Mechanisms of Homing in the Fiddler Crab Uca Rapax

Total Page:16

File Type:pdf, Size:1020Kb

Mechanisms of Homing in the Fiddler Crab Uca Rapax The Journal of Experimental Biology 206, 4425-4442 4425 © 2003 The Company of Biologists Ltd doi:10.1242/jeb.00661 Mechanisms of homing in the fiddler crab Uca rapax 2. Information sources and frame of reference for a path integration system John E. Layne*, W. Jon P. Barnes and Lindsey M. J. Duncan Division of Environmental and Evolutionary Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK *Author for correspondence at present address: Department of Entomology, Cornell University, Ithaca, NY 14853, USA (e-mail: [email protected]) Accepted 11 August 2003 Summary Fiddler crabs Uca rapax are central-place foragers, the digitized paths of the real crabs. The home vector making feeding excursions of up to several meters from computed by the model crab was then compared to the their burrows. This study investigates the sources of homing direction observed in the real crab. The model directional and distance information used by these crabs home vector that most closely matched that of the real when returning to their burrows. We tested the spatial crab was taken to comprise the path integration frame of reference (egocentric or exocentric), and the mechanism employed by fiddler crabs. The model that source of spatial information (idiothetic or allothetic) used best matched the real crab gained direction and distance during homing. We also tested which components of their idiothetically (from internal sources such as locomotion they integrated (only voluntary, or voluntary proprioceptors), and integrated only voluntary plus reflexive). locomotory information. Fiddler crabs in their natural mudflat habitat were Crabs were also made to run home across a patch of wet passively rotated during normal foraging behavior using acetate, on which they slipped and were thus forced to experimenter-controlled disks, before they returned home. take more steps on the homeward path than theoretically Crabs resisted passive rotations on the disk by counter- required by the home vector. Crabs whose running rotating when the disk turned, which was a compensatory velocity across the patch was unusually low also stopped response to unintended movement. Crabs were usually short of their burrow before finding it. Crabs whose situated eccentrically on the disk, and therefore were also running velocity was not impeded by the patch did not subjected to a translation when the disk rotated. No crab stop short, but ran straight to the burrow entrance, as did actively compensated for this translation. Crabs that fully control crabs that ran home with no slippery patch. We compensated for disk rotation made no directional homing interpret this to mean that the velocity of some crabs was error. Crabs that did not fully compensate homed in a impeded because of slipping, and these therefore stopped direction that reflected their new body orientation. In short of their burrow after having run out their homing other words, if we succeeded in reorienting a crab (i.e. it vector. This is positive evidence in support of the undercompensated for disk rotation), its homing error hypothesis that path integration is mediated either by leg was equal to the angle by which it had been reoriented, proprioceptors or by efferent commands, but our data do regardless of the magnitude of the optomotor not allow us to distinguish between these two possibilities. compensation. Computer-modelled crabs, each equipped with a path integrator utilizing different combinations of external Key words: fiddler crab, Uca rapax, path integration, homing, spatial (allothetic) and path-related (idiothetic) input, traversed orientation, optomotor response, central-place forager. Introduction In order to return to a place they have previously visited, current location with the goal (for example reviews, see many animals use a form of coding of their movements, called Schöne, 1984; Gallistel, 1990; Papi, 1990, 1992; Wehner, path integration by Mittelstaedt and Mittelstaedt (1980), 1992; Maurer and Seguinot, 1995; Etienne et al., 1996; wherein information arising from the animal’s own movement Benhamou and Poucet, 1996; Wehner, 1996; Benhamou, 1997; is used to update the animal’s memory of its position Healy, 1998; Capaldi et al., 1999; Giurfa and Capaldi, 1999; continuously in the form of a vector joining the animal’s Redish, 1999; Collett and Collett, 2000). Thus a desert ant, 4426 J. E. Layne, W. J. P. Barnes and L. M. J. Duncan having reached a feeding site over 100·m from home after egocentric home vector (see Benhamou et al., 1990). In any following a sinuous path several hundred meters long, is able, case, this categorization of the source of sensory information using path integration, to return home in a straight line marks the starting point for the study of the sense organs (Wehner and Wehner, 1990). involved, from which point work on the neurophysiology of To understand how an animal homes – that is, returns to a path integration can proceed. place previously visited – there are two pre-eminent