The Physical Layer

Total Page:16

File Type:pdf, Size:1020Kb

The Physical Layer 408_Hack_the_Stack_02.qxd 9/22/06 5:32 PM Page 27 Chapter 2 Layer 1: The Physical Layer Solutions in this chapter: ■ Defending the Physical Layer ■ Attacking the Physical Layer ■ Physical Layer Security Project Summary Solutions Fast Track Frequently Asked Questions 27 408_Hack_the_Stack_02.qxd 9/22/06 5:32 PM Page 28 28 Chapter 2 • Layer 1: The Physical Layer Introduction The physical layer (layer 1) sits at the bottom of the Open Systems Interconnect (OSI) model, and is designed to transmit bit streams using electric signals, lights, or radio transmissions. For this chapter, the definition of the physical layer is expanded to include all physical things.True security means building defense-in- depth, which is used in this chapter to expand the OSI concept on a much broader scale. We begin by looking at some of the methods used to defend the physical environment, including common concepts such as lights, locks, and guards. Next, we examine the attacks on the physical layer, which are different from attacks on all of the other layers, therefore requiring different defensive techniques and skills. We believe that physical security should encompass the wiring used to connect systems as well as the system hardware, supporting ser- vices, employees, and any other physical assets. Defending the Physical Layer This section examines ways to defend the physical layer. Physical security is the point at which protection should begin. How much physical security you need depends on your sit- uation, assets, and budget.These security controls have three primary goals: ■ Deter Two methods used to deter intruders are security lighting and “Beware of Dog” signs. ■ Delay Some of the techniques used to delay an intruder include fences, gates, locks, access controls, and mantraps. ■ Detect Two systems used to detect intruders are intrusion detection systems (IDSes) and alarms. Physical security (layer 1) should be viewed differently than the controls and vulnerabili- ties at higher layers.The higher layers deal primarily with security controls designed to pre- vent disclosure, denial, or alteration of information. Physical security focuses on intruders, vandals, and thieves. Physical security combined with technical security and administrative controls provides a holistic view of security, as seen in Figure 2.1. Physical security is the oldest aspect of security. In ancient times, physical security was a primary concern of those with assets to protect. Consider the concept of castles, walls, and moats. While primitive, these controls were clearly designed to delay attackers. Physical secu- rity is a vital component of any overall security program. www.syngress.com 408_Hack_the_Stack_02.qxd 9/22/06 5:32 PM Page 29 Layer 1: The Physical Layer • Chapter 2 29 Figure 2.1 Physical, Technical, and Administrative Controls Design Security Design security should begin during the design phase, not at the time of deployment. It is usually done when designing new code or applications; some organizations follow the System Design Life Cycle (SDLC) to build security in at every step of software design.This section discusses extending that concept to the physical realm.The physical security of assets and employees should be considered when designing a new facility; well-designed facilities are comfortable and secure. Location is a key consideration. If you are offered a great deal on an office building in a bad part of town, do the high crime rate, employee security, and potential for loss or theft make it a viable option? Construction is another key issue (e.g., the increase of hurricanes that have hit Florida demonstrates that building substandard facilities can be devastating. Some facilities designed for category 5 hurricanes failed during category 3 storms). For the most part, construction is governed by local, state, and federal laws; however, there are still items that you should watch for. If you are moving into a preexisting facility, pay careful attention to what it was originally designed for (e.g., storage facilities have different require- ments than clean rooms). NOTE In 1998, President Bill Clinton signed Presidential Decision Directive 63 (PDD-63), which provides the structure that key industries must follow when imple- menting security controls to prevent logical and physical attacks. www.syngress.com 408_Hack_the_Stack_02.qxd 9/22/06 5:32 PM Page 30 30 Chapter 2 • Layer 1: The Physical Layer Accessibility is also important. Requirements will vary depending on your business and individual needs; however, roads, freeways, local traffic patterns, and convenience to regional airports should always be considered. Climatology is another important issue.A building in San Francisco does not have the same weather concerns as a building in Anchorage. Events such as hurricanes, floods, snow- storms, dust storms, and tornados should be discussed and planned prior to the start of con- struction. Other items to consider when designing a facility