Sulfoxides of Thiophene and Dibenzothiophene: a Mechanistic Study of Photochemical Deoxygenation Mrinmoy Nag Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Sulfoxides of Thiophene and Dibenzothiophene: a Mechanistic Study of Photochemical Deoxygenation Mrinmoy Nag Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2005 Sulfoxides of thiophene and dibenzothiophene: a mechanistic study of photochemical deoxygenation Mrinmoy Nag Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Nag, Mrinmoy, "Sulfoxides of thiophene and dibenzothiophene: a mechanistic study of photochemical deoxygenation " (2005). Retrospective Theses and Dissertations. 1843. https://lib.dr.iastate.edu/rtd/1843 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Sulfoxides of thiophene and dibenzothiophene: A mechanistic study of photochemical deoxygenation by Mrinmoy Nag A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Organic Chemistry Program of Study Committee William S. Jenks, Major Professor George A. Kraus Nicola L. Pohl Klaus Schmidt-Rohr Victor S.-Y. Lin Iowa State University Ames, Iowa 2005 UMI Number: 3184597 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI UMI Microform 3184597 Copyright 2005 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 ii Graduate College Iowa State University This is to certify that the doctoral dissertation of Mrinmoy Nag has met the dissertation requirements of Iowa State University Signature was redacted for privacy. Signature was redacted for privacy. For the Major Program iii To Gargi My wife iv TABLE OF CONTENTS ABSTRACT vii CHAPTER I. PHOTOCHEMISTRY AND PHOTOPHYSICS OF AROMATIC SULFOXIDES : A GENERAL REVIEW 1 1.1 Dissertation organization 1 1.2 Objectives 2 1.3 Fundamental properties of sulfoxide groups 2 1.4 A review of photochemistry of sulfoxides 5 1.4.1 a-Cleavage 5 1.4.1.1 a-Cleavage of dialkyl sulfoxides 6 1.4.1.2 a-Cleavage of benzylic sulfoxides 9 1.4.1.3 a-Cleavage of alkyl aryl and diaryl sulfoxides 1 * 1.4.1.4 SO extrusions * ^ 1.5 Hydrogen abstraction * ^ 1.6 Photochemical deoxygenation of aromatic sulfoxides ^ 1.6.1 Disproportionate mechanism 1 ^ 1.6.2 Dimer mechanism 1 & 1.6.3 Sulfmyl mechanism 20 1.6.4 Hydrogen abstraction 21 1.7 Bimolecular photoreduction of aromatic sulfoxides 23 1.8 Stereomutation of sulfoxides 26 V 1.9 Photophysics of aromatic sulfoxides 29 References 32 CHAPTER II. PHOTOCHEMISTRY AND PHOTOPHYSICS OF HALOGEN-SUBSTITUTED DIBENZOTHIOPHENE OXIDES Abstract 36 2.1 Introduction 37 2.2 Results 39 2.3 Discussion 50 2.4 Conclusion 55 2.5 Experimental Section 56 Acknowledgment 63 References 63 CHAPTER III. PHOTOCHEMISTRY OF SUBSTITUTED DIBENZOTHIOPHENE OXIDES: THE EFFECT OF TRAPPING GROUPS Abstract 68 3.1 Introduction 69 3.2 Results 72 3.3 Discussion 81 3.4 Conclusion 87 vi Experimental Section 88 Acknowledgement 97 References 97 CHAPTER IV. PHOTOCHEMISTRY OF THIOPHENE-S-OXIDE DERIVATIVES Abstract 102 4.1 Introduction 102 4.1.1 Detection of the adduct of 0(3P) with acetonitrile 103 4.1.2 Synthetic challenge 104 4.1.3 Structure of thiophene oxide 108 4.1.4 Characteristic of the excited state of thiophene oxides 110 4.1.5 Photochemistry of thiophene-^-oxides 110 4.2 Results 111 4.3 Discussion 120 4.4 Summary 123 4.5 Experimental Section 124 References 130 CHAPTER V. GENERAL CONCLUSIONS 134 ACKNOWLEDGEMENTS 138 vii Abstract Dibenzothiophene oxide (DBTO) produces dibenzothiophene (DBT) as the only detectable photoproduct. Although the chemical yield of deoxygenation is very high, the quantum yield is relatively low. Indirect evidence also indicates formation of 0(3P) as the other photoproduct. The quantum yield of deoxygenation increases in the presence of oxygen trapping solvents. From these results, a mechanism for the deoxygenation was proposed which indicates a unimolecular S-0 bond scission and a S-0 bond stretch coupled to intersystem crossing. Heavy atom substituted DBTOs show high efficiency of phosphorescence but a moderate increase in the deoxygenation quantum yield. However, the order of increase in both phosphorescence and deoxygenation quantum yields are in accord with the heavy atom effect. 