Properties and Solutions of Quadratic and Cubic Algebraic Equations

Total Page:16

File Type:pdf, Size:1020Kb

Properties and Solutions of Quadratic and Cubic Algebraic Equations PROPERTIES AND SOLUTIONS OF QUADRATIC AND CUBIC ALGEBRAIC EQUATIONS The simplest algebraic equations after the linear are the quadratic and cubic equations given by- y ax 2 bx c and y ax 3 bx 2 cx d , respectively. Here a ,b, c, and d are specified constants which may or may not be complex. Students first learn how to solve the quadratic equation in introductory high school algebra by completing the square. This produces the well known result- b b2 4ac y 2a This solution is about the only thing students retain into adulthood having never learned about its symmetry and the conditions on a, b, and c for the solutions to be real. The cubic equation is first introduced during freshmen calculus but the complicated formula for finding its zeros is never explicitly derived. Reference for finding the zeros is usually relegated to handbooks. It is our purpose here to examine the properties and solutions of the general quadratic and cubic equations making full use of equation symmetry and their respective relation to a standard parabola and cubic. We begin by rewriting the quadratic equation as- b 2 b y c a( ) ax 2a 2a This is recognized to be a parabola with a minimum at x=-(b/2a), where the value 2 of ymin=c-(b /4a). The line x=-(b/2a) is recognized to be a symmetry line as shown on the following graph- The equation has two distinct roots for y=0. These are located at equal distances =sqrt(b2-4ac)/2a from the symmetry line. The roots are equal to- b b2 4ac b b2 4ac x and x 1 2a 2 2a For real a, b, and c, the two roots will be real only if b2>4ac. The condition where the radical vanishes corresponds to a double root of x=-(b/2a). Complex conjugate roots exist for b2<4ac. Consider now the specific quadratic equation – y 2x 2 3x 1 Here the radical has value sqrt(9-8)=1>0. So we expect two real roots for y=0 placed at distance =1/4 from the symmetry line at x=-b/2a=-3/4. So we have the two roots x1=-1 and x2=-1/2. If any of the coefficients have complex form then one expects y and x to also be complex. In that case we can set- x i and y u iv with , , u, and v real . Such equations will still have zeroes but these will be in the complex x plane. Besides the use of the above formula, the simplest way to locate the zeros is by making a contour plot of the absolute value of y and noting where this vanishes. Take the case y=x2-2ix+3. Here we find- y u iv ( i )2 2i( i ) 3 This yields- u 2 ( 1)2 4 and v 2 ( 1) The roots will be found at x=2i and x=-i. A contour plot of the absolute value of y looks as follows- The two zeros along the axis are clearly shown at =3 and = -1. This result can be considered a special case of the Gauss Fundamental Theorem of Algebra which states that any nth order polynomial y=f(x) with complex coefficients has n roots for which y=0. Let us next go to the cubic algebraic equation. To solve it we first make the transformation x=X-(b/3a) and (y-B)=Y, where B=(2b3/27a2)-(cb/3a)+d. This produces the depressed cubic equation- b2 Y aX 3 AX with A c ( ) 3a This curve is a standard cubic equation which has an inflection point at X=0 and is anti-symmetric in the sense that Y(X)=-Y(-X). The first derivative reads dY/dX=3aX2+A and so vanishes at X=sqrt(-A/3a). The value of Y at that point is sqrt(-A/3){2A/3). A graph of this generic cubic equation follows- We see the anti-symmetry about X=0 which implies anti-symmetry about x=-b/3a. The solutions corresponding to y=0 are represented by the three blue dots. We will have three real solutions provided that Y<(2A/3)sqrt(-A/3a). This fact allows us to make certain statements about any cubic without actually having obtained explicit solutions. Consider, for example, the cubic- y x 3 4x 2 x 3 Here a=1, b=-4, c=1 and d=3. This produces A=-29/3 and B=-11/27. Since B is less than Ymax, we expect three real roots for