full text]
  • Geometry of the Butterknowle Fault at Bishop Auckland (County Durham, UK), from Gravity Survey and Structural Inversion
    ESSOAr | https:/doi.org/10.1002/essoar.10501104.1 | CC_BY_NC_ND_4.0 | First posted online: Mon, 11 Nov 2019 01:27:37 | This content has not been peer reviewed. Geometry of the Butterknowle Fault at Bishop Auckland (County Durham, UK), from gravity survey and structural inversion Rob Westaway 1,*, Sean M. Watson 1, Aaron Williams 1, Tom L. Harley 2, and Richard Middlemiss 3 1 James Watt School of Engineering, University of Glasgow, James Watt (South) Building, Glasgow G12 8QQ, UK. 2 WSP, 70 Chancery Lane, London WC2A 1AF, UK. 3 School of Physics, University of Glasgow, Kelvin Building, Glasgow G12 8QQ, UK. * Correspondence: [email protected]; Abstract: The Butterknowle Fault is a major normal fault of Dinantian age in northern England, bounding the Stainmore Basin and the Alston Block. This fault zone has been proposed as a source of deep geothermal energy; to facilitate the design of a geothermal project in the town of Bishop Auckland further investigation of its geometry was necessary and led to the present study. We show using three-dimensional modelling of a dense local gravity survey, combined with structural inversion, that this fault has a ramp-flat-ramp geometry, ~250 m of latest Carboniferous / Early Permian downthrow having occurred on a fault surface that is not a planar updip continuation of that which had accommodated the many kilometres of Dinantian extension. The gravity survey also reveals relatively low-density sediments in the hanging-wall of the Dinantian fault, interpreted as porous alluvial fan deposits, indicating that a favourable geothermal target indeed exists in the area.
    [Show full text]
  • University of Birmingham a Lower Carboniferous (Visean)
    University of Birmingham A lower Carboniferous (Visean) tetrapod trackway represents the earliest record of an edopoid amphibian from the UK Bird, Hannah; Milner, Angela; Shillito, Anthony; Butler, Richard DOI: 10.1144/jgs2019-149 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Bird, H, Milner, A, Shillito, A & Butler, R 2020, 'A lower Carboniferous (Visean) tetrapod trackway represents the earliest record of an edopoid amphibian from the UK', Geological Society. Journal, vol. 177, no. 2, pp. 276-282. https://doi.org/10.1144/jgs2019-149 Link to publication on Research at Birmingham portal Publisher Rights Statement: Journal of the Geological Society, 2019, https://doi.org/10.1144/jgs2019-149 © 2019 The Author(s). Published by The Geological Society of London. All rights reserved. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.
    [Show full text]
  • A Model for the Evolution of the Weald Basin
    A model for the evolution of the Weald Basin DAVID L. HANSEN, DEREK J. BLUNDELL & S0REN B. NIELSEN Hansen, D.L., Blundell, D.J. & Nielsen, S.B. 2002-12-02. A Model for the evolution of the Weald Basin. Bulletin of the Geological Society of Denmark, Vol. 49, pp. 109-118. Copenhagen. https://doi.org/10.37570/bgsd-2003-49-09 The Weald Basin developed through the Jurassic-Lower Cretaceous as an extensional basin founded upon E-W trending low-angle faults that were probably Variscan thrusts, subsequently reacti­vated as normal faults. Later, the basin was inverted and uplifted into a broad dome, whilst the London Basin to the north, and the Hampshire-Dieppe Basin to the south, subsided as flanking basins during the late Palaeocene-Eocene. Seismic sections across the Weald indicate that inver­sion resulted from north-directed stress. A stratigraphic reconstruction based on a N-S profile across the Weald and flanking basins serves as a template for a forward, 2D thermo-mechanical model that simulates the evolution of the Weald Basin through crustal extension and its inversion, and subsidence of the flanking basins, through compression. The model provides a physical expla­nation for this sequence of events, requiring a region of crust of reduced strength relative to its flanks. This weak region is the location of crustal-scale Variscan thrusts that have been reactivated subsequently. The strong crust on the flanks is essential for the development of flanking basins during inversion and uplift of the Weald. Keywords: Basin inversion, lithosphere, thermo-mechanical modelling, finite elements, visco-elas­ tic-plastic, sedimentation, erosion.