4-Iodo DBTO also undergoes deiodination via a secondary photolysis. Alkenyl and sulfenyl groups were appended to the 4-position of DBTO to check whether they increase the efficiency of the deoxygenation. Photolysis of these substituted DBTOs showed increase in the quantum yield and for substituted DBTOs detectable amount of intramolecular trapped products were also formed. The quantum yield of deoxygenation was less solvent dependent for this series of DBTOs. However, in cyclohexene the quantum yield was similar to that observed for DBTO, and no intramolecular trapped products were found. This could be due to the fact that cyclohexene is a better trapping agent than the appended alkenyl and sulfenyl groups, and due to its presence in a large excess compared to the trapping group concentration. However, detection of intramolecular trapped products suggests that solvent effects observed in previous studies of DBTO derive at least mainly from the reactivity between the oxidizing species that is released - presumably 0(3P) - and the solvent, rather than from other macroscopic solvent parameters. Unlike DBTO, mechanistic studies for the deoxygenation of thiophene oxide (TO) are little known. The S-O bond breaking energy in TO is about 15 kcal/mol less than that of DBTO, whereas its first excited singlet state has almost the same energy as DBTO. Stable substituted TO derivatives were prepared hoping that they would produce 0(3P) with high efficiency. Results obtained for 2,5-bis(trimethylsilyl) TO are promising. The quantum yield of deoxygenation in benzene was about 14 times higher than for DBTO. However, only about half of the disappearance was accounted for by the appearance of the corresponding thiophene. Other thiophene oxides, which were photolyzed either produced furan or other unknown products. It is possible that there is an analogy between the deoxygenation mechanism of DBTO and TO but it is too early to speculate that. At least, it is fair to say that the photochemistry of TO derivatives is more complicated and more substituent dependent than that of DBTO derivatives. 1 CHAPTER 1 PHOTOCHEMISTRY AND PHOTOPHYSICS OF AROMATIC SULFOXIDES: A GENERAL REVIEW 1.1 Dissertation organization This dissertation contains five chapters. Chapter 1 is a general review of the photochemistry of dibenzothiophene (DBTOs) and thiophene oxides (TOs). This chapter is composed of mainly the literature reviews available for the photochemical processes of the previously mentioned compounds. Chapter 2 and Chapter 3 are based on two independent published papers. Chapter 4 is the basis of another publication. Chapter 2 discusses the photochemistry and photophysics of heavy atom substituted DBTOs. In Chapter 3, the photochemical deoxygenation of DBTOs with O atom accepting substituents is discussed. In Chapter 4, the photochemistry of various substituted stable thiophene oxides is discussed. Chapter 5 contains general conclusions and a summary of previous chapters. While the majority of the work described here was carried out by the author, there were contributions from another group member. Some of the experiments discussed in Chapter 4 were performed by Melanie Heying. 2 1.2 Objectives The overall goal of this dissertation is to develop a better understanding of the photochemical processes of dibenzothiophene and thiophene oxides. The contents of the next two chapters are related and discuss the photochemical deoxygenation process of the substituted aromatic sulfoxide, DBTO. The fourth chapter is about another aromatic sulfoxide, thiophene oxide, whose photochemistry is relatively unexplored compared to the DBTO derivatives. 1.3 Fundamental properties of sulfoxide groups Superficially, the sulfoxide or sulfinyl functional group has many similarities to carbonyl functional groups. Both of the functional groups have polar bonds where oxygen is the more electronegative atom. Both the functional groups show a-cleavage as one of their main photochemical reactions, and both groups tend to stabilize a-carbanions. Despite these similarities, there is a fundamental difference between them. In carbonyl groups, the carbon atom is sp2 hybridized, whereas in sulfoxides the sulfur atom is approximately sp3 hybridized. Hence, unlike the carbonyl groups no true Jt-bond can be found in the sulfoxide groups. At the same time, the sulfoxide bond cannot be represented by a simple single bond. Because of the complexity of the sulfoxide bond there is no universally accepted