y=0. Carrying out a numerical evaluation for the roots on our computer, we find- x1=3.4604… , x2=1.2391… and x3=-0.6996 … in perfect agreement with the prediction. Next take a second cubic- y x3 x 2 1 Here we have a=1, b=1, c=0 and d=1. This produces A=-1/3 and B=29/27. Also Ymax=2/27<B. This means there can be only one real root with the other two being imaginary. A computer evaluation supports this conclusion by giving the roots as- x1= -1.4655… , x2= 0.23278+i0.79255 , x3=0.23278-i0.79255 Note that solutions x2 and x3 are complex conjugates of each other. It is also possible to have cubics with complex coefficients where none of the roots are real. We can construct such a scenario by defining a complex function- F(z)=(z-i )(z+(sqrt(3)+i)/2)(z+(-sqrt(3)+i)2/2) This represents a complex cubic with zeros at the vertexes of an equilateral triangle of side-length L=sqrt(3). Note that none of the zeros are real. A contour plot in the z plane showing contours for the absolute value of F(z) follows- Although we have been able to glean a considerable amount of information on the properties of the cubic algebraic equation, it still remains for us to solve it explicitly. Such a solution was originally given by the Italian mathematician Cardano(1501-1576), who some say stole the idea from a contemporary Tartaglia. Although Cardano used a geometric proof, the basic idea is to introduce a couple of new variables u and v which relate to X appearing in the depressed cubic equation- Y y B aX 3 AX To find the three expected roots for which y=0, we then have- 0 X (aX 2 A) B We want to solve this non-linear algebraic equation. After doing so we will in effect have found the three roots for x=X-(b/3a) of the original cubic equation. One begins by making the substitution X=u-v. This yields - A B u3 v 3 (u v)( 3uv) ( ) a a This identity will be satisfied by letting- A 3auv and B a(u3 v3 ) One eliminating v from these definitions, one obtains the algebraic equation- B A u6 ( )u3 ( )3 0 a 3a This represents essentially a quadratic equation in u3 which can be solved exactly. It yields- 3 3 B B 2 A 3 A u ( ) ( ) ( ) 2a 2a 3a 3av Thus one now knows u and v and hence the final solution for one of the zeros of the original cubic equation is given by- b x u v 1 3a Clearly the breakthrough came with the substitution X=u-v. A few years after Cardano , his student Luddovico Ferrari(1522-1565) solved the gereral 4th order algebraic equation based on the solution of the cubic. After that mathematicians tried to go to quintic equations and higher but were unable to find a closed form solution for the general case. It was the Norwegian mathematician Niels Abel (1802-1829) who first showed in 1824 that no solutions, given in terms of radicals, are possible for quintic and higher algebraic equations. Let us now find the explicit roots of several specific cubics. Start with- 0 X 3 3X 1 where A 3, B 1, a 1, b 0, c 3 and d 1 Here u3=(sqrt(5)-1)/2=1/(golden ratio) and 1 x u 0.3221853... 1 u in perfect agreement with the computer solution for this problem which yields- x1=-0.3221853 , x2=0.16109+i1.7543 and x3=0.16109-i1.7543 The solutions x2 and x3 can be obtained by solving the quadratic- (x 3 3x 1) 0 (x x1 ) As another example consider finding the three real roots of the cubic- 0 x 3 2x 2 x 2 Here a=1, b=-2, c=-1, d=2, A==7/3. and B=20/27. This yields - (10 i 243)1/ 3 u 3 On solving, one finds- 7 2 x u 2.000000 1 9u 3 The other two roots are x=1 and x=-1 as can be readily established by dividing the original cubic by (x-2). It is really quite amazing how non-integer powers of complex numbers can lead to real values for x. This must have been especially hard for Italian mathematicians of the fifteen hundreds to understand considering that they had no idea what a complex number is. To finish, we add a graph of this last cubic using the coordinates [x,y] and [X,Y]- This more clearly shows the symmetry line passing through the X=0 (or x=2/3) vertical line. April 2015 .
