The Mayfly Newsletter

Total Page:16

File Type:pdf, Size:1020Kb

The Mayfly Newsletter The Mayfly Newsletter Volume 23 Issue 1 Article 1 7-15-2020 The Mayfly Newsletter Donna Giberson [email protected] Follow this and additional works at: https://dc.swosu.edu/mayfly Part of the Biology Commons, Entomology Commons, Systems Biology Commons, and the Zoology Commons Recommended Citation Giberson, Donna (2020) "The Mayfly Newsletter," The Mayfly Newsletter: Vol. 23 : Iss. 1 , Article 1. Available at: https://dc.swosu.edu/mayfly/vol23/iss1/1 This Article is brought to you for free and open access by the Newsletters at SWOSU Digital Commons. It has been accepted for inclusion in The Mayfly Newsletter by an authorized editor of SWOSU Digital Commons. An ADA compliant document is available upon request. For more information, please contact [email protected]. The Mayfly Newsletter Vol. 23(1) June 2020 The Mayfly Newsletter is the official newsletter of the Permanent Committee of the International Conferences on Ephemeroptera In this issue Tales from the field: Tales from the field 1. Siphlonurus marhsalli in tributaries of the Buffalo River 1. Siphlonurus marshalli in the Dave Funk Buffalo River; Dave Funk...........1 Stroud Water Research Center, Avondale, Pennsylvania, USA 2. Mayfly collecting adventures in the unexplored Angolan wilds; I was able to sneak in a little vacation/collect- Helen Barber-James..................2 ing trip to the Arkansas Ozarks the last two weeks of March, just before things really shut Reports and notices: down on account of the corona virus. While 2021 XVITH International Con- searching for Ameletus in some tiny tributar- ference on Ephemeroptera and ies of the Buffalo River, I found bucketloads XXITH International Symposium of Siphlonurus marshalli Traver 1934. These on Plecoptera...........................6 streams are presumably seasonally intermit- tent, and fishless (due to their isolation from Zootaxa Ephemeroptera Editors’ more permanent water bodies by tall water- annual summary and acknowl- falls). I brought nymphs home to rear and edgements (2019); L. Jacobus, M. include a photo of an adult male here. Also in- Siphlonurus marshalli Traver 1934 Sartori, F. Salles, and P. Suter.....7 cluded, photos of one of the streams in which Funk D. I found them, and a typical waterfall at the IUCN Mayfly Report; Craig lower end of the reach. If these are like other MacAdam................................8 Siphlonurus I have worked with, their eggs will not hatch until late fall or winter. I hope to Report from SWOSU Digital Com- set up some experiments to test whether the mons; Phillip Fitzsimmons..........9 eggs can withstand desiccation in late sum- VI Symposium of Neotropical mer, which I Aquatic Insects.......................10 expect they may have New Book: Stenacron Mayflies..10 to endure in these How to donate to the streams. International Permanent These Committee on Ephemeroptera streams run Conferences...........................11 mostly on 2019 Mayfly Bibliography .........12 bedrock and so presum- Print copies of many issues still ably have no available................................19 hyporheic zone which Submissions to the Mayfly might provide Newsletter .............................19 a wet refuge. D. Funk D. Tributary to Buffalo River near Ponca D. Funk D. Hoskins tributary The Mayfly Newsletter is published (on-line) at https://dc.swosu.edu/mayfly/ (see link on Ephemeroptera Galactica: http://www.ephemeroptera-galactica.com/) contact: Donna J. Giberson, Editor email [email protected] Masthead image: Hexagenia sp. Andy Usher (Indiana University, Purdue University, Indianapolis) The Mayfly Newsletter 2 2. Mayfly collecting adventures in the unexplored Angolan wilds with the National Geographic Okavango Wilderness Project (NGOWP) Helen M. Barber-James Department of Freshwater Invertebrates, Albany Museum, Somerset Street, Makhanda (Grahamstown) 6139, South Africa. Department of Zoology and Entomology, Rhodes University, Makhanda (Grahamstown) 6140, South Africa. National Geographic Okavango Wilderness Project, Wild Bird Trust, South Africa. How does one describe the atmosphere of incredible peace that seeps into one’s soul in the wilds of Angola? Just me and the open bush, with a myriad different wild bog-orchids blooming to tempt me further and further from the camp to see yet another gorgeous bloom. Walking along the banks of the remote rivers, so peaceful now, yet witness to one of the most horrible civil wars in Africa, it’s hard to imagine that this beautiful place was ravaged by 27 years of civil war between 1975 and 2002. Yet the rusting armoured tanks (Figure 1) and trucks along the roadsides, missiles, and the occasional pock-marked ruins of once fine buildings are a stark reminder of darker times. Uncleared landmines are still a danger to anyone walking around in the bush in many parts of the country. The HALO Trust, an international H.M.Barber-James organisation committed to help