    [Show full text]
  • Using the Solid Density to Assess Data Quality
    Materials and Structures DOI 10.1617/s11527-015-0767-3 ORIGINAL ARTICLE Porosities of building limestones: using the solid density to assess data quality Christopher Hall . Andrea Hamilton Received: 15 June 2015 / Accepted: 16 December 2015 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract A good knowledge of the volume-fraction the solid density should always be calculated for this porosity is essential in any technical work on porous purpose when the Archimedes method is used. This materials. In construction materials the porosity is check can be useful also when porosities are measured commonly measured by the Archimedes buoyancy by helium pycnometry or by mercury intrusion method, from which the bulk density of the test porosimetry. specimen is also obtained. The porosity and the bulk density together fix the solid density of the specimen, Keywords Porosity Á Density Á Archimedes method Á as only two of the three quantities are independent. Limestone Á Calcite The solid density, although rarely discussed, is determined by the mineralogy of the specimen, and therefore can provide a valuable check on the accuracy 1 Introduction of porosity and bulk density measurements. Our analysis of published data on calcitic limestones Most inorganic construction materials, including the shows that the solid density is generally close to the main building stones, are porous. In research on ideal crystallographic density of calcite. Small devi- mechanics, transport, and durability in these materials, ations can often be traced to variations in mineral the porosity is often used as an explanatory (indepen- composition. However some published porosity–den- dent) variable, and so it is measured and reported as a sity data are inconsistent with the known mineralogy.
    [Show full text]
  • Earthquakes Unconventional Drilling in the Weald Basin
    Earthquakes and Unconventional drilling in the Weald Basin David Smythe Emeritus Professor of Geophysics, University of Glasgow CV I know and love this area, having lived during my teenage years in Wallington Wallington County Grammar for Boys (1959-65) (now part of the London Borough of - 12 O-levels, 3 A-levels Sutton) University of Glasgow (1965-73) - BSc (Geology) 1970, PhD (Geophysics) 1986 Talk structure: British Geological Survey (1973-87) - Marine Geophysics and Hydrocarbons groups Weald oil exploration history UKOG at: University of Glasgow (1988-98) Broadford Bridge - Chair of Geophysics - Onshore 2D and 3D seismic acquisition, processing Horse Hill Earthquakes Post-retirement (1998-present) Conclusions / way forward - Consulting for oil industry (2002-11) - Researching unconventionals US and UK (2012-to date) Once upon a time … Beare Green Village Hall … in the Weald – country people went about their business - blacksmiths, farriers, thatchers, farmers, woodmen, charcoal burners, stockmen, milkmaids, cobblers, maltmen, oilmen BGS Weald report 2014* Between the 1960s and 1980s some 16,500 km 2D seismic lines were surveyed by the oilmen, working for the majors in the industry. At £10K/km in today’s money these data cost about £165M. The regional line labelled Fig. 19 is shown below. * https://www.gov.uk/government/publications/bgs-weald-basin-jurassic-shale-reports BGS Weald report 2014 They then drilled around 155 wells (@ £3M = £465M cost in today’s money). All these data are released after a confidentiality period of 4 to 5 years, so that the next generation of explorers and academics can benefit from it. The data are not free, but cost of the order of 0.1-1% of the original price.
    [Show full text]
  • RWM Eastern England Subregion 1
    Eastern England SUBREGION 1 RWM | Eastern England Subregion 1 Contents 1 Eastern England Subregion 1 Introduction 2 Rock type 3 Rock structure Groundwater 4 Resources Natural processes 5 - 12 Figures 13 Glossary Clicking on words in green, such as sedimentary or lava will take the reader to a brief non-technical explanation of that word in the Glossary section. By clicking on the highlighted word in the Glossary, the reader will be taken back to the page they were on. Clicking on words in blue, such as Higher Strength Rock or groundwater will take the reader to a brief talking head video or animation providing a non-technical explanation. For the purposes of this work the BGS only used data which was publicly available at the end of February 2016. The one exception to this was the extent of Oil and Gas Authority licensing which was updated to include data to the end of June 2018. 1 RWM | Eastern England Subregion 1 Our work shows that we may find a suitable geological setting for a GDF in most of this subregion. Rock can be seen at the surface in some of this subregion such as the sea cliffs, cliffs in the North York Moors and in man-made excavations such as quarries or road cuttings. Combined with numerous deep boreholes and some geophysical investigations, this gives us an understanding of the rocks present and their distribution. There are clay-rich rock layers under most of the subregion in which we may be able to site a GDF. There are also layers of rock salt under most of the eastern coastal half of the subregion and extending off the coast, in which we may be able to site a GDF.