Recommended publications
  • Symmetry and the Cubic Formula
    SYMMETRY AND THE CUBIC FORMULA DAVID CORWIN The purpose of this talk is to derive the cubic formula. But rather than finding the exact formula, I'm going to prove that there is a cubic formula. The way I'm going to do this uses symmetry in a very elegant way, and it foreshadows Galois theory. Note that this material comes almost entirely from the first chapter of http://homepages.warwick.ac.uk/~masda/MA3D5/Galois.pdf. 1. Deriving the Quadratic Formula Before discussing the cubic formula, I would like to consider the quadratic formula. While I'm expecting you know the quadratic formula already, I'd like to treat this case first in order to motivate what we will do with the cubic formula. Suppose we're solving f(x) = x2 + bx + c = 0: We know this factors as f(x) = (x − α)(x − β) where α; β are some complex numbers, and the problem is to find α; β in terms of b; c. To go the other way around, we can multiply out the expression above to get (x − α)(x − β) = x2 − (α + β)x + αβ; which means that b = −(α + β) and c = αβ. Notice that each of these expressions doesn't change when we interchange α and β. This should be the case, since after all, we labeled the two roots α and β arbitrarily. This means that any expression we get for α should equally be an expression for β. That is, one formula should produce two values. We say there is an ambiguity here; it's ambiguous whether the formula gives us α or β.
    [Show full text]
  • The Diamond Method of Factoring a Quadratic Equation
    The Diamond Method of Factoring a Quadratic Equation Important: Remember that the first step in any factoring is to look at each term and factor out the greatest common factor. For example: 3x2 + 6x + 12 = 3(x2 + 2x + 4) AND 5x2 + 10x = 5x(x + 2) If the leading coefficient is negative, always factor out the negative. For example: -2x2 - x + 1 = -1(2x2 + x - 1) = -(2x2 + x - 1) Using the Diamond Method: Example 1 2 Factor 2x + 11x + 15 using the Diamond Method. +30 Step 1: Multiply the coefficient of the x2 term (+2) and the constant (+15) and place this product (+30) in the top quarter of a large “X.” Step 2: Place the coefficient of the middle term in the bottom quarter of the +11 “X.” (+11) Step 3: List all factors of the number in the top quarter of the “X.” +30 (+1)(+30) (-1)(-30) (+2)(+15) (-2)(-15) (+3)(+10) (-3)(-10) (+5)(+6) (-5)(-6) +30 Step 4: Identify the two factors whose sum gives the number in the bottom quarter of the “x.” (5 ∙ 6 = 30 and 5 + 6 = 11) and place these factors in +5 +6 the left and right quarters of the “X” (order is not important). +11 Step 5: Break the middle term of the original trinomial into the sum of two terms formed using the right and left quarters of the “X.” That is, write the first term of the original equation, 2x2 , then write 11x as + 5x + 6x (the num bers from the “X”), and finally write the last term of the original equation, +15 , to get the following 4-term polynomial: 2x2 + 11x + 15 = 2x2 + 5x + 6x + 15 Step 6: Factor by Grouping: Group the first two terms together and the last two terms together.
    [Show full text]
  • Solving Cubic Polynomials
    Solving Cubic Polynomials 1.1 The general solution to the quadratic equation There are four steps to finding the zeroes of a quadratic polynomial. 1. First divide by the leading term, making the polynomial monic. a 2. Then, given x2 + a x + a , substitute x = y − 1 to obtain an equation without the linear term. 1 0 2 (This is the \depressed" equation.) 3. Solve then for y as a square root. (Remember to use both signs of the square root.) a 4. Once this is done, recover x using the fact that x = y − 1 . 2 For example, let's solve 2x2 + 7x − 15 = 0: First, we divide both sides by 2 to create an equation with leading term equal to one: 7 15 x2 + x − = 0: 2 2 a 7 Then replace x by x = y − 1 = y − to obtain: 2 4 169 y2 = 16 Solve for y: 13 13 y = or − 4 4 Then, solving back for x, we have 3 x = or − 5: 2 This method is equivalent to \completing the square" and is the steps taken in developing the much- memorized quadratic formula. For example, if the original equation is our \high school quadratic" ax2 + bx + c = 0 then the first step creates the equation b c x2 + x + = 0: a a b We then write x = y − and obtain, after simplifying, 2a b2 − 4ac y2 − = 0 4a2 so that p b2 − 4ac y = ± 2a and so p b b2 − 4ac x = − ± : 2a 2a 1 The solutions to this quadratic depend heavily on the value of b2 − 4ac.