countries recover Figure 1. An old army tank, once an emblem of fear, now a place of social after conflict by removing landmines and other gathering. post-war hazards, has an Angolan team which advises the NGOWP exploration and research teams which areas are safe and which are no-go areas. They have cleared areas so that many of the rural villages can once more be occupied safely, but the red and white markings painted on the trees are a sinister reminder not to go beyond that point. I was privileged to be part of the scientific team exploring the diversity of flora and fauna in the beautiful, remote Angolan highlands (Figure 2), with my freshwater invertebrate research team present on four expeditions between 2016-2019. Even the journey to reach the sites was an adventure (Figure 3). The unusual source lakes in the headwater valleys, grass and sedge-banked, flanked with stretches of miombo woodland on the higher ground beyond, are unique to this region. The lakes, high up in the plateau of the catchment, despite their name “source lake”, are not actually the source of the rivers. Typically, a deep, crystal-clear spring, fed by the surrounding marshland and peatbogs, gurgles into the head of a lake (Figure 4), with a larger stream forming at the outlet of the lake. These source lakes are not large, most are less than a square kilometre in area, but are very beautiful. However, they are remarkably difficult to access, surrounded by deep, marshy wetland and peat Figure 2. Map of Africa showing Angola in green, with the broader study site area, the so called “water tower’’ region indicated by red-dotted ellipse. The bogs, which have been measured to a depth of Okavango Delta is dependent on water from this region, as is Lake Kariba five meters (National Geographic, 2016). The (Zimbabwe) and Cahora Bassa (Mozambique), both large impoundments on presence of peat is very important as it forms a the Zambezi River (see red-dotted ellipses). seepage system, slowly releasing water the year Volume 23(1) June 2020 The Mayfly Newsletter 3 Figure 3. Travelling to one of our camp sites, showing slip- pery, muddy roads and a typical wooden bridge at river cross- ings, this one at Cuemba River. H.M.Barber-James H.M.Barber-James H.M.Barber-James Figure 4. Spring flowing into the upper end of Cuanavale source Figure 5. View across Cuanavale source lake, showing our camp lake. site in the distance. round, even in the dry season. The stream exiting a lake can soon become quite a big river, in turn feeding into other larger swiftly flowing sand-bed rivers. The underlying geology is composed of ancient Kalahari sands, and the bottoms of the lakes and rivers is sandy, with very few areas of rock. The lakes are often covered with water lilies, Nymphaea nouchali var. caerulea (Figures 5 and 6), which have immense tubers, delicious to eat when cooked properly (Figure 6). These tubers seem to provide habitat for some of the burrowing mayflies in the area (Polymitarcyidae,Povilla sp.), and hours of searching produced a few tiny larvae; seemingly it was the wrong season for the adults as none were collected at the November light traps. One of the challenges of working there is that the lakes and rivers are inhabited by crocodiles, which rather limits the freedom of collecting within the lake and in the deeper pools in the rivers. The river beds are rich in aquatic macrophytes which harbour a variety of interesting mayfly species, although that being said, the area has a rather low diversity of species. A point of great interest, noted in particular at the Cuananvale source lake in November 2019, was the minute size of several of the adult aquatic insects collected, including a tiny dragonfly, a minuscule caenid mayfly, and an even smaller than usual hydroptilid caddis, all of which are species new to science. We speculate that H.M.Barber-James the small size of these organisms may be due to the low nutrients in these Figure 6. Water lily stem being harvested, leached, sandy environments, which possibly also may account for the low looking for Povilla larvae, but later eaten for diversity. The diversity increases considerably in areas with hard substrate. dinner. Assisted by Mr Water, our expert ma- koro poler. Volume 23(1) June 2020 The Mayfly Newsletter 4 There is very little rocky habitat, and the occasional waterfall provides a very different fauna to the sandy bottomed lakes and rivers, as would be expected. The magnificent waterfall at the Luanginga River (Figure 7), for example, produced nymphs of the enormous Elassoneuria grandis (Oligoneuriidae), while in quite backwater pools nearby, larvae of the detritus-loving Machadorythus (Machadorythidae) (Figure 8) lurked in the shallows, their strange stalk-like eyes peering above the fine detrital particles covering the rocks. Machadorythus maculatus was the only species documented from Angola before the start of these NGOWP expeditions, described in 1959 by the Belgian, Georges Demoulin (Demoulin, 1959).
