Habitat Mapping of the Land and Vicinity of the United States Department of Energy (Doe) Portsmouth Gaseous Diffusion Plant (Ports) Pike County, Ohio

Total Page:16

File Type:pdf, Size:1020Kb

Habitat Mapping of the Land and Vicinity of the United States Department of Energy (Doe) Portsmouth Gaseous Diffusion Plant (Ports) Pike County, Ohio HABITAT MAPPING OF THE LAND AND VICINITY OF THE UNITED STATES DEPARTMENT OF ENERGY (DOE) PORTSMOUTH GASEOUS DIFFUSION PLANT (PORTS) PIKE COUNTY, OHIO Authors: Robert Wiley, Gary Conley, Steven Porter, David Simon, Natalie Kruse, Robert Eichenberg, and Jennifer Bowman Sponsored by Ohio University’s PORTSfuture Project The PORTSfuture project is funded by a grant from the U.S. Department of Energy Office of Environmental Management Portsmouth/Paducah Project Office Table of Contents List of Tables ............................................................................................................................................... iv List of Figures ............................................................................................................................................... v 1.0 Introduction ....................................................................................................................................... 1 Report Format ........................................................................................................................................... 2 Systematic Mapping of the Study Area .................................................................................................... 2 Study Area Description and Location ....................................................................................................... 3 Ecological Setting ..................................................................................................................................... 4 1.4.1 Climate .................................................................................................................................. 6 1.4.2 Air Quality ............................................................................................................................ 7 1.4.3 Geology ................................................................................................................................. 7 1.4.4 Soils ..................................................................................................................................... 12 1.4.5 Topography and Hydrography ............................................................................................ 13 2.0 Habitat Mapping ............................................................................................................................. 15 2.1 Existing Vegetation Habitats and Land Use Classification ........................................................ 19 2.1.1 Category 1: Surficial Geologic Features ............................................................................ 19 2.1.2 Category 2: Mature Upland Native Forest .......................................................................... 19 2.1.3 Category 3: Wetland Habitats ............................................................................................ 21 2.1.4 Category 4: Successional Upland Communities ................................................................ 22 2.1.5 Category 5: Agricultural Land Covers and Uses ............................................................... 24 2.1.6 Category 6: Maintained Vegetation ................................................................................... 24 2.1.7 Category 7: Transportation Features .................................................................................. 25 2.1.8 Anthropogenic Uses and Features ....................................................................................... 26 2.2 Mapping Process ......................................................................................................................... 27 2.2.1 Aerial Imagery and LiDAR ................................................................................................. 27 2.2.2 Canopy Height above Ground ............................................................................................. 27 2.2.3 8-Direction Aspect Map ...................................................................................................... 28 2.2.4 Slope Map ........................................................................................................................... 28 2.2.5 Drainage Network and Watershed Features ........................................................................ 28 2.2.6 Other Data Sources ............................................................................................................. 28 2.3 Field Data Collection .................................................................................................................. 29 2.3.1 Sample Point Setup and Sampling ...................................................................................... 30 2.3.1 Woody Vegetation Sampling .............................................................................................. 32 2.3.2 Herbaceous Vegetation Sampling. ...................................................................................... 33 2.3.3 Other Habitat Observations ................................................................................................. 34 Page i 2.3.4 Data Transfer and Storage and Quality Control .................................................................. 35 2.3.5 Quality Control Sampling ................................................................................................... 37 2.3.6 Quality Control of Field Forms ........................................................................................... 37 2.4 Plant Species List Development ................................................................................................. 38 2.5 Analytical Methods ..................................................................................................................... 39 2.5.1 Data Analysis Using SQL ................................................................................................... 39 2.5.2 Software Used ..................................................................................................................... 40 2.5.3 Woody Age ......................................................................................................................... 41 2.5.4 Importance Value ................................................................................................................ 41 2.5.5 Wetland Prevalence Index .................................................................................................. 