    [Show full text]
  • Algorithmic Factorization of Polynomials Over Number Fields
    Rose-Hulman Institute of Technology Rose-Hulman Scholar Mathematical Sciences Technical Reports (MSTR) Mathematics 5-18-2017 Algorithmic Factorization of Polynomials over Number Fields Christian Schulz Rose-Hulman Institute of Technology Follow this and additional works at: https://scholar.rose-hulman.edu/math_mstr Part of the Number Theory Commons, and the Theory and Algorithms Commons Recommended Citation Schulz, Christian, "Algorithmic Factorization of Polynomials over Number Fields" (2017). Mathematical Sciences Technical Reports (MSTR). 163. https://scholar.rose-hulman.edu/math_mstr/163 This Dissertation is brought to you for free and open access by the Mathematics at Rose-Hulman Scholar. It has been accepted for inclusion in Mathematical Sciences Technical Reports (MSTR) by an authorized administrator of Rose-Hulman Scholar. For more information, please contact [email protected]. Algorithmic Factorization of Polynomials over Number Fields Christian Schulz May 18, 2017 Abstract The problem of exact polynomial factorization, in other words expressing a poly- nomial as a product of irreducible polynomials over some field, has applications in algebraic number theory. Although some algorithms for factorization over algebraic number fields are known, few are taught such general algorithms, as their use is mainly as part of the code of various computer algebra systems. This thesis provides a summary of one such algorithm, which the author has also fully implemented at https://github.com/Whirligig231/number-field-factorization, along with an analysis of the runtime of this algorithm. Let k be the product of the degrees of the adjoined elements used to form the algebraic number field in question, let s be the sum of the squares of these degrees, and let d be the degree of the polynomial to be factored; then the runtime of this algorithm is found to be O(d4sk2 + 2dd3).
    [Show full text]
  • Some Properties of the Discriminant Matrices of a Linear Associative Algebra*
    570 R. F. RINEHART [August, SOME PROPERTIES OF THE DISCRIMINANT MATRICES OF A LINEAR ASSOCIATIVE ALGEBRA* BY R. F. RINEHART 1. Introduction. Let A be a linear associative algebra over an algebraic field. Let d, e2, • • • , en be a basis for A and let £»•/*., (hjik = l,2, • • • , n), be the constants of multiplication corre­ sponding to this basis. The first and second discriminant mat­ rices of A, relative to this basis, are defined by Ti(A) = \\h(eres[ CrsiCij i, j=l T2(A) = \\h{eres / ,J CrsiC j II i,j=l where ti(eres) and fa{erea) are the first and second traces, respec­ tively, of eres. The first forms in terms of the constants of multi­ plication arise from the isomorphism between the first and sec­ ond matrices of the elements of A and the elements themselves. The second forms result from direct calculation of the traces of R(er)R(es) and S(er)S(es), R{ei) and S(ei) denoting, respectively, the first and second matrices of ei. The last forms of the dis­ criminant matrices show that each is symmetric. E. Noetherf and C. C. MacDuffeeJ discovered some of the interesting properties of these matrices, and shed new light on the particular case of the discriminant matrix of an algebraic equation. It is the purpose of this paper to develop additional properties of these matrices, and to interpret them in some fa­ miliar instances. Let A be subjected to a transformation of basis, of matrix M, 7 J rH%j€j 1,2, *0).