Recommended publications
  • A New Species of Behningia Lestage, 1929 (Ephemerotera: Behningiidae) from China
    Zootaxa 4671 (3): 420–426 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4671.3.7 http://zoobank.org/urn:lsid:zoobank.org:pub:EED176F4-BDA3-4053-A36C-8A76D3C4C186 A new species of Behningia Lestage, 1929 (Ephemerotera: Behningiidae) from China XIONGDONG ZHOU1, MIKE BISSET2, MENGZHEN XU3,5 & ZHAOYIN WANG4 1State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China. E-mail: [email protected] 2Department of Physics, Tsinghua University, Beiing, China. E-mail: [email protected] 3State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China. E-mail: [email protected] 4State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China. E-mail: [email protected] 5Corresponding author Abstract A new species of sand-burrowing mayfly (Ephemeroptera: Behningiidae), Behningia nujiangensis Zhou & Bisset, is described based on more than 50 nymphs collected from the Nujiang River in Yunnan Province, P.R. China. This is the first species of the family Behningiidae discovered in China. It is also the second species of genus Behningia, and the third species of the family Behningiidae collected from the Oriental biogeographic region. The shapes of the labrum and the labium in B. nujiangensis are markedly different from those found in other species of Behningia. Differences in the mandibles, the galea-lacina of maxillae, and both the prothoracic and metathoracic legs differentiate B. nujiangensis from both B. baei and B. ulmeri. The biology of and conservation challenges for B. nujiangensis are also briefly discussed.
    [Show full text]
  • Research Report110
    ~ ~ WISCONSIN DEPARTMENT OF NATURAL RESOURCES A Survey of Rare and Endangered Mayflies of Selected RESEARCH Rivers of Wisconsin by Richard A. Lillie REPORT110 Bureau of Research, Monona December 1995 ~ Abstract The mayfly fauna of 25 rivers and streams in Wisconsin were surveyed during 1991-93 to document the temporal and spatial occurrence patterns of two state endangered mayflies, Acantha­ metropus pecatonica and Anepeorus simplex. Both species are candidates under review for addition to the federal List of Endang­ ered and Threatened Wildlife. Based on previous records of occur­ rence in Wisconsin, sampling was conducted during the period May-July using a combination of sampling methods, including dredges, air-lift pumps, kick-nets, and hand-picking of substrates. No specimens of Anepeorus simplex were collected. Three specimens (nymphs or larvae) of Acanthametropus pecatonica were found in the Black River, one nymph was collected from the lower Wisconsin River, and a partial exuviae was collected from the Chippewa River. Homoeoneuria ammophila was recorded from Wisconsin waters for the first time from the Black River and Sugar River. New site distribution records for the following Wiscon­ sin special concern species include: Macdunnoa persimplex, Metretopus borealis, Paracloeodes minutus, Parameletus chelifer, Pentagenia vittigera, Cercobrachys sp., and Pseudiron centra/is. Collection of many of the aforementioned species from large rivers appears to be dependent upon sampling sand-bottomed substrates at frequent intervals, as several species were relatively abundant during only very short time spans. Most species were associated with sand substrates in water < 2 m deep. Acantha­ metropus pecatonica and Anepeorus simplex should continue to be listed as endangered for state purposes and receive a biological rarity ranking of critically imperiled (S1 ranking), and both species should be considered as candidates proposed for listing as endangered or threatened as defined by the Endangered Species Act.
