Robotics and Automation for “Icebreaker” B.J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Contamination Control Technology Study for Achieving the Science Objectives of Life-Detection Missions
Contamination Control Technology Study for Achieving the Science Objectives of Life-Detection Missions Study Team: Chris McKay, NASA ARC, (650)604-6864, [email protected] (submitting author) Alfonso Davila, NASA ARC, [email protected] Jennifer Eigenbrode, NASA GSFC, [email protected] Chris Lorentson, NASA GSFC, [email protected] Rob Gold, JHU/APL, [email protected] John Canham, Northrop Grumman/NASA GSFC, [email protected] Anthony Dazzo, KBR Inc./NASA GSFC, [email protected] Therese Errigo, NASA GSFC, [email protected] Faith Kujawa, JHU/APL, [email protected] Dave Kusnierkiewicz, JHU/APL, [email protected] Charles Sandy, ILC Dover, crsandy @ilcdover.com Erich Schulze, JHU/APL, Erich.Schulze@jhuapl Antonios Seas, NASA GSFC [email protected] Science Contamination Control Technology Study Summary: This white paper summaries technological advances in science-required contamination-control engineering for in situ and sample-return life-detection missions in the Solar System. Key study results are: 1) New spacecraft !arrier design that accommodates MMRT$s% is cleana!le% and is repaira!le. &) 'urge gas cleanliness of 1 part per trillion HC impurity limit is feasible. )) The !arrier reduces particle contamination *likely !iological) from fairing to spacecraft !y 1, -&-1,-). -) Spacecraft surfaces protected !y !arrier are 1,-&,. cleaner after launch than !efore launch. /) 0n-1ight !a+e-out of critical surfaces significantly reduced molecular contamination *!y 1,-3 to 1,-1&). 0mplementing a full spacecraft !arrier% collector cover and purge% and in-1ight cleaning steps will achieve cleanliness levels required of science instruments *down to femtomolar levels of !iomolecules). -
Mars, the Nearest Habitable World – a Comprehensive Program for Future Mars Exploration
Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Report by the NASA Mars Architecture Strategy Working Group (MASWG) November 2020 Front Cover: Artist Concepts Top (Artist concepts, left to right): Early Mars1; Molecules in Space2; Astronaut and Rover on Mars1; Exo-Planet System1. Bottom: Pillinger Point, Endeavour Crater, as imaged by the Opportunity rover1. Credits: 1NASA; 2Discovery Magazine Citation: Mars Architecture Strategy Working Group (MASWG), Jakosky, B. M., et al. (2020). Mars, the Nearest Habitable World—A Comprehensive Program for Future Mars Exploration. MASWG Members • Bruce Jakosky, University of Colorado (chair) • Richard Zurek, Mars Program Office, JPL (co-chair) • Shane Byrne, University of Arizona • Wendy Calvin, University of Nevada, Reno • Shannon Curry, University of California, Berkeley • Bethany Ehlmann, California Institute of Technology • Jennifer Eigenbrode, NASA/Goddard Space Flight Center • Tori Hoehler, NASA/Ames Research Center • Briony Horgan, Purdue University • Scott Hubbard, Stanford University • Tom McCollom, University of Colorado • John Mustard, Brown University • Nathaniel Putzig, Planetary Science Institute • Michelle Rucker, NASA/JSC • Michael Wolff, Space Science Institute • Robin Wordsworth, Harvard University Ex Officio • Michael Meyer, NASA Headquarters ii Mars, the Nearest Habitable World October 2020 MASWG Table of Contents Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Table of Contents EXECUTIVE SUMMARY .......................................................................................................................... -
Why NASA Consistently Fails at Congress
W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 6-2013 The Wrong Right Stuff: Why NASA Consistently Fails at Congress Andrew Follett College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Political Science Commons Recommended Citation Follett, Andrew, "The Wrong Right Stuff: Why NASA Consistently Fails at Congress" (2013). Undergraduate Honors Theses. Paper 584. https://scholarworks.wm.edu/honorstheses/584 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. The Wrong Right Stuff: Why NASA Consistently Fails at Congress A thesis submitted in partial fulfillment of the requirement for the degree of Bachelors of Arts in Government from The College of William and Mary by Andrew Follett Accepted for . John Gilmour, Director . Sophia Hart . Rowan Lockwood Williamsburg, VA May 3, 2013 1 Table of Contents: Acknowledgements 3 Part 1: Introduction and Background 4 Pre Soviet Collapse: Early American Failures in Space 13 Pre Soviet Collapse: The Successful Mercury, Gemini, and Apollo Programs 17 Pre Soviet Collapse: The Quasi-Successful Shuttle Program 22 Part 2: The Thin Years, Repeated Failure in NASA in the Post-Soviet Era 27 The Failure of the Space Exploration Initiative 28 The Failed Vision for Space Exploration 30 The Success of Unmanned Space Flight 32 Part 3: Why NASA Fails 37 Part 4: Putting this to the Test 87 Part 5: Changing the Method. -
2. Going to Mars