Recommended publications
  • Dimethyl Sulfoxide MSDS
    He a lt h 1 2 Fire 2 2 0 Re a c t iv it y 0 Pe rs o n a l Pro t e c t io n F Material Safety Data Sheet Dimethyl sulfoxide MSDS Section 1: Chemical Product and Company Identification Product Name: Dimethyl sulfoxide Contact Information: Catalog Codes: SLD3139, SLD1015 Sciencelab.com, Inc. 14025 Smith Rd. CAS#: 67-68-5 Houston, Texas 77396 RTECS: PV6210000 US Sales: 1-800-901-7247 International Sales: 1-281-441-4400 TSCA: TSCA 8(b) inventory: Dimethyl sulfoxide Order Online: ScienceLab.com CI#: Not applicable. CHEMTREC (24HR Emergency Telephone), call: Synonym: Methyl Sulfoxide; DMSO 1-800-424-9300 Chemical Name: Dimethyl Sulfoxide International CHEMTREC, call: 1-703-527-3887 Chemical Formula: (CH3)2SO For non-emergency assistance, call: 1-281-441-4400 Section 2: Composition and Information on Ingredients Composition: Name CAS # % by Weight Dimethyl sulfoxide 67-68-5 100 Toxicological Data on Ingredients: Dimethyl sulfoxide: ORAL (LD50): Acute: 14500 mg/kg [Rat]. 7920 mg/kg [Mouse]. DERMAL (LD50): Acute: 40000 mg/kg [Rat]. Section 3: Hazards Identification Potential Acute Health Effects: Slightly hazardous in case of inhalation (lung irritant). Slightly hazardous in case of skin contact (irritant, permeator), of eye contact (irritant), of ingestion, . Potential Chronic Health Effects: Slightly hazardous in case of skin contact (irritant, sensitizer, permeator), of ingestion. CARCINOGENIC EFFECTS: Not available. MUTAGENIC EFFECTS: Mutagenic for mammalian somatic cells. Mutagenic for bacteria and/or yeast. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. The substance may be toxic to blood, kidneys, liver, mucous membranes, skin, eyes.
    [Show full text]
  • A Flexible All-Atom Model of Dimethyl Sulfoxide for Molecular Dynamics Simulations
    1074 J. Phys. Chem. A 2002, 106, 1074-1080 A Flexible All-Atom Model of Dimethyl Sulfoxide for Molecular Dynamics Simulations Matthew L. Strader and Scott E. Feller* Department of Chemistry, Wabash College, CrawfordsVille, Indiana 47933 ReceiVed: October 1, 2001 An all-atom, flexible dimethyl sulfoxide model has been created for molecular dynamics simulations. The new model was tested against experiment for an array of thermodynamic, structural, and dynamic properties. Interactions with water were compared with previous simulations and experimental studies, and the unusual changes exhibited by dimethyl sulfoxide/water mixtures, such as the enhanced structure of the solution, were reproduced by the new model. Particular attention was given to the design of the electrostatic component of the force field and to providing compatibility with the CHARMM parameter sets for biomolecules. Introduction mixtures,14,17,18 and its interaction with a phospholipid bi- Theoretical methods for the investigation of biological layer.19,20 Simulations published to date have utilized a rigid, molecules have become commonplace in biochemistry and united-atom model where each methyl group is represented by biophysics.1 These approaches provide detailed atomic models a single atomic center and all bond lengths and angles are fixed of biological systems, from which structure-function relation- at their equilibrium values. Another feature common to most ships can be elucidated. Methods based on empirical force fields, of these models is the use of the same charge distribution, such as molecular dynamics (MD) simulations, allow for namely that obtained by Rao and Singh from a Hartree-Fock calculations on relatively large systems, e.g., complete biomol- 6-31G* ab initio quantum mechanical calculation.21 ecules or assemblies of biomolecules in their aqueous environ- Recent advances in computer hardware now allow a flexible, ment.