    [Show full text]
  • Newsletter Alaska Entomological Society
    Newsletter of the Alaska Entomological Society Volume 12, Issue 1, March 2019 In this issue: Some food items of introduced Alaska blackfish (Dallia pectoralis T. H. Bean, 1880) in Kenai, Alaska8 Announcements . .1 Two new records of mayflies (Ephemeroptera) Arthropods potentially associated with spruce from Alaska . 11 (Picea spp.) in Interior Alaska . .2 Changes in soil fungal communities in response to A second Alaska record for Polix coloradella (Wals- invasion by Lumbricus terrestris Linnaeus, 1758 ingham, 1888) (Lepidoptera: Gelechioidea: Oe- at Stormy Lake, Nikiski, Alaska . 12 cophoridae), the “Skunk Moth” . .5 Review of the twelfth annual meeting . 19 Announcements New research to assess the risk of ticks tat suitability and probabilistic establishment model to dis- cover the climatic limits and probability of tick survival and tick-borne pathogens in Alaska in Alaska. For more information on ticks in Alaska and to learn how you can Submit-A-Tick, please visit: https: The geographic range of many tick species has expanded //dec.alaska.gov/eh/vet/ticks (website is in develop- substantially due to changes in climate, land use, and an- ment) or contact Dr. Micah Hahn ([email protected]). imal and human movement. With Alaska trending to- wards longer summers and milder winters, there is grow- ing concern about ticks surviving further north. Recent th passive surveillance efforts in Alaska have revealed that 69 Western Forest Insect Work Confer- non-native ticks—some with significant medical and vet- ence erinary importance—are present in the state. There is a new collaborative effort between the University of Alaska, The 69th Western Forest Insect Work Conference will the Alaska Department of Fish and Game, and the Of- be held April 22–25 2019 in Anchorage, Alaska at fice of the State Veterinarian to understand the risk of the Anchorage Marriott Downtown.
    [Show full text]
  • Burrowing Mayflies of Our Larger Lakes and Streams
    BURROWING MAYFLIES OF OUR LARGER LAKES AND STREAMS By James G. Needham Professor of Limnology, Cornell University Blank page retained for pagination CONTENTS. Page. Introduction. .. .. .. .. .. .. .. .. ...........•....•..•.•.........................•............... 269 Mississippi River collections :................ 271 Systematic account of the group ,.... .. .. .. 276 Hexagenia, the brown drakes.... .. .. .... 278 Pentagenia, the yellow drakes. .. .. .. .. .. .. .. 282 Ephemera, the mackerels. .............................................................. 283 Polymitarcys, the trailers. .............................................................. 285 Euthyplocia, the flounders. ....................................................... ... 287 Potamanthus, the spinners... .. .. .. .. .. 287 Bibliography ,. .. .. .. .. .. .. .. .. .. .. 288 Explanation of plates : .................... 290 110307°-21--18 2617 Blank page retained for pagination BULL. U. S. B. F ., 1917- 18 . P LATS LXX. F IG. 1. FIG. • . BURROWING MAYFLIES OF OUR LARGER LAKES AND STREAMS. By JAMES G. NnEDHAM, Professor of Limnology, Cornell University• .:f. INTRODUCTION. In the beds of all our larger lakes and streams there exists a vast animal popula­ tion, dependent, directly or indirectly, upon the rich organic food substances that are bestowed by gravity upon the bottom. Many fishes wander about over the bottom for­ aging. Many mollusks, heavily armored and slow, go pushing their way and leaving trails through the bottom sand and sediment. And many smaller :animals
    [Show full text]
  • CHAPTER 4: EPHEMEROPTERA (Mayflies)
    Guide to Aquatic Invertebrate Families of Mongolia | 2009 CHAPTER 4 EPHEMEROPTERA (Mayflies) EPHEMEROPTERA Draft June 17, 2009 Chapter 4 | EPHEMEROPTERA 45 Guide to Aquatic Invertebrate Families of Mongolia | 2009 ORDER EPHEMEROPTERA Mayflies 4 Mayfly larvae are found in a variety of locations including lakes, wetlands, streams, and rivers, but they are most common and diverse in lotic habitats. They are common and abundant in stream riffles and pools, at lake margins and in some cases lake bottoms. All mayfly larvae are aquatic with terrestrial adults. In most mayfly species the adult only lives for 1-2 days. Consequently, the majority of a mayfly’s life is spent in the water as a larva. The adult lifespan is so short there is no need for the insect to feed and therefore the adult does not possess functional mouthparts. Mayflies are often an indicator of good water quality because most mayflies are relatively intolerant of pollution. Mayflies are also an important food source for fish. Ephemeroptera Morphology Most mayflies have three caudal filaments (tails) (Figure 4.1) although in some taxa the terminal filament (middle tail) is greatly reduced and there appear to be only two caudal filaments (only one genus actually lacks the terminal filament). Mayflies have gills on the dorsal surface of the abdomen (Figure 4.1), but the number and shape of these gills vary widely between taxa. All mayflies possess only one tarsal claw at the end of each leg (Figure 4.1). Characters such as gill shape, gill position, and tarsal claw shape are used to separate different mayfly families.