questions Homing in fiddler crabs is of particular interest for a number to be answered. First, what is the frame of reference – of reasons. They are central-place foragers with a uniquely egocentric or exocentric – in which the goal location is strong attachment to their point of reference (von Hagen, 1967; encoded? There is ambiguity in the literature about what Land and Layne, 1995; Zeil, 1998; Layne et al., 2003). Indeed, constitutes egocentric and exocentric reference systems they maintain a fairly rigid orientation relative to it by pointing (Etienne et al., 1999). Path integration was originally the transverse axis of their body more or less towards home formulated in exocentric coordinates (Mittelstaedt and throughout their foraging excursions. Thus, for the study of Mittelstaedt, 1973); it might conceivably be encoded that way, homing, fiddler crabs are exceptional in that they may not have and this can be explicitly tested (Benhamou, 1997). A defining to return home in order to give an observer a read-out of their feature of an egocentric reference system is that the home notion of the direction of home. They also have an unusual vector is head-referred, that is, the goal direction is at all times mode of locomotion in that, like most other crabs, they can specified by an angle relative to the animal’s head or walk in virtually any direction relative to their body axis. anterior/posterior body axis. This does not preclude the use of Therefore, a change in direction of travel can be effected by a an external compass for estimating changes in direction during change in walking direction, with no body turn necessary an excursion, which may then be integrated to update the head- (Barnes, 1990). This gives them an additional degree of referred direction of home without reference to the absolute freedom compared to forward-walking animals, but also compass direction. In contrast to this, in an exocentric frame additional sensory information that must be integrated. of reference (also called geocentric, allocentric or earth-bound) Path integration appears to be the principal mode of homing the goal location is specified in terms of its relation to, for in all fiddler crabs during their short-range foraging excursions. instance, the spatial layout of landmarks in the region of the However, evidence for the cues relevant to this task is largely goal, or by a home vector whose direction is specified by an inconclusive or incomplete (Vannini and Cannicci, 1995), and angle relative to the sun’s azimuth or to arbitrary earth-bound we are still largely ignorant of the sensory systems involved. axes, regardless of the current orientation of the animal’s head. The fact that all fiddler crab species tested ignore landmarks An effective way to distinguish between ego- and exocentric near their burrows when displaced a short distance (von Hagen, systems, then, is to passively rotate animals in the presence of 1967; Zeil, 1998; Cannicci et al., 1999; Layne et al., 2003) stationary external cues, or in the dark if the animals are also suggests that the relevant spatial information does not include known to utilize exocentric landmarks. The home vector local landmarks. However, it may still include global cues, (generated under the particular experimental conditions) is such as the sun, and it has been suggested that fiddler crabs use truly egocentric if the animals make a directional homing error an exocentric compass to maintain body orientation (Zeil, equal to the amount by which they were rotated. This approach 1998). This indicates not only that they might utilize allothetic can be confounded if the animals sense and integrate passive direction information, but it also raises the question of whether rotations, for instance via the vestibular system (Etienne, 1980; the home vector direction might be coded with respect to the Etienne et al., 1986). The apparent ‘internal compass’ resulting same exocentric cue. from this integration does not indicate a true absolute reference The present paper is devoted to identifying fiddler crabs’ or compass, however, but rather a sensitive integration spatial frame of reference (exo- or egocentric), and their apparatus, which can be overcome if the animals are rotated at sources of spatial information (allo- or idiothetic) using two low angular velocities (Mittelstaedt and Mittelstaedt, 1980, types of experiment: passive rotation, and running on a 1982). slippery patch where distance covered per step was often The second question to be answered, irrespective of whether reduced. In the former, we passively reoriented the crabs the frame of reference is egocentric or exocentric, is what is relative to their natural surroundings, and observed their the source of spatial information used to compute the home attempts to return home. Specific hypotheses about the vector? This may be idiothetic or allothetic, depending on information used in path integration were tested by digitally, whether the spatial information to be integrated is internal or recursively reconstructing the paths while altering or removing external, respectively, to the animal.