43 2.5.6 Nativity, Native Status Index .............................................................................................. 44 2.5.7 Floristic Qualitative Assessment Index and the Coefficient of Conservatism. ................... 45 2.5.8 Species Diversity................................................................................................................. 46 2.5.9 Herbaceous Ground Cover Density .................................................................................... 47 2.5.10 Woody Stem Density .......................................................................................................... 47 2.5.11 Average Woody Diameter .................................................................................................. 47 2.5.12 Dominant Life Form ........................................................................................................... 48 2.5.13 Woody Vegetation Health ................................................................................................... 48 2.5.14 Reproduction ....................................................................................................................... 48 3.0 DISCUSSION OF FINDINGS ....................................................................................................... 49 3.1 Plant Species Statistics ................................................................................................................ 51 3.2 Dominant Stratum ....................................................................................................................... 55 3.3 Dominant Canopy Species .......................................................................................................... 55 3.4 Age of Stand ............................................................................................................................... 57 3.5 Site Occupation: Tree Size and Biomass .................................................................................... 58 3.6 Growth Rate of Woody Vegetation ............................................................................................ 59 3.7 Dominant Shrubs and Saplings ................................................................................................... 60 3.8 Dominant Woody Vines.............................................................................................................. 61 3.9 Dominant Herbaceous Stratum ................................................................................................... 62 3.10 Measures of Diversity ................................................................................................................. 63 3.11 Wetland Index ............................................................................................................................. 64 3.12 Nativity Index ............................................................................................................................. 64 3.13 Coefficient of Conservatism Value and Floristic Qualitative Assessment
Recommended publications
  • A Checklist of the Vascular Flora of the Mary K. Oxley Nature Center, Tulsa County, Oklahoma
    Oklahoma Native Plant Record 29 Volume 13, December 2013 A CHECKLIST OF THE VASCULAR FLORA OF THE MARY K. OXLEY NATURE CENTER, TULSA COUNTY, OKLAHOMA Amy K. Buthod Oklahoma Biological Survey Oklahoma Natural Heritage Inventory Robert Bebb Herbarium University of Oklahoma Norman, OK 73019-0575 (405) 325-4034 Email: [email protected] Keywords: flora, exotics, inventory ABSTRACT This paper reports the results of an inventory of the vascular flora of the Mary K. Oxley Nature Center in Tulsa, Oklahoma. A total of 342 taxa from 75 families and 237 genera were collected from four main vegetation types. The families Asteraceae and Poaceae were the largest, with 49 and 42 taxa, respectively. Fifty-eight exotic taxa were found, representing 17% of the total flora. Twelve taxa tracked by the Oklahoma Natural Heritage Inventory were present. INTRODUCTION clayey sediment (USDA Soil Conservation Service 1977). Climate is Subtropical The objective of this study was to Humid, and summers are humid and warm inventory the vascular plants of the Mary K. with a mean July temperature of 27.5° C Oxley Nature Center (ONC) and to prepare (81.5° F). Winters are mild and short with a a list and voucher specimens for Oxley mean January temperature of 1.5° C personnel to use in education and outreach. (34.7° F) (Trewartha 1968). Mean annual Located within the 1,165.0 ha (2878 ac) precipitation is 106.5 cm (41.929 in), with Mohawk Park in northwestern Tulsa most occurring in the spring and fall County (ONC headquarters located at (Oklahoma Climatological Survey 2013).
    [Show full text]
  • Licking Creek Woods
    LICKING CREEK WOODS The vegetation at this site in the southwestern-most portion of Franklin County has been significantly influenced by the limestone substrate of the forested hills, creek banks and rocky outcrops in this area. Though aerial observations seem to indicate nothing out of the ordinary in this corner of the county, the incredibly rich herbaceous vegetation found at this site makes it one of the top sites for the conservation of biological diversity in the County. This site contains one animal species of concern and a total of 17 plant species of concern, some species that do not occur anywhere else in the state. These species inhabit a variety of habitat types such as a floodplain forest, moist calcareous shale woods, limestone cliffs, mixed deciduous “rich” woods, mesic upland forest, etc. In addition to the plant species of special concern, this site also supports a number of species that are more typical of the Ohio River watershed in Pennsylvania and are therefore noteworthy for their occurrence in Franklin County. These species include Short’s Aster (Aster shortii), Dwarf Larkspur (Delphinium tricorne), Twinleaf (Jeffersonia diphylla), Miami-mist (Phacelia purshii), and Toadshade (Trillium sessile). In a study of plant diversity, a total of 253 plant species in 69 families were found within an area of about four hectares at this site. This entire area represents one of the most diverse plant areas in the state (Klotz and Walck, 1993). Several plant species of concern are found primarily on the rich, forested, calcareous slopes at this site. These include several populations of Jeweled Shooting-star (Dodecatheon meadia), a G5, S2 Pennsylvania-Threatened plant species of concern, a fair-quality population of Limestone Petunia (Ruellia strepens), a G4G5, S2 PA-Threatened plant species of concern, and a small population of Green and Gold (Chrysogonum virginianum), a G5, S1 PA-Endangered plant species of concern.