    [Show full text]
  • Invertebrate Prey Selectivity of Channel Catfish (Ictalurus Punctatus) in Western South Dakota Prairie Streams Erin D
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 2017 Invertebrate Prey Selectivity of Channel Catfish (Ictalurus punctatus) in Western South Dakota Prairie Streams Erin D. Peterson South Dakota State University Follow this and additional works at: https://openprairie.sdstate.edu/etd Part of the Aquaculture and Fisheries Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Peterson, Erin D., "Invertebrate Prey Selectivity of Channel Catfish (Ictalurus punctatus) in Western South Dakota Prairie Streams" (2017). Electronic Theses and Dissertations. 1677. https://openprairie.sdstate.edu/etd/1677 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. INVERTEBRATE PREY SELECTIVITY OF CHANNEL CATFISH (ICTALURUS PUNCTATUS) IN WESTERN SOUTH DAKOTA PRAIRIE STREAMS BY ERIN D. PETERSON A thesis submitted in partial fulfillment of the degree for the Master of Science Major in Wildlife and Fisheries Sciences South Dakota State University 2017 iii ACKNOWLEDGEMENTS South Dakota Game, Fish & Parks provided funding for this project. Oak Lake Field Station and the Department of Natural Resource Management at South Dakota State University provided lab space. My sincerest thanks to my advisor, Dr. Nels H. Troelstrup, Jr., for all of the guidance and support he has provided over the past three years and for taking a chance on me.
    [Show full text]
  • The Life History, Nymphal Growth Rates, and Feeding Habits of Siphlonisca Aerodromia Needham (Epherneroptera: Siphlonuridae) in ~Aine'
    The life history, nymphal growth rates, and feeding habits of Siphlonisca aerodromia Needham (Epherneroptera: Siphlonuridae) in ~aine' K. ELIZABETHGIBBS AND TERRYM. MINGO Department of Entomology, University of Maine, Orono, ME, U. S. A. 04469 Received March 25. 1985 GIBBS,K. E., and T. M. MINGO.1986. The life history, nymphal growth rates, and feeding habits of Siphlonisca aerodromia Needham (Epherneroptera: Siphlonuridae) in Maine. Can. J. Zool. 64: 427-430. Siphlonisca aerodromia Needham has a univoltine life history in Maine. Adults emerge in late May or early June. Each female contains about 394 large (0.46 mm long) eggs covered with coiled fibers that anchor the eggs to the substrate. Eggs are deposited in the main channel of the stream and small nymphs appear in January. Nymphal growth rate (GHW)was expressed as a percent per day increase in head width. Initially nymphs feed on detritus and grow slowly (GHW= 0.28-0.79) at water temperatures near 0°C. Following snow melt, the nymphs move into the adjacent Carex floodplain. Here, water temperature increases, animal material, in the form of mayfly nymphs, becomes increasingly common in the diet, and growth rate increases (GHW = 2.13-2.89). The sex ratio of nymphs collected in May and June was 1: 1.8 (ma1e:female). GIBBS,K. E., et T. M. MINGO. 1986. The life history, nymphal growth rates, and feeding habits of Siphlonisca aerodromia Needham (Epherneroptera: Siphlonuridae) in Maine. Can. J. Zool. 64: 427-430. Dans le Maine, le cycle de Siphlonisca aerodromia Needham est univoltin. L'emergence des adultes se produit a la fin de mai ou au debut de juin.
