The Late Triassic Bivalve Monotis in Accreted Terranes of Alaska

Total Page:16

File Type:pdf, Size:1020Kb

The Late Triassic Bivalve Monotis in Accreted Terranes of Alaska The Late Triassic Bivalve Monotis in Accreted Terranes of Alaska By N.J. Silberling, J.A. Grant-Mackie, and K.M. Nichols U.S. GEOLOGICAL SURVEY BULLETIN 2 15 1 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1997 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Silberling, N. J. (Norman John), 1928- The Late Triassic bivalve Monotis in accreted terranes of Alaska / by N.J. Silberling, J.A Grant-Mackie, and K.M. Nichols. p. cm.-(U.S. Geological Survey bulletin ; 2151) Includes bibliographical references. Supt. of Docs. no. : I 19.3: 2151 1. Monotis-Alaska. 2. Paleontology-Triassic. 3. Animals,Fossil- Alaska. I. Grant-Mackie, J.A. 11. Nichols, K. M. (Kathryn Marion), 1946- 111. Title. IV. Series. QE75.B9 no. 2151 [QE8 12.M6] 557.3 sdc20 [564'.11] 95-25680 CIP CONTENTS Abstract ........................................................................................................................... Introduction ..................................................................................................................... Characterization of Alaskan Monotis .............................................................................. Genus Monotis ................................................................................................................ Subgenus Monotis ........................................................................................................... Subgenus Pacimonotis .................................................................................................... Subgenus Entomonotis .................................................................................................... Subgenus Eomonotis ....................................................................................................... Occurrence of Monotis in Alaska .................................................................................... Northern Alaska ...................................................................................................... East-central Alaska ................................................................................................. Central and Southern Alaska ................................................................................... Southwestern Alaska ............................................................................................... Southeastern Alaska ................................................................................................ Age and Biostratigraphy of Alaskan Monotis Faunas ..................................................... Paleogeographic Significance of Alaskan Monotis Faunas ............................................ References Cited ............................................................................................................. Appendix 1. Locality Descriptions ................................................................................ PLATES [Plates follow appendix] 1 . Alexander terrane . 2 . Peninsular terrane . 3. Wrangellia terrane . 4 . Wrangellia, Susitna. Chulitna terranes . 5 . Nixon Fork and McKinley terranes . 6 . Non-accretionary Upper Yukon region . 7 . Upper Yukon region and Endicott Mountains subterrane . 8 . Endicott Mountains subterrane . 9 . Endicott Mountains subterrane . 10. North Slope subterrane . 1 1 . North Slope subterrane . FIGURES 1 . Index map showing location of accreted terranes containing Monotis-bearing strata in Alaska and adjacent Canada .............................................................................................................................................................. 2 2 . Diagrammatic sketch of left valve of Monotis illustrating morphologic features and terminology ............................................................................................................................................................... 4 3 . Chart showing relative stratigraphic ranges of Alaskan Monotis species and subspecies ................................................................................................................................................................. 15 4 . Checklist showing occurrence of Monotis species in accretionary and non-accretionary Alaska. and in the Stikinia terrane of Canada .............................................................................................................................. 16 THE LATE TRIASSIC BIVALVE MONOTIS IN ACCRETED TERRANES OF ALASKA By N.J. Silberling, J.A. rant-~ackie,' and K.M. Nichols ABSTRACT INTRODUCTION Late Triassic bivalves of the genus Monotis occur in at Thin-shelled, pecten-like bivalves of the genus Monotis least 16 of the lithotectonic terranes and subterranes that are widespread and locally abundant in Upper Triassic rocks together comprise nearly all of Alaska, and they also occur of Alaska (fig. 1). These easily recognized fossils have been in the Upper Yukon region of Alaska where Triassic strata found in 16 of the 50 accreted tectonostratigraphic terranes are regarded as representing non-accretionary North Amer- and subterranes recognized by Jones and others (1987) as ica. On the basis of collections made thus far, 14 kinds of forming nearly all of Alaska. Each of these terranes and sub- Monotis that differ at the species or subspecies level can be terranes is fault-bounded and records a distinct geologic his- recognized from Alaska. These are grouped into the subgen- tory; their tectonic displacement relative to each other