    [Show full text]
  • Synthetic Turf Scientific Advisory Panel Meeting Materials
    California Environmental Protection Agency Office of Environmental Health Hazard Assessment Synthetic Turf Study Synthetic Turf Scientific Advisory Panel Meeting May 31, 2019 MEETING MATERIALS THIS PAGE LEFT BLANK INTENTIONALLY Office of Environmental Health Hazard Assessment California Environmental Protection Agency Agenda Synthetic Turf Scientific Advisory Panel Meeting May 31, 2019, 9:30 a.m. – 4:00 p.m. 1001 I Street, CalEPA Headquarters Building, Sacramento Byron Sher Auditorium The agenda for this meeting is given below. The order of items on the agenda is provided for general reference only. The order in which items are taken up by the Panel is subject to change. 1. Welcome and Opening Remarks 2. Synthetic Turf and Playground Studies Overview 4. Synthetic Turf Field Exposure Model Exposure Equations Exposure Parameters 3. Non-Targeted Chemical Analysis Volatile Organics on Synthetic Turf Fields Non-Polar Organics Constituents in Crumb Rubber Polar Organic Constituents in Crumb Rubber 5. Public Comments: For members of the public attending in-person: Comments will be limited to three minutes per commenter. For members of the public attending via the internet: Comments may be sent via email to [email protected]. Email comments will be read aloud, up to three minutes each, by staff of OEHHA during the public comment period, as time allows. 6. Further Panel Discussion and Closing Remarks 7. Wrap Up and Adjournment Agenda Synthetic Turf Advisory Panel Meeting May 31, 2019 THIS PAGE LEFT BLANK INTENTIONALLY Office of Environmental Health Hazard Assessment California Environmental Protection Agency DRAFT for Discussion at May 2019 SAP Meeting. Table of Contents Synthetic Turf and Playground Studies Overview May 2019 Update .....
    [Show full text]
  • Homogeneous Models of Thiophene Hds Reactions
    HOMOGENEOUS MODELS OF THIOPHENE HDS REACTIONS. SELECTIVITY IN THIOPHENE C-S CLEAVAGE AND THIOPHENE REACTIONS WITH DINUCLEAR METAL COMPLEXES. William D. Jones,* David A. Vicic, R. Martin Chin, James H. Roache, and Andy W. Myers. Department of Chemistry, University of Rochester, Rochester, NY 14627 Received August 1, 1996 - Abstract: The reactive 16 e metal fragment [(C5Me5)Rh(PMe3)] inserts into a wide variety of thiophene C-S bonds. The structures of the thiophene, benzothiophene, and dibenzothiophene insertion complexes have been determined. While the thiophene complex adopts a planar 6- membered ring structure the other metallacycles are bent, and all molecules possess localized diene structures. The mechanism of C-S cleavage was found to proceed by way of initial sulfur coordination. 2-Methylbenzothiophene gives a kinetic product resulting from cleavage of the sulfur-vinyl bond, but then rearranges to cleave the sulfur-aryl bond. A number of substituted dibenzothiophenes were examined, showing little electronic effect of substituents, but showing a large steric effect of substituents at the 4 and 6 positions. 4,6-Dimethyldibenzothiophene does not undergo cleavage, but instead forms an S-bound complex. Reactions of a cobalt analog, (C5Me5)Co(C2H4)2 with thiophenes also lead to C-S cleaved products, and the use of a dinuclear iridium system produces a butadiene complex in which both C-S bonds have been cleaved. Introduction of these sulfur containing compounds prior to The hydrodesulfurization of petroleum is one treatment. Figure 2 shows how this original mixture of several steps in the hydrotreating of oil in which of compounds is changed upon HDS treatment at sulfur is removed from thiols and thiophenes as temperatures of 350 - 390 °C.