    [Show full text]
  • TB142: Mayflies of Maine: an Annotated Faunal List
    The University of Maine DigitalCommons@UMaine Technical Bulletins Maine Agricultural and Forest Experiment Station 4-1-1991 TB142: Mayflies of aine:M An Annotated Faunal List Steven K. Burian K. Elizabeth Gibbs Follow this and additional works at: https://digitalcommons.library.umaine.edu/aes_techbulletin Part of the Entomology Commons Recommended Citation Burian, S.K., and K.E. Gibbs. 1991. Mayflies of Maine: An annotated faunal list. Maine Agricultural Experiment Station Technical Bulletin 142. This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Technical Bulletins by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. ISSN 0734-9556 Mayflies of Maine: An Annotated Faunal List Steven K. Burian and K. Elizabeth Gibbs Technical Bulletin 142 April 1991 MAINE AGRICULTURAL EXPERIMENT STATION Mayflies of Maine: An Annotated Faunal List Steven K. Burian Assistant Professor Department of Biology, Southern Connecticut State University New Haven, CT 06515 and K. Elizabeth Gibbs Associate Professor Department of Entomology University of Maine Orono, Maine 04469 ACKNOWLEDGEMENTS Financial support for this project was provided by the State of Maine Departments of Environmental Protection, and Inland Fisheries and Wildlife; a University of Maine New England, Atlantic Provinces, and Quebec Fellow­ ship to S. K. Burian; and the Maine Agricultural Experiment Station. Dr. William L. Peters and Jan Peters, Florida A & M University, pro­ vided support and advice throughout the project and we especially appreci­ ated the opportunity for S.K. Burian to work in their laboratory and stay in their home in Tallahassee, Florida.
    [Show full text]
  • Aquatic Insect Ecophysiological Traits Reveal Phylogenetically Based Differences in Dissolved Cadmium Susceptibility
    Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility David B. Buchwalter*†, Daniel J. Cain‡, Caitrin A. Martin*, Lingtian Xie*, Samuel N. Luoma‡, and Theodore Garland, Jr.§ *Department of Environmental and Molecular Toxicology, Campus Box 7633, North Carolina State University, Raleigh, NC 27604; ‡Water Resources Division, U.S. Geological Survey, 345 Middlefield Road, MS 465, Menlo Park, CA 94025; and §Department of Biology, University of California, Riverside, CA 92521 Edited by George N. Somero, Stanford University, Pacific Grove, CA, and approved April 28, 2008 (received for review February 20, 2008) We used a phylogenetically based comparative approach to evaluate ecosystems today (e.g., trace metals) (6). This variation in the potential for physiological studies to reveal patterns of diversity susceptibility has practical implications, because the ecological in traits related to susceptibility to an environmental stressor, the structure of aquatic insect communities is often used to indicate trace metal cadmium (Cd). Physiological traits related to Cd bioaccu- the ecological conditions in freshwater systems (7–9). Differ- mulation, compartmentalization, and ultimately susceptibility were ences among species’ responses to environmental stressors can measured in 21 aquatic insect species representing the orders be profound, but it is uncertain whether the cause is related to Ephemeroptera, Plecoptera, and Trichoptera. We mapped these ex- functional ecology [usually the assumption (10, 11)] or physio- perimentally derived physiological traits onto a phylogeny and quan- logical traits (5, 12–14), which have received considerably less tified the tendency for related species to be similar (phylogenetic attention. To the degree that either is involved, their link to signal).