    [Show full text]
  • Keystone Ancient Forest Preserve Resource Management Plan 2011
    Keystone Ancient Forest Preserve Resource Management Plan 2011 Osage County & Tulsa County, Oklahoma Lowell Caneday, Ph.D. With Kaowen (Grace) Chang, Ph.D., Debra Jordan, Re.D., Michael J. Bradley, and Diane S. Hassell This page intentionally left blank. 2 Acknowledgements The authors acknowledge the assistance of numerous individuals in the preparation of this Resource Management Plan. On behalf of the Oklahoma Tourism and Recreation Department’s Division of State Parks, staff members were extremely helpful in providing access to information and in sharing of their time. In particular, this assistance was provided by Deby Snodgrass, Kris Marek, and Doug Hawthorne – all from the Oklahoma City office of the Oklahoma Tourism and Recreation Department. However, it was particularly the assistance provided by Grant Gerondale, Director of Parks and Recreation for the City of Sand Springs, Oklahoma, that initiated the work associated with this RMP. Grant provided a number of documents, hosted an on-site tour of the Ancient Forest, and shared his passion for this property. It is the purpose of the Resource Management Plan to be a living document to assist with decisions related to the resources within the park and the management of those resources. The authors’ desire is to assist decision-makers in providing high quality outdoor recreation experiences and resources for current visitors, while protecting the experiences and the resources for future generations. Lowell Caneday, Ph.D., Professor Leisure Studies Oklahoma State University Stillwater,
    [Show full text]
  • SPRING WILDFLOWERS of OHIO Field Guide DIVISION of WILDLIFE 2 INTRODUCTION This Booklet Is Produced by the ODNR Division of Wildlife As a Free Publication
    SPRING WILDFLOWERS OF OHIO field guide DIVISION OF WILDLIFE 2 INTRODUCTION This booklet is produced by the ODNR Division of Wildlife as a free publication. This booklet is not for resale. Any By Jim McCormac unauthorized reproduction is prohibited. All images within this booklet are copyrighted by the Division of Wild- life and it’s contributing artists and photographers. For additional information, please call 1-800-WILDLIFE. The Ohio Department of Natural Resources (ODNR) has a long history of promoting wildflower conservation and appreciation. ODNR’s landholdings include 21 state forests, 136 state nature preserves, 74 state parks, and 117 wildlife HOW TO USE THIS GUIDE areas. Collectively, these sites total nearly 600,000 acres Bloom Calendar Scientific Name (Scientific Name Pronunciation) Scientific Name and harbor some of the richest wildflower communities in MID MAR - MID APR Definition BLOOM: FEB MAR APR MAY JUN Ohio. In August of 1990, ODNR Division of Natural Areas and Sanguinaria canadensis (San-gwin-ar-ee-ah • can-ah-den-sis) Sanguinaria = blood, or bleeding • canadensis = of Canada Preserves (DNAP), published a wonderful publication entitled Common Name Bloodroot Ohio Wildflowers, with the tagline “Let Them Live in Your Eye Family Name POPPY FAMILY (Papaveraceae). 2 native Ohio species. DESCRIPTION: .CTIGUJQY[ƃQYGTYKVJPWOGTQWUYJKVGRGVCNU Not Die in Your Hand.” This booklet was authored by the GRJGOGTCNRGVCNUQHVGPHCNNKPIYKVJKPCFC[5KPINGNGCHGPYTCRU UVGOCVƃQYGTKPIVKOGGXGPVWCNN[GZRCPFUKPVQCNCTIGTQWPFGFNGCH YKVJNQDGFOCTIKPUCPFFGGRDCUCNUKPWU
    [Show full text]
  • Vascular Plant Inventory and Ecological Community Classification for Cumberland Gap National Historical Park
    VASCULAR PLANT INVENTORY AND ECOLOGICAL COMMUNITY CLASSIFICATION FOR CUMBERLAND GAP NATIONAL HISTORICAL PARK Report for the Vertebrate and Vascular Plant Inventories: Appalachian Highlands and Cumberland/Piedmont Networks Prepared by NatureServe for the National Park Service Southeast Regional Office March 2006 NatureServe is a non-profit organization providing the scientific knowledge that forms the basis for effective conservation action. Citation: Rickie D. White, Jr. 2006. Vascular Plant Inventory and Ecological Community Classification for Cumberland Gap National Historical Park. Durham, North Carolina: NatureServe. © 2006 NatureServe NatureServe 6114 Fayetteville Road, Suite 109 Durham, NC 27713 919-484-7857 International Headquarters 1101 Wilson Boulevard, 15th Floor Arlington, Virginia 22209 www.natureserve.org National Park Service Southeast Regional Office Atlanta Federal Center 1924 Building 100 Alabama Street, S.W. Atlanta, GA 30303 The view and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Government. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Government. This report consists of the main report along with a series of appendices with information about the plants and plant (ecological) communities found at the site. Electronic files have been provided to the National Park Service in addition to hard copies. Current information on all communities described here can be found on NatureServe Explorer at www.natureserveexplorer.org. Cover photo: Red cedar snag above White Rocks at Cumberland Gap National Historical Park. Photo by Rickie White. ii Acknowledgments I wish to thank all park employees, co-workers, volunteers, and academics who helped with aspects of the preparation, field work, specimen identification, and report writing for this project.