    [Show full text]
  • Dimethyl Sulfoxide Oxidation of Primary Alcohols
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 8-1966 Dimethyl Sulfoxide Oxidation of Primary Alcohols Carmen Vargas Zenarosa Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Chemistry Commons Recommended Citation Zenarosa, Carmen Vargas, "Dimethyl Sulfoxide Oxidation of Primary Alcohols" (1966). Master's Theses. 4374. https://scholarworks.wmich.edu/masters_theses/4374 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. DIMETHYL SULFOXIDE OXIDATION OF PRIMARY ALCOHOLS by Carmen Vargas Zenarosa A thesis presented to the Faculty of the School of Graduate Studies in partial fulfillment of the Degree of Master of Arts Western Michigan University Kalamazoo, Michigan August, 1966 ACKNOWLEDGMENTS The author wishes to express her appreciation to the members of her committee, Dr, Don C. Iffland and Dr. Donald C, Berndt, for their helpful suggestions and most especially to Dr, Robert E, Harmon for his patience, understanding, and generous amount of time given to insure the completion of this work. Appreciation is also expressed for the assistance given by her. colleagues. The author acknowledges the assistance given by the National Institutes 0f Health for this research project. Carmen Vargas Zenarosa ii TABLE OF CONTENTS Page
    [Show full text]
  • Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical
    International Journal of Molecular Sciences Article The Gas-Phase Formation Mechanism of Dibenzofuran (DBF), Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical 1, 1, 1,2 1 1,2, 3 Xuan Li y, Yixiang Gao y, Chenpeng Zuo , Siyuan Zheng , Fei Xu *, Yanhui Sun and Qingzhu Zhang 1 1 Environment Research Institute, Shandong University, Qingdao 266237, China; [email protected] (X.L.); [email protected] (Y.G.); [email protected] (C.Z.); [email protected] (S.Z.); [email protected] (Q.Z.) 2 Shenzhen Research Institute, Shandong University, Shenzhen 518057, China 3 College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; [email protected] * Correspondence: [email protected]; Tel.: +86-532-58631992 These authors contributed equally to this article. y Received: 11 August 2019; Accepted: 28 October 2019; Published: 31 October 2019 Abstract: Benzofuran (BF), benzothiophene (BT), indole (IN), dibenzofuran (DBF), dibenzothiophene (DBT), and carbazole (CA) are typical heterocyclic aromatic compounds (NSO-HETs), which can coexist with polycyclic aromatic hydrocarbons (PAHs) in combustion and pyrolysis conditions. In this work, quantum chemical calculations were carried out to investigate the formation of DBF, DBT, and CA from the reactions of BF, BT, and IN with a cyclopentadienyl radical (CPDyl) by using the hybrid density functional theory (DFT) at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level. The rate constants of crucial elementary steps were deduced over 600 1200 K, using canonical − variational transition state theory with a small-curvature tunneling contribution (CVT/SCT).
    [Show full text]
  • Hydrogenation of 2-Methylnaphthalene in a Trickle Bed Reactor Over Bifunctional Nickel Catalysts
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Fall 12-2020 Hydrogenation of 2-methylnaphthalene in a Trickle Bed Reactor Over Bifunctional Nickel Catalysts Matthew J. Kline University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Catalysis and Reaction Engineering Commons, and the Petroleum Engineering Commons Recommended Citation Kline, Matthew J., "Hydrogenation of 2-methylnaphthalene in a Trickle Bed Reactor Over Bifunctional Nickel Catalysts" (2020). Electronic Theses and Dissertations. 3284. https://digitalcommons.library.umaine.edu/etd/3284 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. HYDROGENATION OF 2-METHYLNAPHTHALENE IN A TRICKLE BED REACTOR OVER BIFUNCTIONAL NICKEL CATALYSTS By Matthew J. Kline B.S. Seton Hill University, 2018 A THESIS Submitted in Partial Fulfillment of the Requirements For the Degree of Master oF Science (in Chemical Engineering) The Graduate School The University of Maine December 2020 Advisory Committee: M. Clayton Wheeler, Professor of Chemical Engineering, Advisor Thomas J. Schwartz, Assistant ProFessor oF Chemical Engineering William J. DeSisto, ProFessor oF Chemical Engineering Brian G. Frederick, ProFessor oF Chemistry