    [Show full text]
  • Math: Honors Geometry UNIT/Weeks (Not Timeline/Topics Essential Questions Consecutive)
    Math: Honors Geometry UNIT/Weeks (not Timeline/Topics Essential Questions consecutive) Reasoning and Proof How can you make a Patterns and Inductive Reasoning conjecture and prove that it is Conditional Statements 2 true? Biconditionals Deductive Reasoning Reasoning in Algebra and Geometry Proving Angles Congruent Congruent Triangles How do you identify Congruent Figures corresponding parts of Triangle Congruence by SSS and SAS congruent triangles? Triangle Congruence by ASA and AAS How do you show that two 3 Using Corresponding Parts of Congruent triangles are congruent? Triangles How can you tell whether a Isosceles and Equilateral Triangles triangle is isosceles or Congruence in Right Triangles equilateral? Congruence in Overlapping Triangles Relationships Within Triangles Mid segments of Triangles How do you use coordinate Perpendicular and Angle Bisectors geometry to find relationships Bisectors in Triangles within triangles? 3 Medians and Altitudes How do you solve problems Indirect Proof that involve measurements of Inequalities in One Triangle triangles? Inequalities in Two Triangles How do you write indirect proofs? Polygons and Quadrilaterals How can you find the sum of The Polygon Angle-Sum Theorems the measures of polygon Properties of Parallelograms angles? Proving that a Quadrilateral is a Parallelogram How can you classify 3.2 Properties of Rhombuses, Rectangles and quadrilaterals? Squares How can you use coordinate Conditions for Rhombuses, Rectangles and geometry to prove general Squares
    [Show full text]
  • Quadratic Equations Through History
    Cal McKeever & Robert Bettinger COMMON CORE STANDARD 3B Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. Factor a quadratic expression to reveal the zeros of the function it defines. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. SYNOPSIS At a summit of time-traveling historical mathematicians, attendees from Ancient Babylon pose the question of how to solve quadratic equations. Their method of completing the square serves their purposes, but there was far more to be done with this complex equation. Pythagoras, Euclid, Brahmagupta, Bhaskara II, Al-Khwarizmi and Descartes join the discussion, each pointing out their contributions to the contemporary understanding of solving quadratics through the quadratic formula. Through their discussion, the historical situation through which we understand the solving of quadratic equations is highlighted, showing the complex history of this formula taught everywhere. As the target audience for this project is high school students, the different characters of the script use language and symbolism that is anachronistic but will help the the students to understand the concepts that are discussed. For example, Diophantus did not use a,b,c in his actual texts but his fictional character in the the given script does explain his method of solving quadratics using contemporary notation. HISTORICAL BACKGROUND The problem of solving quadratic equations dates back to Babylonia in the 2nd Millennium BC. The Babylonian understanding of quadratics was used geometrically, to solve questions of area with real-world solutions.
    [Show full text]
  • Quadratic Polynomials
    Quadratic Polynomials If a>0thenthegraphofax2 is obtained by starting with the graph of x2, and then stretching or shrinking vertically by a. If a<0thenthegraphofax2 is obtained by starting with the graph of x2, then flipping it over the x-axis, and then stretching or shrinking vertically by the positive number a. When a>0wesaythatthegraphof− ax2 “opens up”. When a<0wesay that the graph of ax2 “opens down”. I Cit i-a x-ax~S ~12 *************‘s-aXiS —10.? 148 2 If a, c, d and a = 0, then the graph of a(x + c) 2 + d is obtained by If a, c, d R and a = 0, then the graph of a(x + c)2 + d is obtained by 2 R 6 2 shiftingIf a, c, the d ⇥ graphR and ofaax=⇤ 2 0,horizontally then the graph by c, and of a vertically(x + c) + byd dis. obtained (Remember by shiftingshifting the the⇥ graph graph of of axax⇤ 2 horizontallyhorizontally by by cc,, and and vertically vertically by by dd.. (Remember (Remember thatthatd>d>0meansmovingup,0meansmovingup,d<d<0meansmovingdown,0meansmovingdown,c>c>0meansmoving0meansmoving thatleft,andd>c<0meansmovingup,0meansmovingd<right0meansmovingdown,.) c>0meansmoving leftleft,and,andc<c<0meansmoving0meansmovingrightright.).) 2 If a =0,thegraphofafunctionf(x)=a(x + c) 2+ d is called a parabola. If a =0,thegraphofafunctionf(x)=a(x + c)2 + d is called a parabola. 6 2 TheIf a point=0,thegraphofafunction⇤ ( c, d) 2 is called thefvertex(x)=aof(x the+ c parabola.) + d is called a parabola. The point⇤ ( c, d) R2 is called the vertex of the parabola.