include: ■ Transportation Is the facility easy to get to? How is the traffic? Are there any airports or freight lines located in the vicinity? ■ Utilities Is there access to more than one electric provider? Is a redundant T1 available? ■ Access Control The design of the physical environment and the proper layout of access controls can increase security.The discipline known as Crime Prevention Through Environmental Design (CPTED) is built around this concept. Perimeter Security The first line in a defense-in-depth model is the perimeter, which prevents unauthorized individuals from gaining access to the facility. Even if someone does circumvent the first layer, additional layers deter, detect, and delay them, thereby preventing them from gaining access to critical assets. If building a new facility, you may be able to include many of these controls. If you are charged with protecting an existing facility, a risk assessment is required to determine how to increase current security. In both new and old facilities, the goal is to design security controls so that a breach of any one defensive layer does not compromise the physical security of the entire organization. Perimeter security controls can be physical bar- riers (e.g., a wall, a card-controlled entry, or a staffed reception desk). Perimeter security requires you to examine: ■ Natural boundaries at the location ■ Fences or walls around the site ■ The design of the outer walls of a building ■ Divisions and choke points within a building To enhance the physical security of the perimeter and to physically and psychologically deter intruders, a series of mechanisms can be employed, including: ■ Fences ■ Perimeter Intrusion Detection and Assessment Systems (PIDAS) ■ Security lighting www.syngress.com 408_Hack_the_Stack_02.qxd 9/22/06 5:32 PM Page 31 Layer 1: The Physical Layer • Chapter 2 31 ■ Closed-circuit television (CCTV) ■ Security guards and guard dogs ■ Warning signs and notices Fencing Fencing is a key component of perimeter security.A fence with the proper design and height can delay an intruder and work as a psychological barrier. NOTE In 1969, security failed at the first Woodstock concert when eager concertgoers knocked down yards of poorly constructed hurricane fence, thus allowing thou- sands of people to enter the concert area without paying. Before installing a fence, a risk analysis should be performed to evaluate the types of physical assets to be protected.A 4-foot fence will deter a casual trespasser, but an 8-foot fence will keep a determined intruder out.Adding three-strand barbwire to the top increases security even more. Two more factors to consider are the gauge and mesh size of the wire. When consid- ering a chain link fence, remember that the smaller the mesh, the more difficult it is to climb, and the heavier the gauge, the more difficult it is to cut.Table 2.1 details the security of various types of chain link fences. For more information on fences and their level of secu- rity go to the Chain Link Fence Manufacturers Institute at http://codewriters.com/asites/page.cfm?usr=clfma&pageid=887. Table 2.1 Security of Chain Link Fence Types Type Security Mesh Gauge A Extremely High Security 3/8 inch 11 gauge B Very High Security 1 inch 9 gauge C High Security 1 inch 11 gauge D Greater Security 2 inch 6 gauge E Normal Fencing 2 inch 9 gauge To take security to the next level, install a PIDAS, which has sensors that detect intruders and feel vibrations along the fence.The downside is that the system can produce false positives due to stray deer, high winds, or other natural events. www.syngress.com 408_Hack_the_Stack_02.qxd 9/22/06 5:32 PM Page 32 32 Chapter 2 • Layer 1: The Physical Layer Gates, Guards, and Grounds Design There are other items to consider when securing the perimeter. One is choosing the proper gate, which serves as the access point or open port. Gates act as choke points to control the flow of people and vehicles. UL Standard 325 details the requirements for gates, which are divided into the following four classifications: ■ Residential Class 1 ■ Commercial Class 2 ■ Industrial Class 3 ■ Restricted Access Class 4 Another way to prevent vehicles from entering restricted areas is by using bollards. Bollards are made of concrete or steel and are used to block vehicular traffic or to protect areas where pedestrians are entering and leaving buildings.After the bombing of the federal building in Oklahoma City in November 1995, many government and commercial entities installed bollards to prevent vehicles from ramming buildings. Companies now make bollards with electronic sensors that notify building inhabitants if someone has rammed or breached the bollards. Bollards are the second line of defense, because they can deter individuals from ramming a facility with a motor vehicle. Another way to secure the perimeter is using security guards. Some type of background check should be performed on these individuals.At a minimum, security guard applicants should have job references and be subject to a background check.