    [Show full text]
  • Synthesis and Electropolymerization of Furan End−Capped Dibenzothiophene/Dibenzofuran and Electrochromic Properties of Their Polymers
    Int. J. Electrochem. Sci., 12 (2017) 5000 – 5011, doi: 10.20964/2017.06.29 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Synthesis and Electropolymerization of Furan End−capped Dibenzothiophene/Dibenzofuran and Electrochromic Properties of Their Polymers Hua Gu1‡, Kaiwen Lin2‡, Hongtao Liu3, Nannan Jian3, Kai Qu3, Huimin Yu3, Jun Wei3, Shuai Chen1,4,* and Jingkun Xu1,4,* 1School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China 2School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China 3School of Chemistry & Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China; 4Jiangxi Engineering Laboratory of Waterborne Coatings, Nanchang 330013, PR China *E−mail: [email protected], [email protected] ‡ These authors contributed equally to this work. Received: 20 January 2017 / Accepted: 18 April 2017 / Published: 12 May 2017 Two furan end−capped dibenzo five−membered ring monomers, 2,8−bis−(furan−2−yl)−dibenzothiophene (DBT−Fu) and 2,8−bis−(furan−2−yl)−dibenzofuran (DBF−Fu) were successfully synthesized via Stille couple reaction. Corresponding polymers, P(DBT−Fu) and P(DBF−Fu), were obtained by employed the electropolymerization. The surface morphology, electrochemical and optical properties of monomers and polymers were researched by cyclic voltammetry (CV), scanning electron microscopy (SEM), and UV−via spectra method. Both polymers exhibited obvious color changes from neutral state
    [Show full text]
  • Thiol–Disulfide Exchange Is Involved in the Catalytic Mechanism of Peptide Methionine Sulfoxide Reductase
    Thiol–disulfide exchange is involved in the catalytic mechanism of peptide methionine sulfoxide reductase W. Todd Lowther*, Nathan Brot†, Herbert Weissbach‡, John F. Honek¶, and Brian W. Matthews*§ *Institute of Molecular Biology, Howard Hughes Medical Institute and Department of Physics, 1229 University of Oregon, Eugene, OR 97403-1229; †Hospital for Special Surgery, Cornell University Medical Center, New York, NY 10021; ‡Center for Molecular Biology and Biotechnology, Florida Atlantic University, Boca Raton, FL 33431; and ¶Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1 Contributed by Herbert Weissbach, April 6, 2000 Peptide methionine sulfoxide reductase (MsrA; EC 1.8.4.6) re- L-Met(O), D-Met(O), N-Ac-L-Met(O), dimethyl sulfoxide, and verses the inactivation of many proteins due to the oxidation of L-ethionine sulfoxide (12, 17). However, the most important critical methionine residues by reducing methionine sulfoxide, physiological role of MsrAs is to reduce Met(O) residues in Met(O), to methionine. MsrA activity is independent of bound proteins (12, 17, 18). The enzymatic activity of MsrAs depends metal and cofactors but does require reducing equivalents from on the reducing equivalents from DTT or a thioredoxin- either DTT or a thioredoxin-regenerating system. In an effort to regenerating system (12, 17), suggesting the potential involve- understand these observations, the four cysteine residues of ment of one or more cysteine residues. To test this involve- bovine MsrA were mutated to serine in a series of permutations. ment, the four cysteine residues of bovine MsrA (bMsrA, Fig. An analysis of the enzymatic activity of the variants and their 1) were mutated to serine in a series of permutations.
    [Show full text]
  • Kinetics of Hydrodesulfurization of Dibenzothiophene on Sulfided Commercial Co-Mo/Γ-Al2o3catalyst IOةŸ ل