Recommended publications
  • The Fiddler Crab Claw-Waving Display
    The Fiddler Crab Claw-waving Display: An analysis of the structure and function of a movement-based visual signal Martin J. How A thesis submitted for the degree of Doctor of Philosophy from The Australian National University October 2007 i Title page: Photograph of a male Uca mjoebergi in mid-wave. ii Declaration This thesis is an account of research undertaken between March 2004 and September 2007 at the Research School of Biological Sciences, The Australian National University, Canberra, Australia. Except where acknowledged in the customary manner, the material presented in this thesis is, to the best of my knowledge, original and has not been submitted in whole or in part for a degree in any other university. I am the senior author and the principal contributor to all aspects of the co-authored papers within. ……………………………………… Martin J. How iii iv Abstract Communication is an essential component of animal social systems and a diverse suite of signals can be found in the natural environment. An area of animal communication that, for technical reasons, we know very little about is the field of ‘movement-based’ or ‘dynamic’ visual signals. In this thesis, I make use of recent advances in measurement and analysis techniques, including digital video and image motion processing tools, to improve our understanding of how movement-based signals are adjusted according to signalling context. I measured and characterised the flamboyant claw-waving displays of male fiddler crabs (Genus Uca ) and made use of their transparent lifestyle to record the behavioural contexts in which these signals are produced The claw-waving displays of seven Australian species of fiddler crab are compared and contrasted to show that these signals are species-specific, but also vary within and between individuals.
    [Show full text]
  • Diversity and Life-Cycle Analysis of Pacific Ocean Zooplankton by Video Microscopy and DNA Barcoding: Crustacea
    Journal of Aquaculture & Marine Biology Research Article Open Access Diversity and life-cycle analysis of Pacific Ocean zooplankton by video microscopy and DNA barcoding: Crustacea Abstract Volume 10 Issue 3 - 2021 Determining the DNA sequencing of a small element in the mitochondrial DNA (DNA Peter Bryant,1 Timothy Arehart2 barcoding) makes it possible to easily identify individuals of different larval stages of 1Department of Developmental and Cell Biology, University of marine crustaceans without the need for laboratory rearing. It can also be used to construct California, USA taxonomic trees, although it is not yet clear to what extent this barcode-based taxonomy 2Crystal Cove Conservancy, Newport Coast, CA, USA reflects more traditional morphological or molecular taxonomy. Collections of zooplankton were made using conventional plankton nets in Newport Bay and the Pacific Ocean near Correspondence: Peter Bryant, Department of Newport Beach, California (Lat. 33.628342, Long. -117.927933) between May 2013 and Developmental and Cell Biology, University of California, USA, January 2020, and individual crustacean specimens were documented by video microscopy. Email Adult crustaceans were collected from solid substrates in the same areas. Specimens were preserved in ethanol and sent to the Canadian Centre for DNA Barcoding at the Received: June 03, 2021 | Published: July 26, 2021 University of Guelph, Ontario, Canada for sequencing of the COI DNA barcode. From 1042 specimens, 544 COI sequences were obtained falling into 199 Barcode Identification Numbers (BINs), of which 76 correspond to recognized species. For 15 species of decapods (Loxorhynchus grandis, Pelia tumida, Pugettia dalli, Metacarcinus anthonyi, Metacarcinus gracilis, Pachygrapsus crassipes, Pleuroncodes planipes, Lophopanopeus sp., Pinnixa franciscana, Pinnixa tubicola, Pagurus longicarpus, Petrolisthes cabrilloi, Portunus xantusii, Hemigrapsus oregonensis, Heptacarpus brevirostris), DNA barcoding allowed the matching of different life-cycle stages (zoea, megalops, adult).
    [Show full text]
  • Salt Marsh Food Web a Food Chain Shows How Each Living Thing Gets Its Food
    North Carolina Aquariums Education Section Salt Marsh Food Web A food chain shows how each living thing gets its food. Some animals eat plants and some animals eat other animals. For example, a simple food chain links the plants, snails (that eats the plants), and the birds (that eat the snails). Each link in this chain is food for the next link. Food Webs are networks of several food chains. They show how plants and animals are connected in many ways to help them all survive. Below are some helpful terms associated with food chains and food webs. Helpful Terms Ecosystem- is a community of living and non-living things that work together. Producers- are plants that make their own food or energy. Consumers-are animals, since they are unable to produce their own food, they must consume (eat) plants or animals or both. There are three types of consumers: Herbivores-are animals that eat only plants. Carnivores- are animals that eat other animals. Omnivores- are animals that eat both plants and animals. Decomposers-are bacteria or fungi which feed on decaying matter. They are very important for any ecosystem. If they weren't in the ecosystem, the plants would not get essential nutrients, and dead matter and waste would pile up. Salt Marsh Food Web Activities The salt marsh houses many different plants and animals that eat each other, which is an intricately woven web of producers, consumers, and decomposers. Consumers usually eat more than one type of food, and they may be eaten by many other consumers. This means that several food chains become connected together to form a food web.