Recommended publications
  • Data Communication and Computer Network Unit 1
    Department of Collegiate Education GOVERNMENT FIRST GRADE COLLEGE RAIBAG-591317 Department of Computer Science Lecture Notes SUBJECT : DATA COMMUNICATIONS AND COMPUTER NETWORKS SUBJECT CODE : 17BScCST61 CLASS : BSC VI Sem Paper-1 Subject In charge Smt Bhagirathi Halalli Assistant Professor 2019-20 Data Communication and Computer Network Unit 1 Unit 1: Introduction Content: 1.1. Data communications, 1.2. Networks, 1.3. The internet, 1.4. Protocols and standards, 1.5. Network models – OSI model, 1.6. TCP/IP protocol suite, 1.7. Addressing. 1.1.Data Communications, Data refers to the raw facts that are collected while information refers to processed data that enables us to take decisions. Ex. When result of a particular test is declared it contains data of all students, when you find the marks you have scored you have the information that lets you know whether you have passed or failed. The word data refers to any information which is presented in a form that is agreed and accepted upon by is creators and users. Data Communication Data Communication is a process of exchanging data or information In case of computer networks this exchange is done between two devices over a transmission medium. This process involves a communication system which is made up of hardware and software. The hardware part involves the sender and receiver devices and the intermediate devices through which the data passes. The software part involves certain rules which specify what is to be communicated, how it is to be communicated and when. It is also called as a Protocol. The following sections describe the fundamental characteristics that are important for the effective working of data communication process and are followed by the components that make up a data communications system.
    [Show full text]
  • The OSI Model
    Data Encapsulation & OSI & TCP/IP Models Week 2 Lecturer: Lucy White [email protected] Office : 324 1 Network Protocols • A protocol is a formal description of a set of rules and conventions that govern a particular aspect of how devices on a network communicate. Protocols determine the format, timing, sequencing, flow control and error control in data communication. Without protocols, the computer cannot make or rebuild the stream of incoming bits from another computer into the original format. • Protocols control all aspects of data communication, which include the following: - How the physical network is built - How computers connect to the network - How the data is formatted for transmission - The setting up and termination of data transfer sessions - How that data is sent - How to deal with errors 2 Protocol Suites & Industry Standard • Many of the protocols that comprise a protocol suite reference other widely utilized protocols or industry standards • Institute of Electrical and Electronics Engineers (IEEE) or the Internet Engineering Task Force (IETF) • The use of standards in developing and implementing protocols ensures that products from different manufacturers can work together for efficient communications 3 Function of Protocol in Network Communication A standard is a process or protocol that has been endorsed by the networking industry and ratified by a standards organization 4 Protocol Suites TCP/IP Protocol Suite and Communication Function of Protocol in Network Communication 6 Function of Protocol in Network Communication • Technology independent Protocols -Many diverse types of devices can communicate using the same sets of protocols. This is because protocols specify network functionality, not the underlying technology to support this functionality.
    [Show full text]
  • ISSN: 2320-5407 Int. J. Adv. Res. 5(4), 422-426 RESEARCH ARTICLE
    ISSN: 2320-5407 Int. J. Adv. Res. 5(4), 422-426 Journal Homepage: - www.journalijar.com Article DOI: 10.21474/IJAR01/3826 DOI URL: http://dx.doi.org/10.21474/IJAR01/3826 RESEARCH ARTICLE CHALLENGING ISSUES IN OSI AND TCP/IP MODEL. Dr. J. VijiPriya, Samina and Zahida. College of Computer Science and Engineering, University of Hail, Saudi Arabia. …………………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History A computer network is a connection of network devices to data communication. Multiple networks are connected together to form an Received: 06 February 2017 internetwork. The challenges of Internetworking is interoperating Final Accepted: 05 March 2017 between products from different manufacturers requires consistent Published: April 2017 standards. Network reference models were developed to address these challenges. Two useful reference models are Open System Key words:- Interconnection (OSI) and Transmission Control Protocol and Internet OSI, TCP/IP, Data Communication, Protocol (TCP/IP) serve as protocol architecture details the Protocols, Layers, and Encapsulation communication between applications on network devices. This paper depicts the OSI and TCP/IP models, their issues and comparison of them. Copy Right, IJAR, 2017,. All rights reserved. …………………………………………………………………………………………………….... Introduction:- Network reference models are called protocol architecture in which task of communication can be broken into sub tasks. These tasks are organized into layers representing network services and functions. The layered protocols are rules that govern end-to-end communication between devices. Protocols on each layer will interact with protocols on the above and below layers of it that form a protocol suite or stack. The most established TCP/IP suite was developed by Department of Defence's Project Research Agency DARPA based on OSI suite to the foundation of Internet architecture.