aMARTE A MARS ROADMAP FOR TRAVEL AND EXPLORATION Final Report International Space University Space Studies Program 2016 © International Space University. All Rights Reserved. The 2016 Space Studies Program of the International Space University (ISU) was hosted by the Technion – Israel Institute of Technology in Haifa, Israel. aMARTE has been selected as the name representing the Mars Team Project. This choice was motivated by the dual meaning the term conveys. aMARTE first stands for A Mars Roadmap for Travel and Exploration, the official label the team has adopted for the project. Alternatively, aMARTE can be interpreted from its Spanish roots "amarte," meaning "to love," or can also be viewed as "a Marte," meaning "going to Mars." This play on words represents the mission and spirit of the team, which is to put together a roadmap including various disciplines for a human mission to Mars and demonstrate a profound commitment to Mars exploration. The aMARTE title logo was developed based on sections of the astrological symbols for Earth and Mars. The blue symbol under the team's name represents Earth, and the orange arrow symbol is reminiscent of the characteristic color of Mars. The arrow also serves as an invitation to go beyond the Earth and explore our neighboring planet. Electronic copies of the Final Report and the Executive Summary can be downloaded from the ISU Library website at http://isulibrary.isunet.edu/ International Space University Strasbourg Central Campus Parc d’Innovation 1 rue Jean-Dominique Cassini 67400 Illkirch-Graffenstaden France Tel +33 (0)3 88 65 54 30 Fax +33 (0)3 88 65 54 47 e-mail: [email protected] website: www.isunet.edu I. -
Periodic Habitability in Northern Plains Ground Ice: the Icebreaker Life Mission Plan
Astrobiology Science Conference 2017 (LPI Contrib. No. 1965) 3478.pdf PERIODIC HABITABILITY IN NORTHERN PLAINS GROUND ICE: THE ICEBREAKER LIFE MISSION PLAN. C. Stoker1, C. McKay1, A. Davila1 , B. Glass2, V. Parro3, 1 Space Science Division, NASA Ames Research Center, Moffett Field CA, 2Exploration Technology Division, NASA Ames Research Center, Moffett Field CA, 3Centro de Astrobiología (INTA-CSIC), Madrid, Spain Introduction:The results from the 2008 Phoenix and future proposals are planned. The mission returns mission that sampled ground ice at 68oN latitude, along to the well-characterized Phoenix landing site with a with climate modeling studies, indicate that the high N. payload designed to address the following science latitude ice-rich regolith at low elevations is likely to goals: (1) search for biomolecular evidence of life; (2) be a recently habitable place on Mars [1]. search for organic matter from either exogeneous or Habitable Conditions Evidence: Ice was found endogeneous sources using methods that are not within 3-5 cm of the surface. If warmer conditions spoiled by the presence of perchlorate; (3) characterize occur, the ice could provide a source of liquid water. oxidative species that produced reactivity of soils seen Phoenix found evidence for liquid water processes by Viking; and 4) assess the habitability of the ice including 1) beneath 3 -5 cm of dry soil, segregated bearing soils. The Icebreaker Life payload hosts a 1-m pure ice was discovered in patches covering 10% of drill that brings cuttings samples to the surface where the area explored, 2) calcite mineral was detected in they are delivered to three instruments. -
Mars Sample Return Using Commercial Capabilities: Mission Architecture Overview
IEEE Aerospace Conference Yellowstone Conference Center in Big Sky Montana Session: 2.06 Future Missions & Enabling Technologies for In Situ Exploration, Sample Returns Sat 3/1/2014 Sat 3/8/2014 http://www.aeroconf.org/ Authors: Andrew A. Gonzales, NASA Ames Research Center Lawrence G. Lemke, NASA Ames Research Center Carol R. Stoker , NASA Ames Research Center Nicolas T. Faber, Stinger Ghaffarian Technologies Margaret S. Race, SETI Institute Mars Sample Return Using Commercial Capabilities: Mission Architecture Overview Mars Sample Return (MSR) is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. This paper presents an overview of a feasibility study for an MSR mission. The objective of the study was to determine whether emerging commercial capabilities can be used to reduce the number of mission systems and launches required to return the samples, with the goal of reducing mission cost. We report the feasibility of a complete and closed MSR mission design using the following scenario that covers three synodic launch opportunities, beginning with the 2022 opportunity: A Falcon Heavy injects a SpaceX Red Dragon capsule and trunk onto a Trans Mars Injection (TMI) trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV), an Earth Return Vehicle (ERV), and hardware to transfer a sample collected in a previously landed rover mission to the ERV. The Red Dragon descends to land on the surface of Mars using Super Sonic Retro Propulsion (SSRP). After previously collected samples are transferred to the ERV, the single-stage MAV launches the ERV from the surface of Mars. -
Curiosity Assesses Conditions Favorable for Life