and to era Monotis (Monotis),M. (Pacimonotis),M. (Entomonotis), the North American craton ranges from tens to thousands of and M. (Eomonotis). In places, Monotis shells of one kind or kilometers (Jones and others, 1986). Not only are Monotis another occur in rock-forming abundance. faunas useful for dating and correlating the strata of the ter- On the basis of superpositional data from Alaska, as ranes in which they occur, but the paleolatitudinal distribu- well as from elsewhere in North America and Far Eastern tion of different species of Monotis varied, and thus they also Russia, at least four distinct biostratigraphic levels can be provide important paleogeographic constraints for interpret- discriminated utilizing Monotis species. Different species of ing the displacement histories of the various terranes. The M. (Eomonotis) characterize two middle Norian levels, both major biogeographic conclusions that can be drawn from probably within the upper middle Norian Columbianus Alaskan Monotis faunas have previously been discussed by Ammonite Zone. Two additional levels are recognized in Tozer (1982) and Silberling (1985). the lower upper Norian Cordilleranus Ammonite Zone uti- The purposes of this report are to enlarge upon these lizing species of M. (Monotis)or M. (Entomonotis), both of general conclusions and to provide needed documentation at which subgenera are restricted to the late Norian. a refined taxonomic level of the Monotis faunas presently An attached-floating mode of life is commonly attrib- known from Alaskan accreted terranes. Additionally, we uted to Monotis; thus, these bivalves would have been hope that the illustrations, diagnoses, and identification key pseudoplanktonic surface dwellers that were sensitive to sur- will enable Alaskan geologists to use this report as a field face-water temperature and paleolatitude. Distinctly differ- guide to the various species of Monotis. Not only are the ent kinds of Monotis occur at different paleolatitudes along various species useful in the field for general age and biogeo- the Pacific and Arctic margins of the North American craton graphic interpretation but, in places such as northern Alaska, inboard of the accreted terranes. Comparison between these they also occur in profusion in an easily recognized succes- craton-bound Monotis faunas and those of the Alaskan ter- sion of different species. In such places, they thus can be a ranes indicates that all of the Monotis-bearing terranes in valuable aid in deciphering the structure of intricately southern Alaska south of the Denali fault were paleoequato- deformed strata. rial in latitude during Late Triassic time. Among these ter- The Alaskan Monotis faunas on which this study is ranes, the Alexander terrane was possibly in the southern based are part of the U.S. Geological Survey paleontological hemisphere at that time. Terranes of northern Alaska, on the collections currently housed in the Denver, Colorado, field other hand, represent middle, possibly high-middle, northern center. These collections and their supporting locality and paleolatitudes. stratigraphic data represent the effort of many geologists involved with U.S. Geological Survey research programs in Alaska since the early 1900's. In all, Monotis is known from 'university of Auckland, Auckland, New Zealand. several hundred geographically or stratigraphically different CHARACTERIZATION OF ALASKAN MONOTIS 3 Alaskan localities. Specimens figured herein that were col- Taxonomic assignments adopted here are strictly cir- lected by the senior author are from localities originally dis- cumscribed by means of measureable parameters and the covered and put into stratigraphic context by E.E. Brabb, presence
Recommended publications
  • Subduction Polarity in Ancient Arcs: a Call to Integrate Geology And
    COMMENT & REPLY Subduction Polarity in Ancient Arcs: A Call to Integrate Geology and Geophysics to Decipher the Mesozoic Tectonic History of the Northern Cordillera of North America: REPLY Terry L. Pavlis, Dept. of Geological Sciences, University of Texas, El Paso, Texas 79968, USA; Jeffrey M. Amato, Dept. of Geological Sciences, New Mexico State University, Las Cruces, New Mexico 88003, USA; Jeffrey M. Trop, Dept. of Geology and Environmental Geosciences, Bucknell University, Lewisburg, Pennsylvania 17837, USA; Kenneth D. Ridgway, Dept. of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, USA; Sarah M. Roeske, Earth and Planetary Sciences Dept., University of California, Davis, California 95616, USA; and George E. Gehrels, Dept. of Geosciences, University of Arizona, Tucson, Arizona, 85721, USA INTRODUCTION drafts of the paper. However, when we problem is not solved, which underscores We welcome the opportunity to discuss the realized that experts in this field were our conclusion that resolving ancient sub- views expressed by Sigloch and Mihalynuk in actively debating the topic, we reduced our duction polarity problems requires a con- their Comment (Sigloch and Mihalynuk, discussion to a short paragraph. In their certed collaborative effort between the geo- 2020; referred to here as SM) on Pavlis et al. Comment, SM reiterate parts of their model logic and geophysical communities. (2019) because it provides an opportunity to but emphasize a consensus in the geophysi- A foundation of Sigloch and Mihalynuk’s elaborate on the criteria for determining sub- cal community that deep mantle tomo- (2013, 2017) interpretations is that plate duction polarity, an important problem in the graphic anomalies are subduction zone rem- reconstructions restore North America to a North American Cordillera and for tectonic nants.