    [Show full text]
  • Invertebrates
    State Wildlife Action Plan Update Appendix A-5 Species of Greatest Conservation Need Fact Sheets INVERTEBRATES Conservation Status and Concern Biology and Life History Distribution and Abundance Habitat Needs Stressors Conservation Actions Needed Washington Department of Fish and Wildlife 2015 Appendix A-5 SGCN Invertebrates – Fact Sheets Table of Contents What is Included in Appendix A-5 1 MILLIPEDE 2 LESCHI’S MILLIPEDE (Leschius mcallisteri)........................................................................................................... 2 MAYFLIES 4 MAYFLIES (Ephemeroptera) ................................................................................................................................ 4 [unnamed] (Cinygmula gartrelli) .................................................................................................................... 4 [unnamed] (Paraleptophlebia falcula) ............................................................................................................ 4 [unnamed] (Paraleptophlebia jenseni) ............................................................................................................ 4 [unnamed] (Siphlonurus autumnalis) .............................................................................................................. 4 [unnamed] (Cinygmula gartrelli) .................................................................................................................... 4 [unnamed] (Paraleptophlebia falcula) ...........................................................................................................
    [Show full text]
  • Effects of Hydrological Connectivity on the Benthos of a Large River (Lower Mississippi River, USA)
    University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 1-1-2018 Effects of Hydrological Connectivity on the Benthos of a Large River (Lower Mississippi River, USA) Audrey B. Harrison University of Mississippi Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Biology Commons Recommended Citation Harrison, Audrey B., "Effects of Hydrological Connectivity on the Benthos of a Large River (Lower Mississippi River, USA)" (2018). Electronic Theses and Dissertations. 1352. https://egrove.olemiss.edu/etd/1352 This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. EFFECTS OF HYDROLOGICAL CONNECTIVITY ON THE BENTHOS OF A LARGE RIVER (LOWER MISSISSIPPI RIVER, USA) A Dissertation presented in partial fulfillment of requirements for the degree of Doctor of Philosophy in the Department of Biological Sciences The University of Mississippi by AUDREY B. HARRISON May 2018 Copyright © 2018 by Audrey B. Harrison All rights reserved. ABSTRACT The effects of hydrological connectivity between the Mississippi River main channel and adjacent secondary channel and floodplain habitats on macroinvertebrate community structure, water chemistry, and sediment makeup and chemistry are analyzed. In river-floodplain systems, connectivity between the main channel and the surrounding floodplain is critical in maintaining ecosystem processes. Floodplains comprise a variety of aquatic habitat types, including frequently connected secondary channels and oxbows, as well as rarely connected backwater lakes and pools. Herein, the effects of connectivity on riverine and floodplain biota, as well as the impacts of connectivity on the physiochemical makeup of both the water and sediments in secondary channels are examined.
    [Show full text]
  • MAINE STREAM EXPLORERS Photo: Theb’S/FLCKR Photo
    MAINE STREAM EXPLORERS Photo: TheB’s/FLCKR Photo: A treasure hunt to find healthy streams in Maine Authors Tom Danielson, Ph.D. ‐ Maine Department of Environmental Protection Kaila Danielson ‐ Kents Hill High School Katie Goodwin ‐ AmeriCorps Environmental Steward serving with the Maine Department of Environmental Protection Stream Explorers Coordinators Sally Stockwell ‐ Maine Audubon Hannah Young ‐ Maine Audubon Sarah Haggerty ‐ Maine Audubon Stream Explorers Partners Alanna Doughty ‐ Lakes Environmental Association Brie Holme ‐ Portland Water District Carina Brown ‐ Portland Water District Kristin Feindel ‐ Maine Department of Environmental Protection Maggie Welch ‐ Lakes Environmental Association Tom Danielson, Ph.D. ‐ Maine Department of Environmental Protection Image Credits This guide would not have been possible with the extremely talented naturalists that made these amazing photographs. These images were either open for non‐commercial use and/or were used by permission of the photographers. Please do not use these images for other purposes without contacting the photographers. Most images were edited by Kaila Danielson. Most images of macroinvertebrates were provided by Macroinvertebrates.org, with exception of the following images: Biodiversity Institute of Ontario ‐ Amphipod Brandon Woo (bugguide.net) – adult Alderfly (Sialis), adult water penny (Psephenus herricki) and adult water snipe fly (Atherix) Don Chandler (buigguide.net) ‐ Anax junius naiad Fresh Water Gastropods of North America – Amnicola and Ferrissia rivularis
    [Show full text]