Jet APRIL Propulsion 2013 Laboratory VOLUME 43 NUMBER 4 Curiosity assesses conditions Chemical analysis of rock shows key ingredients for development favorable for life of microbes on Mars By Mark Whalen This mosaic of images from Curiosity’s mast camera shows Mount Sharp, which rises more than 3 miles (5 kilometers) above the crater floor. It is the mission’s primary target after exploring Yellowknife Bay. Through its analysis of powder from a drilled rock, Deputy Project Scientist Joy Crisp said the near-term mentary rocks, abundant clay minerals and different JPL’s Curiosity rover has officially fulfilled its objec- emphasis will be on completing the analyses of the signatures of water alteration. “The gray interior of tive to assess whether past environmental conditions drilling of the rocks in the “John Klein” area—named in the rock we drilled into was a welcome surprise—if at Gale Crater were favorable for the development of honor of the former Mars Science Lab deputy project future rock drilling reveals similarly low oxidation microbial life on Mars. manager—and a more complete characterization of the levels, that should improve the likelihood of preserving Data returned by Curiosity’s Sample Analysis at concretions and veins in the rock. And there’s no hurry. organic compounds if any were there when the rocks Mars and Chemistry and Mineralogy instruments “We have no specific period of time scheduled for how were formed.” showed that the Yellowknife Bay area was the end long we will remain at Yellowknife Bay,” she said. “It Curiosity’s been making other surprising discoveries of an ancient river system or an intermittently wet depends on what we discover.” in addition to the primary goal of habitable environ- lakebed that could have provided chemical energy and The initial drilling has given the science and engineer- ments, noted Vasavada. -
Carbon Monoxide As a Metabolic Energy Source for Extremely Halophilic Microbes: Implications for Microbial Activity in Mars Regolith
Carbon monoxide as a metabolic energy source for extremely halophilic microbes: Implications for microbial activity in Mars regolith Gary M. King1 Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved March 5, 2015 (received for review December 31, 2014) Carbon monoxide occurs at relatively high concentrations (≥800 that low organic matter levels might indeed occur in some deposits parts per million) in Mars’ atmosphere, where it represents a poten- (e.g., 12). Even so, it is uncertain whether this material exists in a tially significant energy source that could fuel metabolism by a local- form or concentrations suitable for microbial use. ized putative surface or near-surface microbiota. However, the The Martian atmosphere has largely been ignored as a potential plausibility of CO oxidation under conditions relevant for Mars in energy source, because it is dominated by CO2 (24, 25). Ironically, its past or at present has not been evaluated. Results from diverse UV photolysis of CO2 forms carbon monoxide (CO), a potential terrestrial brines and saline soils provide the first documentation, to bacterial substrate that occurs at relatively high concentrations: our knowledge, of active CO uptake at water potentials (−41 MPa to about 800 ppm on average, with significantly higher levels for −117 MPa) that might occur in putative brines at recurrent slope some sites and times (26, 27). In addition, molecular oxygen lineae (RSL) on Mars. Results from two extremely halophilic iso- (O2), which can serve as a biological CO oxidant, occurs at lates complement the field observations. -
Space News Update – May 2019
Space News Update – May 2019 By Pat Williams IN THIS EDITION: • India aims to be 1st country to land rover on Moon's south pole. • Jeff Bezos says Blue Origin will land humans on moon by 2024. • China's Chang'e-4 probe resumes work for sixth lunar day. • NASA awards Artemis contract for lunar gateway power. • From airport to spaceport as UK targets horizontal spaceflight. • Russian space sector plagued by astronomical corruption. • Links to other space and astronomy news published in May 2019. Disclaimer - I claim no authorship for the printed material; except where noted (PW). INDIA AIMS TO BE 1ST COUNTRY TO LAND ROVER ON MOON'S SOUTH POLE India will become the first country to land a rover on the Moon's the south pole if the country's space agency "Indian Space Research Organisation (ISRO)" successfully achieves the feat during the country's second Moon mission "Chandrayaan-2" later this year. "This is a place where nobody has gone. All the ISRO missions till now to the Moon have landed near the Moon's equator. Chandrayaan-2, India’s second lunar mission, has three modules namely Orbiter, Lander (Vikram) & Rover (Pragyan). The Orbiter and Lander modules will be interfaced mechanically and stacked together as an integrated module and accommodated inside the GSLV MK-III launch vehicle. The Rover is housed inside the Lander. After launch into earth bound orbit by GSLV MK-III, the integrated module will reach Moon orbit using Orbiter propulsion module. Subsequently, Lander will separate from the Orbiter and soft land at the predetermined site close to lunar South Pole. -
Espinsights the Global Space Activity Monitor