    [Show full text]
  • New Late Carboniferous Heritschioidinae (Rugosa) from the Kuiu Island Area and Brooks Range, Alaska
    Geologica Acta, Vol.12, Nº 1, March 2014, 29-52 DOI: 10.1344/105.000002074 New Late Carboniferous Heritschioidinae (Rugosa) from the Kuiu Island area and Brooks Range, Alaska J. FEDOROWSKI1 C.H. STEVENS2 E. KATVALA3 1Institute of Geology, Adam Mickiewicz University Makow Polnych 16, PL-61-606, Poznan, Poland. E-mail: [email protected] 2Department of Geology, San Jose Unversity San Jose, California 95192, USA. E-mail: [email protected] 3Department of Geology, University of Calgary Calgary, Canada. E-mail: [email protected] ABS TRACT Three new species of the genus Heritschioides, i.e., H. alaskensis sp. nov., H. kuiuensis sp. nov., and H. splendidus sp. nov., and Kekuphyllum sandoense gen. et sp. nov. from the northeastern Kuiu Island area and nearby islets, part of Alexander terrane in southeastern Alaska, and Heritschioides separatus sp. nov. from the Brooks Range, Alaska, are described and illustrated. The three new fasciculate colonial coral species from the Kuiu Island area, collected from the Moscovian Saginaw Bay Formation, are phylogenetically related to those of probable Bashkirian age in the Brooks Range in northern Alaska as shown by the presence of morphologically similar species of Heritschioides. These corals from both areas also are related to one species in the Quesnel terrane in western Canada. Kekuphyllum sandoense from the Saginaw Bay Formation of the Kuiu Island area is the only cerioid-aphroid species within the Subfamily Heritschioidinae described so far. The complete early ontogeny of a protocorallite is for the first time described here on a basis of H. kuiuensis sp. nov. and compared to the hystero-ontogeny in order to show similarities and differences in those processes.
    [Show full text]
  • North American Coral Recovery After the End-Triassic Mass Extinction, New York Canyon, Nevada, USA
    North American coral recovery after the end-Triassic mass extinction, New York Canyon, Nevada, USA Montana S. Hodges* and George D. Stanley Jr., University of INTRODUCTION Montana Paleontology Center, 32 Campus Drive, Missoula, Mass extinction events punctuate the evolution of marine envi- Montana 59812, USA ronments, and recovery biotas paved the way for major biotic changes. Understanding the responses of marine organisms in the ABSTRACT post-extinction recovery phase is paramount to gaining insight A Triassic-Jurassic (T/J) mass extinction boundary is well repre- into the dynamics of these changes, many of which brought sented stratigraphically in west-central Nevada, USA, near New sweeping biotic reorganizations. One of the five biggest mass York Canyon, where the Gabbs and Sunrise Formations contain a extinctions was that of the end-Triassic, which was quickly continuous depositional section from the Luning Embayment. followed by phases of recovery in the Early Jurassic. The earliest The well-exposed marine sediments at the T/J section have been Jurassic witnessed the loss of conodonts, severe reductions in extensively studied and reveal a sedimentological and paleonto- ammonoids, and reductions in brachiopods, bivalves, gastropods, logical record of intense environmental change and biotic turn- and foraminifers. Reef ecosystems nearly collapsed with a reduc- over, which has been compared globally. Unlike the former Tethys tion in deposition of CaCO3. Extensive volcanism in the Central region, Early Jurassic scleractinian corals surviving the end- Atlantic Magmatic Province and release of gas hydrates and other Triassic mass extinction are not well-represented in the Americas. greenhouse gases escalated CO2 and led to ocean acidification of Here we illustrate corals of Early Sinemurian age from Nevada the end-Triassic (Hautmann et al., 2008).