    [Show full text]
  • Logical Link Control and Channel Scheduling for Multichannel Underwater Sensor Networks
    ICST Transactions on Mobile Communications and Applications Research Article Logical Link Control and Channel Scheduling for Multichannel Underwater Sensor Networks Jun Li ∗, Mylene` Toulgoat, Yifeng Zhou, and Louise Lamont Communications Research Centre Canada, 3701 Carling Avenue, Ottawa, ON. K2H 8S2 Canada Abstract With recent developments in terrestrial wireless networks and advances in acoustic communications, multichannel technologies have been proposed to be used in underwater networks to increase data transmission rate over bandwidth-limited underwater channels. Due to high bit error rates in underwater networks, an efficient error control technique is critical in the logical link control (LLC) sublayer to establish reliable data communications over intrinsically unreliable underwater channels. In this paper, we propose a novel protocol stack architecture featuring cross-layer design of LLC sublayer and more efficient packet- to-channel scheduling for multichannel underwater sensor networks. In the proposed stack architecture, a selective-repeat automatic repeat request (SR-ARQ) based error control protocol is combined with a dynamic channel scheduling policy at the LLC sublayer. The dynamic channel scheduling policy uses the channel state information provided via cross-layer design. It is demonstrated that the proposed protocol stack architecture leads to more efficient transmission of multiple packets over parallel channels. Simulation studies are conducted to evaluate the packet delay performance of the proposed cross-layer protocol stack architecture with two different scheduling policies: the proposed dynamic channel scheduling and a static channel scheduling. Simulation results show that the dynamic channel scheduling used in the cross-layer protocol stack outperforms the static channel scheduling. It is observed that, when the dynamic channel scheduling is used, the number of parallel channels has only an insignificant impact on the average packet delay.
    [Show full text]
  • Physical Layer Overview
    ELEC3030 (EL336) Computer Networks S Chen Physical Layer Overview • Physical layer forms the basis of all networks, and we will first revisit some of fundamental limits imposed on communication media by nature Recall a medium or physical channel has finite Spectrum bandwidth and is noisy, and this imposes a limit Channel bandwidth: on information rate over the channel → This H Hz is a fundamental consideration when designing f network speed or data rate 0 H Type of medium determines network technology → compare wireless network with optic network • Transmission media can be guided or unguided, and we will have a brief review of a variety of transmission media • Communication networks can be classified as switched and broadcast networks, and we will discuss a few examples • The term “physical layer protocol” as such is not used, but we will attempt to draw some common design considerations and exams a few “physical layer standards” 13 ELEC3030 (EL336) Computer Networks S Chen Rate Limit • A medium or channel is defined by its bandwidth H (Hz) and noise level which is specified by the signal-to-noise ratio S/N (dB) • Capability of a medium is determined by a physical quantity called channel capacity, defined as C = H log2(1 + S/N) bps • Network speed is usually given as data or information rate in bps, and every one wants a higher speed network: for example, with a 10 Mbps network, you may ask yourself why not 10 Gbps? • Given data rate fd (bps), the actual transmission or baud rate fb (Hz) over the medium is often different to fd • This is for
    [Show full text]
  • Data Networks
    Second Ed ition Data Networks DIMITRI BERTSEKAS Massachusetts Institute of Technology ROBERT GALLAGER Massachusetts Institute ofTechnology PRENTICE HALL, Englewood Cliffs, New Jersey 07632 2 Node A Node B Time at B --------- Packet 0 Point-to-Point Protocols and Links 2.1 INTRODUCTION This chapter first provides an introduction to the physical communication links that constitute the building blocks of data networks. The major focus of the chapter is then data link control (i.e., the point-to-point protocols needed to control the passage of data over a communication link). Finally, a number of point-to-point protocols at the network, transport, and physical layers are discussed. There are many similarities between the point-to-point protocols at these different layers, and it is desirable to discuss them together before addressing the more complex network-wide protocols for routing, flow control, and multiaccess control. The treatment of physical links in Section 2.2 is a brief introduction to a very large topic. The reason for the brevity is not that the subject lacks importance or inherent interest, but rather, that a thorough understanding requires a background in linear system theory, random processes, and modem communication theory. In this section we pro­ vide a sufficient overview for those lacking this background and provide a review and perspective for those with more background. 37 38 Point-to-Point Protocols and Links Chap. 2 In dealing with the physical layer in Section 2.2, we discuss both the actual com­ munication channels used by the network and whatever interface modules are required at the ends of the channels to transmit and receive digital data (see Fig 2.1).