ESPInsights The Global Space Activity Monitor Issue 1 January–April 2019 CONTENTS SPACE POLICY AND PROGRAMMES .................................................................................... 1 Focus .................................................................................................................... 1 Europe ................................................................................................................... 4 11TH European Space Policy Conference ......................................................................... 4 EU programmatic roadmap: towards a comprehensive Regulation of the European Space Programme 4 EDA GOVSATCOM GSC demo project ............................................................................. 5 Programme Advancements: Copernicus, Galileo, ExoMars ................................................... 5 European Space Agency: partnerships continue to flourish................................................... 6 Renewed support for European space SMEs and training ..................................................... 7 UK Space Agency leverages COMPASS project for international cooperation .............................. 7 France multiplies international cooperation .................................................................... 7 Italy’s PRISMA pride ................................................................................................ 8 Establishment of the Portuguese Space Agency: Data is King ................................................ 8 Belgium and Luxembourg -
2015 October
TTSIQ #13 page 1 OCTOBER 2015 www.nasa.gov/press-release/nasa-confirms-evidence-that-liquid-water-flows-on-today-s-mars Flash! Sept. 28, 2015: www.space.com/30674-flowing-water-on-mars-discovery-pictures.html www.space.com/30673-water-flows-on-mars-discovery.html - “boosting odds for life!” These dark, narrow, 100 meter~yards long streaks called “recurring slope lineae” flowing downhill on Mars are inferred to have been formed by contemporary flowing water www.space.com/30683-mars-liquid-water-astronaut-exploration.html INDEX 2 Co-sponsoring Organizations NEWS SECTION pp. 3-56 3-13 Earth Orbit and Mission to Planet Earth 13-14 Space Tourism 15-20 Cislunar Space and the Moon 20-28 Mars 29-33 Asteroids & Comets 34-47 Other Planets & their moons 48-56 Starbound ARTICLES & ESSAY SECTION pp 56-84 56 Replace "Pluto the Dwarf Planet" with "Pluto-Charon Binary Planet" 61 Kepler Shipyards: an Innovative force that could reshape the future 64 Moon Fans + Mars Fans => Collaboration on Joint Project Areas 65 Editor’s List of Needed Science Missions 66 Skyfields 68 Alan Bean: from “Moonwalker” to Artist 69 Economic Assessment and Systems Analysis of an Evolvable Lunar Architecture that Leverages Commercial Space Capabilities and Public-Private-Partnerships 71 An Evolved Commercialized International Space Station 74 Remembrance of Dr. APJ Abdul Kalam 75 The Problem of Rational Investment of Capital in Sustainable Futures on Earth and in Space 75 Recommendations to Overcome Non-Technical Challenges to Cleaning Up Orbital Debris STUDENTS & TEACHERS pp 85-96 Past TTSIQ issues are online at: www.moonsociety.org/international/ttsiq/ and at: www.nss.org/tothestarsOO TTSIQ #13 page 2 OCTOBER 2015 TTSIQ Sponsor Organizations 1. -
Contamination Control Technology Study for Achieving the Science Objectives of Life-Detection Missions
NASA/TM-20205008709 Contamination Control Technology Study for Achieving the Science Objectives of Life-Detection Missions Chris McKay, Alfonso Davila, Jennifer Eigenbrode, Chris Lorentson, Rob Gold, John Canham, Northrop Grumman, Anthony Dazzo, Therese Errigo, Faith Kujawa, Dave Kusnierkiewicz, Charles Sandy, Erich Schulze and Antonios Seas, October 2020 NASA STI Program ... in Profile Since its founding, NASA has been dedicated CONFERENCE PUBLICATION. to the advancement of aeronautics and space Collected papers from scientific and science. The NASA scientific and technical technical conferences, symposia, seminars, information (STI) program plays a key part in or other meetings sponsored or helping NASA maintain this important role. co-sponsored by NASA. The NASA STI program operates under the SPECIAL PUBLICATION. Scientific, auspices of the Agency Chief Information Officer. technical, or historical information from It collects, organizes, provides for archiving, and NASA programs, projects, and missions, disseminates NASA’s STI. The NASA STI often concerned with subjects having program provides access to the NTRS Registered substantial public interest. and its public interface, the NASA Technical Reports Server, thus providing one of the largest TECHNICAL TRANSLATION. collections of aeronautical and space science STI English-language translations of foreign in the world. Results are published in both non- scientific and technical material pertinent to NASA channels and by NASA in the NASA STI NASA’s mission. Report Series, which includes the following report types: Specialized services also include organizing and publishing research results, distributing TECHNICAL PUBLICATION. Reports of specialized research announcements and completed research or a major significant feeds, providing information desk and personal phase of research that present the results of search support, and enabling data exchange NASA Programs and include extensive data services.