    [Show full text]
  • Natural Hydraulic Fractures in the Wessex Basin, SW England: Widespread Distribution, Composition and History Alain Zanella, Peter Robert Cobbold, Tony Boassen
    Natural hydraulic fractures in the Wessex Basin, SW England: widespread distribution, composition and history Alain Zanella, Peter Robert Cobbold, Tony Boassen To cite this version: Alain Zanella, Peter Robert Cobbold, Tony Boassen. Natural hydraulic fractures in the Wessex Basin, SW England: widespread distribution, composition and history. Marine and Petroleum Geology, Elsevier, 2015, 68 (Part A), pp.438-448. 10.1016/j.marpetgeo.2015.09.005. insu-01200780 HAL Id: insu-01200780 https://hal-insu.archives-ouvertes.fr/insu-01200780 Submitted on 18 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ACCEPTED MANUSCRIPT Natural hydraulic fractures in the Wessex Basin, SW England: widespread distribution, composition and history A. Zanella 1, 2 *, P.R. Cobbold 1 and T. Boassen 4 1Géosciences-Rennes (UMR-6118), CNRS et Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France 2L.P.G., CNRS UMR 6112, Université du Maine, Faculté des Sciences, 72085 Le Mans Cedex 9, France 4 Statoil ASA Research Centre, NO-7005 Trondheim, Norway *Corresponding author, e-mail: [email protected] Abstract Bedding-parallel veins of fibrous calcite ('beef') are historical in the Wessex Basin.
    [Show full text]
  • Mineral Resources Report for Wiltshire
    Mineral Resource Information in Support of National, Regional and Local Planning Wiltshire (comprising Wiltshire and the Borough of Swindon) Commissioned Report CR/04/049N BRITISH GEOLOGICAL SURVEY COMMISSIONED REPORT CR/04/049N Mineral Resource Information in Support of National, Regional and Local Planning Wiltshire (comprising Wiltshire and the Borough of Swindon) G E Norton, D G Cameron, A J Bloodworth, D J Evans, G K Lott, I J Wilkinson, H F Burke, N A Spencer, and D E Highley This report accompanies the 1;100 000 scale map: Wiltshire (comprising Wiltshire and the Borough of Swindon) Mineral Resources Key words Mineral resource planning, Wiltshire, Swindon. Front cover Westbury Cement Works, Lafarge Cement UK (Blue Circle Cements), and Westbury White Horse. Bibliographical reference G E NORTON, D G CAMERON, A J BLOODWORTH, D J EVANS, G K LOTT, I J WILKINSON, H F BURKE, N A SPENCER, and D E HIGHLEY. 2004. Mineral Resource Information in Support of National, Regional and Local Planning. Wiltshire (comprising Wiltshire and the Borough of Swindon) British Geological Survey Commissioned Report, CR/04/049N. 12pp. Keyworth, Nottingham British Geological Survey 2004 BRITISH GEOLOGICAL SURVEY The full range of Survey publications is available from the British Geological Survey offices BGS Sales Desks at Nottingham, Edinburgh and London; see contact details below or shop online at Keyworth, Nottingham NG12 5GG www.geologyshop.com 0115B936 3100......................... Fax 0115B936 3200 e-mail: sales @bgs.ac.uk The London Information Office also maintains a reference www.bgs.ac.uk collection of BGS publications including maps for Online shop: www.geologyshop.com consultation.