    [Show full text]
  • Wrangellia Flood Basalts in Alaska, Yukon, and British Columbia: Exploring the Growth and Magmatic History of a Late Triassic Oceanic Plateau
    WRANGELLIA FLOOD BASALTS IN ALASKA, YUKON, AND BRITISH COLUMBIA: EXPLORING THE GROWTH AND MAGMATIC HISTORY OF A LATE TRIASSIC OCEANIC PLATEAU By ANDREW R. GREENE A THESIS SUBMITTED iN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Geological Sciences) UNIVERSITY OF BRITISH COLUMBIA (Vancouver) August 2008 ©Andrew R. Greene, 2008 ABSTRACT The Wrangellia flood basalts are parts of an oceanic plateau that formed in the eastern Panthalassic Ocean (ca. 230-225 Ma). The volcanic stratigraphy presently extends >2300 km in British Columbia, Yukon, and Alaska. The field relationships, age, and geochemistry have been examined to provide constraints on the construction of oceanic plateaus, duration of volcanism, source of magmas, and the conditions of melting and magmatic evolution for the volcanic stratigraphy. Wrangellia basalts on Vancouver Island (Karmutsen Formation) form an emergent sequence consisting of basal sills, submarine flows (>3 km), pillow breccia and hyaloclastite (<1 1cm), and subaerial flows (>1.5 km). Karmutsen stratigraphy overlies Devonian to Permian volcanic arc (—‘380-355 Ma) and sedimentary sequences and is overlain by Late Triassic limestone. The Karmutsen basalts are predominantly homogeneous tholeiitic basalt (6-8 wt% MgO); however, the submarine part of the stratigraphy, on northern Vancouver Island, contains picritic pillow basalts (9-20 wt% MgO). Both lava groups have overlapping initial and ENd, indicating a common, ocean island basalt (OIB)-type Pacific mantle source similar to the source of basalts from the Ontong Java and Caribbean Plateaus. The major-element chemistry of picrites indicates extensive melting (23 -27%) of anomalously hot mantle (‘—1500°C), which is consistent with an origin from a mantle plume head.
    [Show full text]
  • Upper-Crustal Cooling of the Wrangellia Composite Terrane in the Northern St. Elias Mountains, Western Canada
    RESEARCH Upper-crustal cooling of the Wrangellia composite terrane in the northern St. Elias Mountains, western Canada Sarah Falkowski1 and Eva Enkelmann2 1UNIVERSITY OF TÜBINGEN, DEPARTMENT OF GEOSCIENCES, 72074 TÜBINGEN, GERMANY 2UNIVERSITY OF CINCINNATI, DEPARTMENT OF GEOLOGY, CINCINNATI, OHIO 45221-0037, USA ABSTRACT This study presents the long-term exhumation history of the Wrangellia composite terrane of the remote and ice-covered northern St. Elias Mountains in southwest Yukon, northwest British Columbia, and adjacent Alaska. Detrital zircon and apatite fission-track age distributions are presented from 21 glacial catchments. The detrital sampling approach allows for a large spatial coverage (~30,000 km2) and access to material eroded beneath the ice. An additional five bedrock samples were dated by zircon fission-track analysis for a comparison with detrital results. Our new thermochronology data record the Late Jurassic–mid-Cretaceous accretion of the Wrangellia composite terrane to the former North American margin and magmatism, which reset the older thermal record. The good preservation of the Jurassic–Cretaceous record suggests that Cenozoic erosion must have been limited overall. Nonetheless, Eocene spreading-ridge subduction and Oligocene–Neogene cooling in response to the ongoing Yakutat flat-slab subduction are evident in the study area despite its inboard position from the active plate boundary. The results further indicate an area of rapid exhumation at the northern end of the Fairweather fault ca. 10–5 Ma; this area is bounded by discrete, unmapped structures. The area of rapid exhumation shifted southwest toward the plate boundary and the center of the St. Elias syntaxis after 5 Ma. Integrating the new data with published detrital thermochronology from the southern St.