    [Show full text]
  • Entomologia Experimentalis Et Applicata 150: 217–225, 2014 217 218 Murphy Et Al
    DOI: 10.1111/eea.12155 Host ontogeny determines parasitoid use of a forest caterpillar Shannon M. Murphy1*, Teresa M. Stoepler2§, Kylee Grenis1 & John T. Lill2 1Department of Biological Sciences, University of Denver, Denver, CO, USA, and 2Department of Biological Sciences, George Washington University, Washington, DC, USA Accepted: 5 November 2013 Key words: complementary predation, niche partitioning, ontogenetic niche, size-structured parasitism, trophic interaction, Euclea delphinii,Limacodidae,Lepidoptera,Hymenoptera,Diptera Abstract For most organisms, patterns of natural enemy-mediated mortality change over the course of devel- opment. Shifts in enemy pressure are particularly relevant for organisms that exhibit exponential growth during development, such as juvenile insects that increase their mass by several orders of magnitude. As one of the dominant groups of insect herbivores in most terrestrial plant communi- ties, larval lepidopterans (caterpillars) are host to a diverse array of parasitoids. Previous research has described how the frequency of herbivore parasitism varies among host plants or habitats, but much less is known about how parasitism pressure changes during host development. To test whether the two major parasitoid taxa, wasps and flies, differentially attack shared hosts based on host develop- mental stage, we simultaneously exposed early- and late-instar Euclea delphinii Boisduval (Lepido- ptera: Limacodidae) caterpillars to parasitism in the field. We found strong evidence that parasitoids partition hosts by size; adult female wasps preferentially parasitized small caterpillars, whereas adult female flies preferred to attack large caterpillars. Our results demonstrate that host ontogeny is a major determinant of parasitoid host selection. Documenting how shifts in enemy pressure vary with development is important to understanding both the population biology and evolutionary ecology of prey species and their enemies.
    [Show full text]
  • Restoring Palouse and Canyon Grasslands: Putting Back the Missing Pieces
    TECHNICAL BULLETIN NO. 01-15 IDAHO BUREAU OF LAND MANAGEMENT AUGUST 2001 RESTORING PALOUSE AND CANYON GRASSLANDS: PUTTING BACK THE MISSING PIECES Compiled and Edited by Bertie J. Weddell Restoring Palouse and Canyon Grasslands: Putting Back the Missing Pieces A. Restoration of Palouse and Canyon Grasslands: A Review. B.J. Weddell and J. Lichthardt B. Soil Biological fingerprints from Meadow Steppe and Steppe Communities with Native and Non-native Vegetation. B.J. Weddell, P. Frohne, and A.C. Kennedy C. Experimental Test of Microbial Biocontrol of Cheatgrass. B.J. Weddell, A. Kennedy, P. Frohne, and S. Higgins D. Experimental Test of the Effects of Erosion Control Blankets on the Survival of Bluebunch Wheatgrass Plugs. B.J. Weddell Complied and edited by Bertie J. Weddell dRaba Consulting 1415 NW State Street Pullman, WA 99163 March 2000 for the Bureau of Land Management Cottonwood Field Office Route 3, Box 181 Cottonwood, ID 83522 Table of Contents Contributors ----------------------------------------------------------------------------------------------- iii Acknowledgments ---------------------------------------------------------------------------------------- iv Overview --------------------------------------------------------------------------------------------------- v 1. Restoration of Palouse and Canyon Grasslands: A Review, B.J. Weddell and J. Lichthardt -------------------------------------------------------------------------------------------- 1 1.1 Introduction ----------------------------------------------------------------------------------------