    [Show full text]
  • Northumberland National Park Geodiversity Audit and Action Plan Location Map for the District Described in This Book
    Northumberland National Park Geodiversity Audit and Action Plan Location map for the district described in this book AA68 68 Duns A6105 Tweed Berwick R A6112 upon Tweed A697 Lauder A1 Northumberland Coast A698 Area of Outstanding Natural Beauty Holy SCOTLAND ColdstreamColdstream Island Farne B6525 Islands A6089 Galashiels Kelso BamburghBa MelrMelroseose MillfieldMilfield Seahouses Kirk A699 B6351 Selkirk A68 YYetholmetholm B6348 A698 Wooler B6401 R Teviot JedburghJedburgh Craster A1 A68 A698 Ingram A697 R Aln A7 Hawick Northumberland NP Alnwick A6088 Alnmouth A1068 Carter Bar Alwinton t Amble ue A68 q Rothbury o C B6357 NP National R B6341 A1068 Kielder OtterburOtterburnn A1 Elsdon Kielder KielderBorder Reservoir Park ForForestWaterest Falstone Ashington Parkand FtForest Kirkwhelpington MorpethMth Park Bellingham R Wansbeck Blyth B6320 A696 Bedlington A68 A193 A1 Newcastle International Airport Ponteland A19 B6318 ChollerforChollerfordd Pennine Way A6079 B6318 NEWCASTLE Once Housesteads B6318 Gilsland Walltown BrewedBrewed Haydon A69 UPON TYNE Birdoswald NP Vindolanda Bridge A69 Wallsend Haltwhistle Corbridge Wylam Ryton yne R TTyne Brampton Hexham A695 A695 Prudhoe Gateshead A1 AA689689 A194(M) A69 A686 Washington Allendale Derwent A692 A6076 TTownown A693 A1(M) A689 ReservoirReservoir Stanley A694 Consett ChesterChester-- le-Streetle-Street Alston B6278 Lanchester Key A68 A6 Allenheads ear District boundary ■■■■■■ Course of Hadrian’s Wall and National Trail N Durham R WWear NP National Park Centre Pennine Way National Trail B6302 North Pennines Stanhope A167 A1(M) A690 National boundaryA686 Otterburn Training Area ArAreaea of 0 8 kilometres Outstanding A689 Tow Law 0 5 miles Natural Beauty Spennymoor A688 CrookCrook M6 Penrith This product includes mapping data licensed from Ordnance Survey © Crown copyright and/or database right 2007.
    [Show full text]
  • Technically Recoverable Shale Oil and Shale Gas Resources: United Kingdom
    Technically Recoverable Shale Oil and Shale Gas Resources: United Kingdom September 2015 Independent Statistics & Analysis U.S. Department of Energy www.eia.gov Washington, DC 20585 September 2015 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA’s data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i September 2015 Contents Executive Summary ....................................................................................................................................... 3 Introduction ............................................................................................................................................. 3 Resource categories ................................................................................................................................. 3 Methodology ........................................................................................................................................... 5 Key exclusions .......................................................................................................................................... 6 United Kingdom…………………………………… ………………………………………………………………………………………......XI-1
    [Show full text]
  • Devonian and Carboniferous Stratigraphical Correlation and Interpretation in the East Irish
    CR/16/040 Last modified: 2016/05/30 11:40 Carboniferous stratigraphical correlation and interpretation in the Irish Sea Energy and Marine Geoscience Programme Commissioned Report CR/16/040 CR/16/040 Last modified: 2016/05/30 11:40 BRITISH GEOLOGICAL SURVEY ENERGY AND MARINE GEOSCIENCE PROGRAMME COMMISSIONED REPORT CR/16/040 Carboniferous stratigraphical correlation and interpretation The National Grid and other Ordnance Survey data © Crown Copyright and database rights in the Irish Sea 2015. Ordnance Survey Licence No. 100021290 EUL. Keywords O. Wakefield, C. N. Waters and N. J. P Smith Report; Stratigraphy, Carboniferous, East Irish Sea. Front cover View of the Great Orme, Llandudno, North Wales, comprising thick carbonate platform successions typical of the Carboniferous Limestone Supergroup of the Irish Sea and adjacent areas (P007274). ©BGS NERC Bibliographical reference Wakefield, O. Waters, C.N. and Smith, N.J.P. 2016. Carboniferous stratigraphical correlation and interpretation in the Irish Sea. British Geological Survey Commissioned Report, CR/16/040. 82pp. Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected]. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is
    [Show full text]