    [Show full text]
  • Geology and Paleontology of the Southwest Quarter of the Big Bend Quadrangle Shasta County, California
    GEOLOGY AND PALEONTOLOGY OF THE SOUTHWEST QUARTER OF THE BIG BEND QUADRANGLE SHASTA COUNTY, CALIFORNIA By ALBERT F. SANBORN Geologist, Standard Oil Company of California Salt Lake City, Utah Special Report 63 CALIFORNIA DIVISION OF MINES FERRY BUILDING, SAN FRANCISCO, 1960 STATE OF CALIFORNIA EDMUND G. BROWN, Governor DEPARTMENT OF NATURAL RESOURCES eWITT NELSON, Director DIVISION OF MINES IAN CAMPBELL, Chief Special Report 63 Price 75$ , GEOLOGY AND PALEONTOLOGY OF THE SOUTHWEST QUARTER OF THE BIG BEND QUADRANGLE SHASTA COUNTY, CALIFORNIA By Albert F. Sandorn * OUTLINE OF REPORT ABSTRACT Abstract 3 The area covered by this report is the southwest quarter of the Big Bend quadrangle in the vicinity of lntroductu.il 3 the town of Big Bendj Shasta County) California. General stratigraphy 5 This region, which has been geologically unknown, contains sedimentary volcanic strata of Triassic system _ 5 and Mesozoic an( Pit formation (Middle and Upper Triassic) 5 * Cenozoic ages. Hosselkus limestone (Upper Triassic) 7 The Mesozoic deposits are composed of pyroclastic Brock shale (Upper Triassic) 7 rocks, lava flows, tuffaceous sandstone, argillite, and Modin formation (Upper Triassic) 8 limestone. The Mesozoic formations, from the oldest Hawkins Creek member T0 the youngest, are the Pit formation of Middle and I Devils Canyon member 10 jate Triassic age ; the Hosselkus limestone, the Brock Kosk member ll shale, and the Modin formation of Late Triassic age; . the Arvison formation of Early Jurassic age ; and the s sy em -—- -- - --- Bagley andesite and Potem formation of Early and Arvison formation (Lower Jurassic) 11 „•,,, T . ,-.., ., e ,. , ' „ , . .. .. __ . , T 1( Middle Jurassic age. Or the seven formations mapped,rr Nature of the contact of the Triassic and Jurassic svstems 14 ,.
    [Show full text]
  • Assessing the Record and Causes of Late Triassic Extinctions
    Earth-Science Reviews 65 (2004) 103–139 www.elsevier.com/locate/earscirev Assessing the record and causes of Late Triassic extinctions L.H. Tannera,*, S.G. Lucasb, M.G. Chapmanc a Departments of Geography and Geoscience, Bloomsburg University, Bloomsburg, PA 17815, USA b New Mexico Museum of Natural History, 1801 Mountain Rd. N.W., Albuquerque, NM 87104, USA c Astrogeology Team, U.S. Geological Survey, 2255 N. Gemini Rd., Flagstaff, AZ 86001, USA Abstract Accelerated biotic turnover during the Late Triassic has led to the perception of an end-Triassic mass extinction event, now regarded as one of the ‘‘big five’’ extinctions. Close examination of the fossil record reveals that many groups thought to be affected severely by this event, such as ammonoids, bivalves and conodonts, instead were in decline throughout the Late Triassic, and that other groups were relatively unaffected or subject to only regional effects. Explanations for the biotic turnover have included both gradualistic and catastrophic mechanisms. Regression during the Rhaetian, with consequent habitat loss, is compatible with the disappearance of some marine faunal groups, but may be regional, not global in scale, and cannot explain apparent synchronous decline in the terrestrial realm. Gradual, widespread aridification of the Pangaean supercontinent could explain a decline in terrestrial diversity during the Late Triassic. Although evidence for an impact precisely at the boundary is lacking, the presence of impact structures with Late Triassic ages suggests the possibility of bolide impact-induced environmental degradation prior to the end-Triassic. Widespread eruptions of flood basalts of the Central Atlantic Magmatic Province (CAMP) were synchronous with or slightly postdate the system boundary; emissions of CO2 and SO2 during these eruptions were substantial, but the contradictory evidence for the environmental effects of outgassing of these lavas remains to be resolved.