    [Show full text]
  • Telematics Chapter 3: Physical Layer
    Telematics User Server watching with video Chapter 3: Physical Layer video clip clips Application Layer Application Layer Presentation Layer Presentation Layer Session Layer Session Layer Transport Layer Transport Layer Network Layer Network Layer Network Layer Data Link Layer Data Link Layer Data Link Layer Physical Layer Physical Layer Physical Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller Computer Systems and Telematics (CST) Institute of Computer Science Freie Universität Berlin http://cst.mi.fu-berlin.de Contents ● Design Issues ● Theoretical Basis for Data Communication ● Analog Data and Digital Signals ● Data Encoding ● Transmission Media ● Guided Transmission Media ● Wireless Transmission (see Mobile Communications) ● The Last Mile Problem ● Multiplexing ● Integrated Services Digital Network (ISDN) ● Digital Subscriber Line (DSL) ● Mobile Telephone System Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 3: Physical Layer 3.2 Design Issues Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 3: Physical Layer 3.3 Design Issues ● Connection parameters ● mechanical OSI Reference Model ● electric and electronic Application Layer ● functional and procedural Presentation Layer ● More detailed ● Physical transmission medium (copper cable, Session Layer optical fiber, radio, ...) ● Pin usage in network connectors Transport Layer ● Representation of raw bits (code, voltage,…) Network Layer ● Data rate ● Control of bit flow: Data Link Layer ● serial or parallel transmission of bits Physical Layer ● synchronous or asynchronous transmission ● simplex, half-duplex, or full-duplex transmission mode Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 3: Physical Layer 3.4 Design Issues Transmitter Receiver Source Transmission System Destination NIC NIC Input Abcdef djasdja dak jd ashda kshd akjsd asdkjhasjd as kdjh askjda Univ.-Prof.
    [Show full text]
  • Radio Communications in the Digital Age
    Radio Communications In the Digital Age Volume 1 HF TECHNOLOGY Edition 2 First Edition: September 1996 Second Edition: October 2005 © Harris Corporation 2005 All rights reserved Library of Congress Catalog Card Number: 96-94476 Harris Corporation, RF Communications Division Radio Communications in the Digital Age Volume One: HF Technology, Edition 2 Printed in USA © 10/05 R.O. 10K B1006A All Harris RF Communications products and systems included herein are registered trademarks of the Harris Corporation. TABLE OF CONTENTS INTRODUCTION...............................................................................1 CHAPTER 1 PRINCIPLES OF RADIO COMMUNICATIONS .....................................6 CHAPTER 2 THE IONOSPHERE AND HF RADIO PROPAGATION..........................16 CHAPTER 3 ELEMENTS IN AN HF RADIO ..........................................................24 CHAPTER 4 NOISE AND INTERFERENCE............................................................36 CHAPTER 5 HF MODEMS .................................................................................40 CHAPTER 6 AUTOMATIC LINK ESTABLISHMENT (ALE) TECHNOLOGY...............48 CHAPTER 7 DIGITAL VOICE ..............................................................................55 CHAPTER 8 DATA SYSTEMS .............................................................................59 CHAPTER 9 SECURING COMMUNICATIONS.....................................................71 CHAPTER 10 FUTURE DIRECTIONS .....................................................................77 APPENDIX A STANDARDS
    [Show full text]
  • RT-ROS: a Real-Time ROS Architecture on Multi-Core Processors
    Future Generation Computer Systems 56 (2016) 171–178 Contents lists available at ScienceDirect Future Generation Computer Systems journal homepage: www.elsevier.com/locate/fgcs RT-ROS: A real-time ROS architecture on multi-core processors Hongxing Wei a,1, Zhenzhou Shao b, Zhen Huang a, Renhai Chen d, Yong Guan b, Jindong Tan c,1, Zili Shao d,∗,1 a School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, PR China b College of Information Engineering, Capital Normal University, Beijing, 100048, PR China c Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN, 37996-2110, USA d Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China article info a b s t r a c t Article history: ROS, an open-source robot operating system, is widely used and rapidly developed in the robotics Received 6 February 2015 community. However, running on Linux, ROS does not provide real-time guarantees, while real-time tasks Received in revised form are required in many robot applications such as robot motion control. This paper for the first time presents 20 April 2015 a real-time ROS architecture called RT-RTOS on multi-core processors. RT-ROS provides an integrated Accepted 12 May 2015 real-time/non-real-time task execution environment so real-time and non-real-time ROS nodes can be Available online 9 June 2015 separately run on a real-time OS and Linux, respectively, with different processor cores. In such a way, real-time tasks can be supported by real-time ROS nodes on a real-time OS, while non-real-time ROS nodes Keywords: Real-time operating systems on Linux can provide other functions of ROS.