    [Show full text]
  • Redalyc.Redescription of the Fiddler Crab Uca Spinicarpa Rathbun, 1900
    Latin American Journal of Aquatic Research E-ISSN: 0718-560X [email protected] Pontificia Universidad Católica de Valparaíso Chile Arruda Bezerra, Luis; Alves Coelho, Petrônio Redescription of the fiddler crab Uca spinicarpa Rathbun, 1900 (Decapoda: Ocypodidae) Latin American Journal of Aquatic Research, vol. 38, núm. 2, julio, 2010, pp. 270-273 Pontificia Universidad Católica de Valparaíso Valparaiso, Chile Available in: http://www.redalyc.org/articulo.oa?id=175015266012 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Lat. Am. J. Aquat. Res., 38(2): 270-273, 2010 Lat. Am. J. Aquat. Res. 270 DOI: 10.3856/vol38-issue2-fulltext-12 Short Communication Redescription of the fiddler crab Uca spinicarpa Rathbun, 1900 (Decapoda: Ocypodidae) Luis Arruda Bezerra1 & Petrônio Alves Coelho1 1Programa de Pós-Graduação em Oceanografia, Departamento de Oceanografia Universidade Federal de Pernambuco Avenida da Arquitetura, S/N, 50740-550, Recife, Pernambuco, Brazil ABSTRACT. The fiddler crab Uca spinicarpa was presented by M.J. Rathbun; however, no original description or figures were provived. The species was presented in a key and the registration number of the type material mentioned. Thus, a redescription and figures of this species based on a specimen from the type locality are provided herein. Additional morphological characters based on specimens deposited in the National Museum of Natural History (Smithsonian Institution), Washington, DC, and in the American Museum of Natural History, New York City, as well as remarks regarding its geographic distribution are also provided.
    [Show full text]
  • Uca Rapax (Mudflat Fiddler Crab)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Uca rapax (Mudflat Fiddler Crab) Order: Decapoda (Crabs, Lobsters and Shrimps) Class: Malacostraca (Crustaceans: Crabs, Sand-hoppers and Woodlice) Phylum: Arthropoda (Arthropods) Fig. 1. Mudflat fiddler crab, Uca rapax. [http://ocean.si.edu/mangroves, downloaded 10 March 2016] TRAITS. The mudflat fiddler crab Uca rapax is considered dimorphic since the males have a large claw on one side of the body (Fig. 1) and the females have two small claws. Males are also larger in body size: in Brazil, the carapace width at maturity was 13-15mm in males and 11- 12mm in females (Castiglioni and Negreiros-Fransozo, 2004). Both females and males are generally greyish-white in colour, but green to blue can be seen in the large claw and the eyestalks. Colour is dependent upon environmental factors, and hints of orange and yellow are also found in the claws. Fiddler crabs are darker during the day time and light during the night (Tpwd.Texas.Gov., 2016). DISTRIBUTION. Uca rapax is found along tropical coasts of the USA (southern Florida, Texas), West Indies and the Caribbean, and Brazil (Fig. 2). HABITAT AND ACTIVITY. As the name suggests (mud fiddler crab), they reside in intertidal zones of muddy areas of the salt marsh and mangroves (Figueiredo et al., 2008) (Fig. 3). The soft mud is not only home to these creatures but also their feeding ground and protection. Uca rapax are diurnal, skilled at burrowing into the mud, creating holes that provide a nest for their young, privacy for mating, for sleeping and in the colder regions “hibernation” during the winter UWI The Online Guide to the Animals of Trinidad and Tobago Ecology (Gcrl.Usm.Edu., 2016).