    [Show full text]
  • Quadratic Equations
    Lecture 26 Quadratic Equations Quadraticpolynomials ................................ ....................... 2 Quadraticpolynomials ................................ ....................... 3 Quadraticequations and theirroots . .. .. .. .. .. .. .. .. .. ........................ 4 How to solve a binomial quadratic equation. ......................... 5 Solutioninsimplestradicalform ........................ ........................ 6 Quadraticequationswithnoroots........................ ....................... 7 Solving binomial equations by factoring. ........................... 8 Don’tloseroots!..................................... ...................... 9 Summary............................................. .................. 10 i Quadratic polynomials A quadratic polynomial is a polynomial of degree two. It can be written in the standard form ax2 + bx + c , where x is a variable, a, b, c are constants (numbers) and a = 0 . 6 The constants a, b, c are called the coefficients of the polynomial. Example 1 (quadratic polynomials). 4 4 3x2 + x ( a = 3, b = 1, c = ) − − 5 − −5 x2 ( a = 1, b = c = 0 ) x2 1 5x + √2 ( a = , b = 5, c = √2 ) 7 − 7 − 4x(x + 1) x (this is a quadratic polynomial which is not written in the standard form. − 2 Its standard form is 4x + 3x , where a = 4, b = 3, c = 0 ) 2 / 10 Quadratic polynomials Example 2 (polynomials, but not quadratic) x3 2x + 1 (this is a polynomial of degree 3 , not 2 ) − 3x 2 (this is a polynomial of degree 1 , not 2 ) − Example 3 (not polynomials) 2 1 1 x + x 2 + 1 , x are not polynomials − x A quadratic polynomial ax2 + bx + c is called sometimes a quadratic trinomial. A trinomial consists of three terms. Quadratic polynomials of type ax2 + bx or ax2 + c are called quadratic binomials. A binomial consists of two terms. Quadratic polynomials of type ax2 are called quadratic monomials. A monomial consists of one term. Quadratic polynomials (together with polynomials of degree 1 and 0 ) are the simplest polynomials.
    [Show full text]
  • A Historical Survey of Methods of Solving Cubic Equations Minna Burgess Connor
    University of Richmond UR Scholarship Repository Master's Theses Student Research 7-1-1956 A historical survey of methods of solving cubic equations Minna Burgess Connor Follow this and additional works at: http://scholarship.richmond.edu/masters-theses Recommended Citation Connor, Minna Burgess, "A historical survey of methods of solving cubic equations" (1956). Master's Theses. Paper 114. This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It has been accepted for inclusion in Master's Theses by an authorized administrator of UR Scholarship Repository. For more information, please contact [email protected]. A HISTORICAL SURVEY OF METHODS OF SOLVING CUBIC E<~UATIONS A Thesis Presented' to the Faculty or the Department of Mathematics University of Richmond In Partial Fulfillment ot the Requirements tor the Degree Master of Science by Minna Burgess Connor August 1956 LIBRARY UNIVERStTY OF RICHMOND VIRGlNIA 23173 - . TABLE Olf CONTENTS CHAPTER PAGE OUTLINE OF HISTORY INTRODUCTION' I. THE BABYLONIANS l) II. THE GREEKS 16 III. THE HINDUS 32 IV. THE CHINESE, lAPANESE AND 31 ARABS v. THE RENAISSANCE 47 VI. THE SEVEW.l'EEl'iTH AND S6 EIGHTEENTH CENTURIES VII. THE NINETEENTH AND 70 TWENTIETH C:BNTURIES VIII• CONCLUSION, BIBLIOGRAPHY 76 AND NOTES OUTLINE OF HISTORY OF SOLUTIONS I. The Babylonians (1800 B. c.) Solutions by use ot. :tables II. The Greeks·. cs·oo ·B.c,. - )00 A~D.) Hippocrates of Chios (~440) Hippias ot Elis (•420) (the quadratrix) Archytas (~400) _ .M~naeobmus J ""375) ,{,conic section~) Archimedes (-240) {conioisections) Nicomedea (-180) (the conchoid) Diophantus ot Alexander (75) (right-angled tr~angle) Pappus (300) · III.