    The Journal of Engineering Research Vol. 3, No. 1 (2006) 38-42 Kinetics of Hydrodesulfurization of Dibenzothiophene on Sulfided Commercial Co-Mo/γ-Al2O3 Catalyst Y.S. Al-Zeghayer1 and B.Y. Jibril*2 1Chemical Engineering Department, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia 2Petroleum and Chemical Engineering Department, Sultan Qaboos University, P.O. Box 33, Al-Khoud, PC 123, Muscat, Oman Received 27 April 2005; accepted 17 September 2005 …QÉŒ »àjÈc …õØM πeÉY ≈∏Y dibenzothiophene IOÉŸ á«æ«Lh~«¡dG âjȵdG ádGPG äÓYÉØJ á«côM 2@πjÈL .….Ü h 1ÒgõdG .¢S.… á≤∏£e áLQO 683 ¤G 633 ÚH Ée ájQGôM äÉLQO ~æY …QÉŒ »àjÈc …õØM πeÉY ≈∏Y É«∏ª©e â°SQhO dibenzothiophene IOÉŸ á«æ«LhQ~«¡dG âjȵdG ádGPEG äÓYÉØJ áÑ«côJ :á°UÓÿG á«∏ª©ŸG èFÉàædG §Ñæà°ùj ¿G øµÁ áHPɵdG ¤h’G áLQ~dG øe »°VÉjQ êPƒ‰ ¿G âÑKG .âe~îà°SG á«æ«LhQ~«¡dG âjȵdG ádGPGC á«∏ªY øe É¡«∏Y π°UÉ◊G DBT IOÉŸ áØ«©°V äGõ«côJ .…ƒL §¨°V 10 ~æY h (CHB) ɢª˘g ɢ¡˘«˘∏˘Y ∫ƒ˘°üÙG ᢫˘˘°ù«˘˘Fô˘˘dG äɢ˘é˘˘à˘˘æŸG ¿G ~L,, 51.7 kcal/mol …hɢ°ùJ ɢ¡˘fG ~˘˘Lh DBT IOÉe π˘jƒ˘ë˘à˘d á˘£˘°ûæŸG á˘bɢ£˘dG .ᢵ˘∏˘¡˘à˘°ùŸG DBT IOɢ˘Ÿ »£©J á©HÉààŸG ájRGƒàŸG äÓYÉØàdG ¿G ~Lhh .âHôL á©HÉààŸG ájRGƒàŸGh …RGƒàŸG äÓYÉØàdG ɪgh äÓYÉØàdG áµÑ°T øe ÚæKG ¿Gh . Biphenyl (BP) and cyclohexylbenzene (EBP) BP IOÉe ¤G DBT IOÉe πjƒëàd ᣰûæŸG ábÉ£dG º«b ¿G .IQGô◊G áLQO ≈∏Y ~ªà©J CHBIOÉe ¤G BP IOÉe áÑ°ùf ¿Gh .
    [Show full text]
  • Synthesis, Antimicrobial Activity and Conformational Analysis of the Class
    www.nature.com/scientificreports OPEN Synthesis, antimicrobial activity and conformational analysis of the class IIa bacteriocin pediocin PA-1 Received: 30 January 2018 Accepted: 29 May 2018 and analogs thereof Published: xx xx xxxx François Bédard1,2, Riadh Hammami 2,4, Séverine Zirah3, Sylvie Rebufat3, Ismail Fliss2 & Eric Biron 1 The antimicrobial peptide pediocin PA-1 is a class IIa bacteriocin that inhibits several clinically relevant pathogens including Listeria spp. Here we report the synthesis and characterization of whole pediocin PA-1 and novel analogs thereof using a combination of solid- and solution-phase strategies to overcome difculties due to instability and undesired reactions. Pediocin PA-1 thus synthesized was a potent inhibitor of Listeria monocytogenes (MIC = 6.8 nM), similar to the bacteriocin produced naturally by Pediococcus acidilactici. Of particular interest is that linear analogs lacking both of the disulfde bridges characterizing pediocin PA-1 were as potent. One linear analog was also a strong inhibitor of Clostridium perfringens, another important food-borne pathogen. These results are discussed in light of conformational information derived from circular dichroism, solution NMR spectroscopy and structure- activity relationship studies. Antibiotic therapy was perhaps the most important scientifc achievement of the twentieth century in terms of socioeconomic equality and human and animal health. However, misuse of antibiotics led to the emergence of multi-resistant pathogenic strains such as MRSA (methicillin-resistant Staphylococcus aureus) and VRE (vancomycin-resistant Enterococci) and of health problems due to destruction of commensal microbial fora and even autoimmune diseases1–5. Tere is now an urgent need to develop new agents targeting hitherto unexploited bacterial targets and machineries in order to maintain the ability of modern medicine to treat bacterial infections.
    [Show full text]
  • [Beta]-Keto Sulfoxides Leo Arthur Ochrymowycz Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1969 Chemistry of [beta]-keto sulfoxides Leo Arthur Ochrymowycz Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Ochrymowycz, Leo Arthur, "Chemistry of [beta]-keto sulfoxides " (1969). Retrospective Theses and Dissertations. 3766. https://lib.dr.iastate.edu/rtd/3766 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfihned exactly as received 70-7726 OCHRYMOWYCZ, Leo Arthur, 1943- CHEMISTRY OF p -KETO SULFOXIDES. Iowa State University, Ph.D., 1969 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan CHEMISTRY OF jg-KETO SULFOXIDES by Leo Arthur Ochrymowycz A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject ; Organic Chemistry Approved : Signature was redacted for privacy. f Major Work Signature was redacted for privacy. d of Maj Department Signature was redacted for privacy. Graduate College Iowa State University Of Science and Technology Ames, Iowa 1969 il TABLE OP CONTENTS Page
    [Show full text]