    [Show full text]
  • Formatting Your Paper for Submission in the Moorea
    RECOVERY OF THE TERRESTRIAL CRAB CARDISOMA CARNIFEX AFTER BURROW DISTURBANCE JACQUELINE M. HURLEY Integrative Biology, University of California, Berkeley, California 94720 USA Abstract. The importance of disturbance ecology grows as pristine habitat becomes increasingly encroached upon by land use change. This study focuses on the behavior of the burrowing terrestrial crab Cardisoma carnifex (Herbst 1794) on the island of Moorea after its semi‐permanent burrow was disrupted. In the first manipulation, a set of four disturbance treatments was applied to burrows in sand and dirt substrate to examine recovery time. The second manipulation increased the intensity of the disturbance to see if the crabs’ strategies change. The results showed a significant increase in recovery time with the intensity of disturbance in dirt substrates, but not in sand. There was also a significant combined effect of treatment and substrate type on recovery. The second set of data showed the same set of recovery strategies even as the disturbances were more intense. This shows that these crabs can restore their burrows in relatively lows level of disturbance, but it remains to be seen how they and other species cope with larger scale influences such as urbanization. Key words: disturbance ecology; Cardisoma carnifex; crustacean; recovery; burrowing behavior; Society Islands; French Polynesia INTRODUCTION subject to disturbances of both natural and anthropogenic causes. Due to its proximity to As the world becomes more influenced by picturesque ocean views, crab habitat is often development, organisms are faced with the paved over or landscaped for developmental constant requirement to adapt their behavior purposes. The soils are compacted for roads, to their changing surroundings, i.e.
    [Show full text]
  • Pine Island Flatwoods Preserve Wildlife Species List
    Appendix C: Wildlife Species List for Pine Island Flatwoods Preserve Designated Status Scientific Name Common Name FWC FWS FNAI MAMMALS Family: Didelphidae (opossums) Didelphis virginiana Virginia opossum Family: Dasypodidae (armadillos) Dasypus novemcinctus nine-banded armadillo * Family: Muridae (mice and rats) Oryzomys palustris marsh rice rat Sigmodon hispidus hispid cotton rat Family: Leporidae (rabbits and hares) Sylvilagus floridanus eastern cottontail Family: Talpidae (moles) Scalopus aquaticus eastern mole Family: Felidae (cats) Lynx rufus bobcat Family: Procyonidae (raccoons) Procyon lotor raccoon Family: Suidae (old world swine) Sus scrofa feral hog * BIRDS Family: Anatidae (swans, geese and ducks) Subfamily: Anatinae Anas fulvigula mottled duck Family: Ciconiidae (storks) Mycteria americana wood stork E E G4/S2 Family: Fregatidae (frigatebirds) Fregata magnificens magnificent frigatebird G5/S1 Family: Phalacrocoracidae (cormorants) Phalacrocorax auritus double-crested cormorant Family: Anhingidae (anhingas) Anhinga anhinga anhinga Family: Pelecanidae (pelicans) Pelecanus erythrorhynchos American white pelican Pelecanus occidentalis brown pelican SSC G4/S3 Family: Ardeidae (herons, egrets, bitterns) Ardea herodius great blue heron Ardea alba great egret G5/S4 Egretta thula snowy egret SSC G5/S3 Egretta caerulea little blue heron SSC G5/S4 Egretta tricolor tricolored heron SSC G5/S4 Egretta rufescens reddish egret SSC G4/S2 Bubulcus ibis cattle egret Family: Threskiornithidae (ibises and spoonbills) Subfamily: Threshiornithinae
    [Show full text]
  • Millipede Fiddler Crab African Dwarf Frog
    Name: ____________________________________________________________________________ SCIENCE – Animal Studies MILLIPEDE FIDDLER CRAB AFRICAN DWARF FROG damp/moist, dark, leafy, rocky brackish (salty) marshes fresh water (pond in Africa) ground low-lying wetlands/beaches elodea and gravel habitat about 5 inches long, antennas 2 inches / male has 1 larger claw 1 ½ inches in length purplish/black/brown/reddish/orange exoskeleton green/tan/brown (underbelly is lighter) segmented body spotted body look like a worm/round head jointed appendages lighter underbelly size/color/ appearance short stubbly jointed appendages/legs eye stalks slimy covering / webbed feet hard outer shell small pointed head arthropod or amphibian arthropod or amphibian arthropod or amphibian vertebrate or invertebrate vertebrate or invertebrate vertebrate or invertebrate species curls up – curls itself up so you jointed legs and arms – help it don’t see its belly to protect camouflage - change color to swim and jump – webbed stomach/legs – also plays dead exoskeleton – for protection hands/feet stink glands – releases yellow, regeneration - regrow body camouflage – color helps it to smelly liquid to keep predators parts hide in elodea and gravel – also away burrows – dig into sand to hide has countershading (belly is light exoskeleton – hard outer shell from predators and back is dark) protects its skin and belly male’s big claw is used for burbles – breathes on surface of (3 per animal) (3 per unique adaptations unique camouflage – blends into defense and attracting females water environment molts nerves to sense predators burrows for protection estivates to cool down body in molts heat molts .