    [Show full text]
  • Android and Wireless Data-Extraction Using Wi-Fi
    Android and Wireless data-extraction using Wi-Fi Bert Busstra N-A. Le-Khac, M-Tahar Kechadi School of Computer Science & Informatics School of Computer Science & Informatics University College Dublin University College Dublin Dublin 4, Ireland Dublin 4, Ireland [email protected] {an.lekhac, tahar.kechadi}@ucd.ie Abstract—Today, mobile phones are very popular, fast growing To investigate a mobile device an investigator needs to technology. Mobile phones of the present day are more and more interact with the device directly. The examiner must be like small computers. The so-called "smartphones" contain a sufficiently trained to examine the device. He has to think wealth of information each. This information has been proven to before he acts, because he must know exactly what effects his be very useful in crime investigations, because relevant evidence actions have on the data, and he must be prepared to prove it. If can be found in data retrieved from mobile phones used by criminals. In traditional methods, the data from mobile phones the examiner did change the data, he must be prepared to can be extracted using an USB-cable. However, for some reason explain why it was necessary and what data has changed. For this USB-cable connection cannot be made, the data should be this reason the examiner should document every action taken. extracted in an alternative way. In this paper, we study the In a traditional way, the data from mobile devices can be possibility of extracting data from mobile devices using a Wi-Fi extracted using an USB-cable.
    [Show full text]
  • Sharing a Common Medium: Media Access Protocols
    MIT 6.02 DRAFT Lecture Notes Fall 2010 (Last update: October 18, 2010) Comments, questions or bug reports? Please contact [email protected] LECTURE 10 Sharing a Common Medium: Media Access Protocols These are the lecture notes for Lectures 10 and 11 in Fall 2010. In this course so far, we have studied various techniques to develop a point-to-point link between two nodes communicating over a channel. The link includes techniques to: synchronize the receiver with the sender; ensure that there are enough transitions between voltage levels (e.g., using 8b/10b encoding); to cope with inter-symbol interference and noise; and to use channel coding to correct and detect bit errors. There are many communication channels, notably radio (wireless) and certain kinds of wired links (coaxial cables), where multiple nodes can all be connected and hear each other’s transmissions (either perfectly or to varying degrees). The next few lectures ad- dress the fundamental question of how such a common communication channel—also called a shared medium—can be shared between the different nodes. We will study two fundamental ways of sharing a medium: time sharing and frequency sharing. The idea in time sharing is to have the nodes coordinate with each other to divide up the access to the medium one at a time, in some fashion. The idea in frequency sharing is to divide up the frequency range available between the different transmitting nodes in a way that there is little or no interference between concurrently transmitting nodes. This lecture and the next one focus on approaches to time sharing.
    [Show full text]
  • OSI Model and Network Protocols
    CHAPTER4 FOUR OSI Model and Network Protocols Objectives 1.1 Explain the function of common networking protocols . TCP . FTP . UDP . TCP/IP suite . DHCP . TFTP . DNS . HTTP(S) . ARP . SIP (VoIP) . RTP (VoIP) . SSH . POP3 . NTP . IMAP4 . Telnet . SMTP . SNMP2/3 . ICMP . IGMP . TLS 134 Chapter 4: OSI Model and Network Protocols 4.1 Explain the function of each layer of the OSI model . Layer 1 – physical . Layer 2 – data link . Layer 3 – network . Layer 4 – transport . Layer 5 – session . Layer 6 – presentation . Layer 7 – application What You Need To Know . Identify the seven layers of the OSI model. Identify the function of each layer of the OSI model. Identify the layer at which networking devices function. Identify the function of various networking protocols. Introduction One of the most important networking concepts to understand is the Open Systems Interconnect (OSI) reference model. This conceptual model, created by the International Organization for Standardization (ISO) in 1978 and revised in 1984, describes a network architecture that allows data to be passed between computer systems. This chapter looks at the OSI model and describes how it relates to real-world networking. It also examines how common network devices relate to the OSI model. Even though the OSI model is conceptual, an appreciation of its purpose and function can help you better understand how protocol suites and network architectures work in practical applications. The OSI Seven-Layer Model As shown in Figure 4.1, the OSI reference model is built, bottom to top, in the following order: physical, data link, network, transport, session, presentation, and application.
    [Show full text]