    [Show full text]
  • Pharmacologyonline 3: 716-723 (2009) Ebrahimzadeh Et
    Pharmacologyonline 3: 716-723 (2009) Ebrahimzadeh et al. ATIOXIDAT AD ATIHEMOLYTIC ACTIVITIES OF CRUCIAELLA SITEISII Ebrahimzadeh M.A.1, Rahmani Z.2, Eslami B.3, Nabavi S.F.1,4 and Nabavi S.M.1,5* 1. Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Sciences , Sari , Iran . Tel : + 98 151 3543081 3- ; fax : + 98 151 3543084 . -E mail : Nabavi 208 @gmail .com 2. Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. 3. Department of Biology, Islamic Azad University of Ghaemshahr, Iran 4. Student Research Development Committee, Mazandaran University of Medical Sciences, Sari, Iran 5. Department of Biology, University of Mazandaran, Babolsar, Iran Summary In this study antioxidant and antihemolytic effect of hydroalcoholic extract of Crucianella sintenisii was evaluated using nitric oxide and hydrogen peroxide radicals scavenging, ferrous ion chelating, hemoglobin induced linoleic acid and hydrogen peroxide induced hemolysis assays. The hydroalcoholic extract showed different activity in all antioxidant assays and contained a high level of total phenolic and -1 flavonoid contents. IC 50 values were 885.8 ± 39.29 and 386.2 ± 18.7 µg ml in hydrogen peroxide and nitric oxide radicals inhibition, respectively. The extract also exhibited weak activity in ferrous ion chelating. Key words: Antioxidant activity, Crucianella sintenisii , flavonoids, nitric oxide Introduction Free radicals and reactive oxygen species (ROS) are well known inducers of cellular and tissue pathogenesis leading to several human diseases such as cancer, inflammatory disorders, as well as in aging processes [1]. Much research into free radicals has confirmed that foods or plants rich in antioxidants play an essential role in the prevention of free radical related diseases [2, 3].
    [Show full text]
  • Rubiaceae): Evolution of Major Clades, Development of Leaf-Like Whorls, and Biogeography
    TAXON 59 (3) • June 2010: 755–771 Soza & Olmstead • Molecular systematics of Rubieae Molecular systematics of tribe Rubieae (Rubiaceae): Evolution of major clades, development of leaf-like whorls, and biogeography Valerie L. Soza & Richard G. Olmstead Department of Biology, University of Washington, Box 355325, Seattle, Washington 98195-5325, U.S.A. Author for correspondence: Valerie L. Soza, [email protected] Abstract Rubieae are centered in temperate regions and characterized by whorls of leaf-like structures on their stems. Previous studies that primarily included Old World taxa identified seven major clades with no resolution between and within clades. In this study, a molecular phylogeny of the tribe, based on three chloroplast regions (rpoB-trnC, trnC-psbM, trnL-trnF-ndhJ) from 126 Old and New World taxa, is estimated using parsimony and Bayesian analyses. Seven major clades are strongly supported within the tribe, confirming previous studies. Relationships within and between these seven major clades are also strongly supported. In addition, the position of Callipeltis, a previously unsampled genus, is identified. The resulting phylogeny is used to examine geographic distribution patterns and evolution of leaf-like whorls in the tribe. An Old World origin of the tribe is inferred from parsimony and likelihood ancestral state reconstructions. At least eight subsequent dispersal events into North America occurred from Old World ancestors. From one of these dispersal events, a radiation into North America, followed by subsequent diversification in South America, occurred. Parsimony and likelihood ancestral state reconstructions infer the ancestral whorl morphology of the tribe as composed of six organs. Whorls composed of four organs are derived from whorls with six or more organs.