    [Show full text]
  • Hermit Crabs - Paguridae and Diogenidae
    Identification Guide to Marine Invertebrates of Texas by Brenda Bowling Texas Parks and Wildlife Department April 12, 2019 Version 4 Page 1 Marine Crabs of Texas Mole crab Yellow box crab Giant hermit Surf hermit Lepidopa benedicti Calappa sulcata Petrochirus diogenes Isocheles wurdemanni Family Albuneidae Family Calappidae Family Diogenidae Family Diogenidae Blue-spot hermit Thinstripe hermit Blue land crab Flecked box crab Paguristes hummi Clibanarius vittatus Cardisoma guanhumi Hepatus pudibundus Family Diogenidae Family Diogenidae Family Gecarcinidae Family Hepatidae Calico box crab Puerto Rican sand crab False arrow crab Pink purse crab Hepatus epheliticus Emerita portoricensis Metoporhaphis calcarata Persephona crinita Family Hepatidae Family Hippidae Family Inachidae Family Leucosiidae Mottled purse crab Stone crab Red-jointed fiddler crab Atlantic ghost crab Persephona mediterranea Menippe adina Uca minax Ocypode quadrata Family Leucosiidae Family Menippidae Family Ocypodidae Family Ocypodidae Mudflat fiddler crab Spined fiddler crab Longwrist hermit Flatclaw hermit Uca rapax Uca spinicarpa Pagurus longicarpus Pagurus pollicaris Family Ocypodidae Family Ocypodidae Family Paguridae Family Paguridae Dimpled hermit Brown banded hermit Flatback mud crab Estuarine mud crab Pagurus impressus Pagurus annulipes Eurypanopeus depressus Rithropanopeus harrisii Family Paguridae Family Paguridae Family Panopeidae Family Panopeidae Page 2 Smooth mud crab Gulf grassflat crab Oystershell mud crab Saltmarsh mud crab Hexapanopeus angustifrons Dyspanopeus
    [Show full text]
  • Their Impact on Carapace Morphology in Three Species of Fiddler Crabs (Genus Uca) Across the Atlantic Ocean
    University of Northern Iowa UNI ScholarWorks Honors Program Theses Honors Program 2014 Latitude and environmental pressure: their impact on carapace morphology in three species of fiddler crabs (genus Uca) across the Atlantic Ocean Katherine Susannah Mary Thomas University of Northern Iowa Let us know how access to this document benefits ouy Copyright © 2014 Katherine Susannah Mary Thomas Follow this and additional works at: https://scholarworks.uni.edu/hpt Part of the Biology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Thomas, Katherine Susannah Mary, "Latitude and environmental pressure: their impact on carapace morphology in three species of fiddler crabs (genus Uca) across the Atlantic Ocean" (2014). Honors Program Theses. 111. https://scholarworks.uni.edu/hpt/111 This Open Access Honors Program Thesis is brought to you for free and open access by the Honors Program at UNI ScholarWorks. It has been accepted for inclusion in Honors Program Theses by an authorized administrator of UNI ScholarWorks. For more information, please contact [email protected]. LATITUDE AND ENVIRONMENTAL PRESSURE: THEIR IMPACT ON CARAPACE MORPHOLOGY IN THREE SPECIES OF FIDDLER CRABS (GENUS UCA) ACROSS THE ATLANTIC OCEAN A Thesis Submitted in Partial Fulfillment of the Requirements for the Designation University Honors with Distinction Katherine Susannah Mary Thomas University of Northern Iowa May 2014 i ABSTRACT Among semi-terrestrial fiddler crabs, three species from the subgenus Uca (sensu stricto) appear to be basal in the phylogeny of the genus: Uca major (Herbst 1782-1804), Uca maracoani (Latreille 1802-1803) and Uca tangeri (Eydoux 1835). These species evolved vicariantly as tectonic plates separated to form the Atlantic Ocean.