    [Show full text]
  • Tesi Redatta Con Il Contributo Finanziario Dell'università Degli Studi Di Padova
    Sede Amministrativa: Università degli Studi di Padova Dipartimento di Geoscienze Via G. Gradenigo n.6 - 35131- Padova CORSO DI DOTTORATO DI RICERCA IN SCIENZE DELLA TERRA CICLO XXIX LATE NORIAN-RHAETIAN CARBON CYCLE PERTURBATIONS: FROM A TETHYAN TO A GLOBAL PERSPECTIVE Tesi redatta con il contributo finanziario dell’Università degli Studi di Padova Coordinatore: Ch.mo Prof. Fabrizio Nestola Supervisore: Ch.mo Dott. Manuel Rigo Co-Supervisore: Ch.mo Prof. Claudia Agnini Dottorando: Mariachiara Zaffani 1 2 Ai miei Grandi Giganti Gentili: Giulio, Giordano e Giancarlo, modelli ed esempi di professionalità ed umanità, sempre. 3 4 CONTENTS General Introduction 7 Synopsis 11 Methods 25 δ13Corg and TOC sample preparation methods: which one? 25 Protocol for δ13Corg analyses sample preparation 26 Protocol for TOC analyses sample preparation 27 Focus on: why coeval shift could show different δ13Corg amplitude? 28 13 Chapter 1: The Norian “chaotic carbon interval”: new clues from the δ Corg record of the Lagonegro Basin (southern Italy) 31 Abstract 31 Introduction 32 Geological setting 33 Pignola-Abriola section 35 Mt Volturino section 36 Madonna del Sirino section 37 Methods 40 Results 41 Discussion 43 Correlation with published record 43 Causes of carbon cycle perturbations 44 Conclusions 52 Acknowledgements 52 Chapter 2: Through a complete Rhaetian δ13Corg record: carbon cycle disturbances, volcanism, end-Triassic mass extinction. A composite succession from the Lombardy Basin (N Italy) 69 Abstract 69 Introduction 69 Geological setting 71 Methods
    [Show full text]
  • Pre-Tertiary Stratigraphy and Upper Triassic Paleontology of the Union District Shoshone Mountains Nevada
    Pre-Tertiary Stratigraphy and Upper Triassic Paleontology of the Union District Shoshone Mountains Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 322 Pre-Tertiary Stratigraphy and Upper Triassic Paleontology of the Union District Shoshone Mountains Nevada By N. J. SILBERLING GEOLOGICAL SURVEY PROFESSIONAL PAPER 322 A study of upper Paleozoic and lower Mesozoic marine sedimentary and volcanic rocks, with descriptions of Upper Triassic cephalopods and pelecypods UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. CONTENTS Page Page Abstract_ ________________________________________ 1 Paleontology Continued Introduction _______________________________________ 1 Systematic descriptions-------------------------- 38 Class Cephalopoda___--_----_---_-_-_-_-_--_ 38 Location and description of the area ______________ 2 Order Ammonoidea__-__-_______________ 38 Previous work__________________________________ 2 Genus Klamathites Smith, 1927_ __ 38 Fieldwork and acknowledgments________________ 4 Genus Mojsisovicsites Gemmellaro, 1904 _ 39 Stratigraphy _______________________________________ 4 Genus Tropites Mojsisovics, 1875_____ 42 Genus Tropiceltites Mojsisovics, 1893_ 51 Cambrian (?) dolomite and quartzite units__ ______ 4 Genus Guembelites Mojsisovics, 1896__ 52 Pablo formation (Permian?)____________________ 6 Genus Discophyllites Hyatt,
    [Show full text]
  • Flood Basalts of the Wrangellia Terrane II
    Downloaded from geosphere.gsapubs.org on April 19, 2011 Geosphere The architecture of oceanic plateaus revealed by the volcanic stratigraphy of the accreted Wrangellia oceanic plateau Andrew R. Greene, James S. Scoates, Dominique Weis, Erik C. Katvala, Steve Israel and Graham T. Nixon Geosphere 2010;6;47-73 doi: 10.1130/GES00212.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geosphere Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes © 2010 Geological Society of America Downloaded from geosphere.gsapubs.org on April 19, 2011 The architecture of oceanic plateaus revealed by the volcanic stratigraphy of the accreted Wrangellia oceanic plateau Andrew R.