    [Show full text]
  • 501 Algebra Questions 2Nd Edition
    501 Algebra Questions 501 Algebra Questions 2nd Edition ® NEW YORK Copyright © 2006 LearningExpress, LLC. All rights reserved under International and Pan-American Copyright Conventions. Published in the United States by LearningExpress, LLC, New York. Library of Congress Cataloging-in-Publication Data: 501 algebra questions.—2nd ed. p. cm. Rev. ed. of: 501 algebra questions / [William Recco]. 1st ed. © 2002. ISBN 1-57685-552-X 1. Algebra—Problems, exercises, etc. I. Recco, William. 501 algebra questions. II. LearningExpress (Organization). III. Title: Five hundred one algebra questions. IV. Title: Five hundred and one algebra questions. QA157.A15 2006 512—dc22 2006040834 Printed in the United States of America 98765432 1 Second Edition ISBN 1-57685-552-X For more information or to place an order, contact LearningExpress at: 55 Broadway 8th Floor New York, NY 10006 Or visit us at: www.learnatest.com The LearningExpress Skill Builder in Focus Writing Team is comprised of experts in test preparation, as well as educators and teachers who specialize in language arts and math. LearningExpress Skill Builder in Focus Writing Team Brigit Dermott Freelance Writer English Tutor, New York Cares New York, New York Sandy Gade Project Editor LearningExpress New York, New York Kerry McLean Project Editor Math Tutor Shirley, New York William Recco Middle School Math Teacher, Grade 8 New York Shoreham/Wading River School District Math Tutor St. James, New York Colleen Schultz Middle School Math Teacher, Grade 8 Vestal Central School District Math Tutor
    [Show full text]
  • Analytical Formula for the Roots of the General Complex Cubic Polynomial Ibrahim Baydoun
    Analytical formula for the roots of the general complex cubic polynomial Ibrahim Baydoun To cite this version: Ibrahim Baydoun. Analytical formula for the roots of the general complex cubic polynomial. 2018. hal-01237234v2 HAL Id: hal-01237234 https://hal.archives-ouvertes.fr/hal-01237234v2 Preprint submitted on 17 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Analytical formula for the roots of the general complex cubic polynomial Ibrahim Baydoun1 1ESPCI ParisTech, PSL Research University, CNRS, Univ Paris Diderot, Sorbonne Paris Cit´e, Institut Langevin, 1 rue Jussieu, F-75005, Paris, France January 17, 2018 Abstract We present a new method to calculate analytically the roots of the general complex polynomial of degree three. This method is based on the approach of appropriated changes of variable involving an arbitrary parameter. The advantage of this method is to calculate the roots of the cubic polynomial as uniform formula using the standard convention of the square and cubic roots. In contrast, the reference methods for this problem, as Cardan-Tartaglia and Lagrange, give the roots of the cubic polynomial as expressions with case distinctions which are incorrect using the standar convention.
    [Show full text]