    [Show full text]
  • Quaternary Intertidal and Supratidal Crabs \(Decapoda, Brachyura\)
    Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: http://www.tandfonline.com/loi/tjsp20 Quaternary intertidal and supratidal crabs (Decapoda, Brachyura) from tropical America and the systematic affinities of fossil fiddler crabs Javier Luque, John H. Christy, Austin J. W. Hendy, Michael S. Rosenberg, Roger W. Portell, Kecia A. Kerr & A. Richard Palmer To cite this article: Javier Luque, John H. Christy, Austin J. W. Hendy, Michael S. Rosenberg, Roger W. Portell, Kecia A. Kerr & A. Richard Palmer (2018) Quaternary intertidal and supratidal crabs (Decapoda, Brachyura) from tropical America and the systematic affinities of fossil fiddler crabs, Journal of Systematic Palaeontology, 16:12, 1037-1055, DOI: 10.1080/14772019.2017.1362599 To link to this article: https://doi.org/10.1080/14772019.2017.1362599 View supplementary material Published online: 25 Aug 2017. Submit your article to this journal Article views: 107 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Journal of Systematic Palaeontology, 2018 Vol. 16, No. 12, 1037–1055, https://doi.org/10.1080/14772019.2017.1362599 Quaternary intertidal and supratidal crabs (Decapoda, Brachyura) from tropical America and the systematic affinities of fossil fiddler crabs Javier Luque a,b*, John H. Christy b, Austin J. W. Hendyb,c,d, Michael S. Rosenberg e, Roger W. Portelld, Kecia A. Kerr a,b and A. Richard Palmer a aDepartment of
    [Show full text]
  • Guide to Common Tidal Marsh Invertebrates of the Northeastern
    - J Mississippi Alabama Sea Grant Consortium MASGP - 79 - 004 Guide to Common Tidal Marsh Invertebrates of the Northeastern Gulf of Mexico by Richard W. Heard University of South Alabama, Mobile, AL 36688 and Gulf Coast Research Laboratory, Ocean Springs, MS 39564* Illustrations by Linda B. Lutz This work is a result of research sponsored in part by the U.S. Department of Commerce, NOAA, Office of Sea Grant, under Grant Nos. 04-S-MOl-92, NA79AA-D-00049, and NASIAA-D-00050, by the Mississippi-Alabama Sea Gram Consortium, by the University of South Alabama, by the Gulf Coast Research Laboratory, and by the Marine Environmental Sciences Consortium. The U.S. Government is authorized to produce and distribute reprints for govern­ mental purposes notwithstanding any copyright notation that may appear hereon. • Present address. This Handbook is dedicated to WILL HOLMES friend and gentleman Copyright© 1982 by Mississippi-Alabama Sea Grant Consortium and R. W. Heard All rights reserved. No part of this book may be reproduced in any manner without permission from the author. CONTENTS PREFACE . ....... .... ......... .... Family Mysidae. .. .. .. .. .. 27 Order Tanaidacea (Tanaids) . ..... .. 28 INTRODUCTION ........................ Family Paratanaidae.. .. .. .. 29 SALTMARSH INVERTEBRATES. .. .. .. 3 Family Apseudidae . .. .. .. .. 30 Order Cumacea. .. .. .. .. 30 Phylum Cnidaria (=Coelenterata) .. .. .. .. 3 Family Nannasticidae. .. .. 31 Class Anthozoa. .. .. .. .. .. .. .. 3 Order Isopoda (Isopods) . .. .. .. 32 Family Edwardsiidae . .. .. .. .. 3 Family Anthuridae (Anthurids) . .. 32 Phylum Annelida (Annelids) . .. .. .. .. .. 3 Family Sphaeromidae (Sphaeromids) 32 Class Oligochaeta (Oligochaetes). .. .. .. 3 Family Munnidae . .. .. .. .. 34 Class Hirudinea (Leeches) . .. .. .. 4 Family Asellidae . .. .. .. .. 34 Class Polychaeta (polychaetes).. .. .. .. .. 4 Family Bopyridae . .. .. .. .. 35 Family Nereidae (Nereids). .. .. .. .. 4 Order Amphipoda (Amphipods) . ... 36 Family Pilargiidae (pilargiids). .. .. .. .. 6 Family Hyalidae .
    [Show full text]