    [Show full text]
  • The Origin of Crystalline Magnesite Deposits a Thzsk
    THE ORIGIN OF CRYSTALLINE MAGNESITE DEPOSITS A THZSK SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF NEVADA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE PROFESSIONAL DEGREE IN GEOLOGICAL ENGINEERING by CONRAD MARTIN 195# 7 / f ^ VJ* cV Submitted by *-o Candidate for the Degree Approved by Dean, Mackay School of Mines I nf v v n Accepted by \)<rA } £ _ yean, Graduate School TH£ ORIGIN OF CRYSTAL, LINE MAGNESITE DEPOSITS By Conrad Martin CONTENTS Page Abstract i-iii 1 Introduction The magnesite deposits at Gabbs» Nevada 6 Geographic and economic setting 6 Previous geologic investigations 6 Geologic setting oi the magnesite deposits 8 istructural development 11 Igneous activity 13 Description of the magnesite occurrence at Gabbs 14 Physical characteristics and structure 14 Doioaienite dikes 20 Alteration 22 The grade of the magnesite 23 The "Chemical Contour Map" 23 The Brucite Deposits 25 Formation oi the brucite 26 Pyroxenite and silicated dolomite 31 The origin of the magnesite deposits at Gabbs 39 The role of thrusting 39 The depositions! environment 41 Geodes and magnesite nodules 50 Magnesite deposited in interior basins 55 The Currant Creek deposits 60 Other cystalline magnesite deposits 63 Cranbrook, British Columbia 64 Chewelah, Washington 66 Kilmar, Quebec 67 Plate IV Chemical Contour Map. Betty O'Neal Pit, Basic, Incorporated. n u o r ig in o f cinrsTAu^Ni; a&posm fry Conrad Martin ABbTSAC T Although the iormation oi magnesite by a hydrothermal- meia somatic process i* po«sibi« it* operation requires nicely balanced condition* which are dimcait to maintain. On examination oi the operation oi this process in the iield it I* loond to produce, with minor and doubtful exceptions, brucite rather than magnesite.
    [Show full text]
  • Chulitnacula, a New Paleobiogeographically Distinctive Gastropod Genus from Upper Triassic Strata in Accreted Terranes of Southern Alaska
    Journal of the Czech Geological Society 46/1ñ2(2001) 213 Chulitnacula, a new paleobiogeographically distinctive gastropod genus from Upper Triassic strata in accreted terranes of southern Alaska (3 figs) JIÿÕ FR›DA 1 ñ ROBERT B. BLODGETT 2 1 Czech Geological Survey, Kl·rov 3, 118 21 Praha 1, Czech Republic; e-mail: [email protected] 2 Department of Zoology, Oregon State University, Corvallis, Oregon, 97331 USA; e-mail: [email protected] A new protorculid gastropod genus, Chulitnacula, is based on Protorcula alaskana Smith, 1927, from the Chulitna terrane of south- central Alaska. The type species also occurs in two other accreted terranes of southern Alaska: 1.) in the Farewell terrane (Nixon Fork subterrane) of southwestern Alaska; and 2.) in the Alexander terrane of southeastern Alaska. This taxon is a common to dominant element in shallow-water, near-shore late Norian age strata of all of these terranes. It appears to be biogeographically significant in that while it so abundant in these southern Alaskan accreted terranes, it is completely unknown elsewhere in Upper Triassic para-autochthonous rocks of western North America (i.e. Nevada, Sonora). The occurrence of Chulitnacula alaskana (Smith, 1927) in the Chulitna, Farewell (Nixon Fork subterrane) and Alexander terranes suggests that they were in close reproductive communication in the Late Triassic. The absence of this taxon in either the Wrangellia terrane of southern Alaska and British Columbia, as well as in the related Wallowa terrane of northeast- ern Oregon and adjacent western Idaho is worthy of note. This absence plus many other major differences in their respective Late Triassic gastropod faunas indicate that the Chulitna-Farewell-Alexander terrane association was far removed from the Wrangellia-Wallowa terrane couplet.
    [Show full text]