    [Show full text]
  • Red List of Vascular Plants of the Czech Republic: 3Rd Edition
    Preslia 84: 631–645, 2012 631 Red List of vascular plants of the Czech Republic: 3rd edition Červený seznam cévnatých rostlin České republiky: třetí vydání Dedicated to the centenary of the Czech Botanical Society (1912–2012) VítGrulich Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic, e-mail: [email protected] Grulich V. (2012): Red List of vascular plants of the Czech Republic: 3rd edition. – Preslia 84: 631–645. The knowledge of the flora of the Czech Republic has substantially improved since the second ver- sion of the national Red List was published, mainly due to large-scale field recording during the last decade and the resulting large national databases. In this paper, an updated Red List is presented and compared with the previous editions of 1979 and 2000. The complete updated Red List consists of 1720 taxa (listed in Electronic Appendix 1), accounting for more then a half (59.2%) of the native flora of the Czech Republic. Of the Red-Listed taxa, 156 (9.1% of the total number on the list) are in the A categories, which include taxa that have vanished from the flora or are not known to occur at present, 471 (27.4%) are classified as critically threatened, 357 (20.8%) as threatened and 356 (20.7%) as endangered. From 1979 to 2000 to 2012, there has been an increase in the total number of taxa included in the Red List (from 1190 to 1627 to 1720) and in most categories, mainly for the following reasons: (i) The continuing human pressure on many natural and semi-natural habitats is reflected in the increased vulnerability or level of threat to many vascular plants; some vulnerable species therefore became endangered, those endangered critically threatened, while species until recently not classified may be included in the Red List as vulnerable or even endangered.
    [Show full text]
  • Oklahoma Native Plant Record, Volume 17, Number 1, December
    Oklahoma Native Plant Record 53 Volume 17, December 2017 VASCULAR FLORA OF E. C. HAFER PARK, EDMOND, OKLAHOMA Gloria M. Caddell Katie Christoffel Carmen Esqueda Alonna Smith Department of Biology University of Central Oklahoma Edmond, OK 73007 [email protected] Keywords: floristic inventory, urban park, Cross Timbers, non-native, invasive ABSTRACT E. C. Hafer Park is located on the western edge of the Cross Timbers ecoregion, in central Oklahoma within the City of Edmond. The park contains post oak-blackjack oak forest, tallgrass prairie, riparian forest, and areas developed for recreational activities. A vascular plant inventory conducted during 2013, 2015, 2016, and 2017 yielded 270 species in 190 genera and 65 families. The largest families were the Asteraceae (46 species), Poaceae (42), and Fabaceae (27). There were 96 annuals, four biennials, and 170 perennials. Sixty species (22.2%) were not native to the United States. No rare species currently being tracked by the Oklahoma Natural Heritage Inventory were present. Compared to floristic inventories for other sites of similar size in Oklahoma, Hafer Park has a relatively high number of species. However, it also has a relatively high percentage of exotic species from other continents, some of which are invasive and are threatening the native forest, grassland, and riparian plant communities. INTRODUCTION groups. For vascular plants, however, urban parks often have a large percentage of exotic Efforts to protect biodiversity often species, sometimes over 50% (Nielsen et al. focus on large natural habitats outside of 2013). highly urbanized locations, but efforts Palmer et al. (1995) summarized the should also be made to preserve and importance of floristic inventories in promote biodiversity in urban forests and providing data for research on biodiversity, other urban green spaces that have environmental impact assessment, and maintained relatively high levels of management decisions.
    [Show full text]
  • Chapter 4 Native Plants for Landscape Use in Kentucky
    Chapter 4 Native Plants for Landscape Use In Kentucky A publication of the Louisville Water Company Wellhead Protection Plan, Phase III Source Reduction Grant # X9-96479407-0 Chapter 4 Native Plants for Landscape Use in Kentucky Native Wildflowers and Ferns The U. S. Department of Transportation, (US DOT), has developed a listing of native plants, (ferns, annuals, perennials, shrubs, and trees), that may be used in landscaping in the State of Kentucky. Other agencies have also developed listings of native plants, which have been integrated into the list within this guidebook. While this list is, by no means, a complete report of the native species that may be found in Kentucky, it offers a starting point for additional research, should the homeowner wish to find additional KY native plants for use in a landscape design, or to check if a plant is native to the State. A reference book titled Wildflowers and Ferns of Kentucky, which was recommended by personnel at the Salato Wildlife Center as an excellent reference for native plants, was also used to develop the list. (A full bibliography is listed at the end of this chapter.) While many horticultural and botanical experts may dispute the inclusion of specific plants on the listing, or wish to add more plants, the list represents the latest information available for research, by the amateur, at the time. The information listed within the list was taken at face value, and no judgment calls were made about the suitability of plants for the list. The author makes no claims as to the completeness, accuracy, or timeliness of this list.
    [Show full text]