Dietemann.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Dietemann.Pdf Differentiation in reproductive potential and chemical communication of reproductive status in workers and queens of the ant Myrmecia gulosa Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Vincent Dietemann aus Mulhouse Würzburg 2002 Eingereicht am: ....................................................................................................................... Mitglieder der Promotionskommission: Vorsitzender: .......................................................................................................................... Gutachter: .............................................................................................................................. Gutachter: ............................................................................................................................... Tag des Promotionskolloquiums: ............................................................................................. Doktorurkunde ausgehändigt am: ............................................................................................ Acknowledgements I am grateful to Pr. Bert Hölldobler for providing excellent work facilities and for his unconditional support throughout my work. I thank Dr. Christian Peeters to whom I owe my introduction to the world of ants in general and “primitive” ants in particular. The fruitful discussions with him considerably improved my knowledge of ant societies. This thesis is not exclusively the product of my work. I tried to associate several disciplines of science to understand certain aspects of the social organisation of ant societies and I therefore needed help in areas outside my competences, either to compensate for gaps in my knowledge or to help me develop new skills. To this many people contributed: I thank Dr. Graeme Jones and Richard Beard for their determining contribution to the chemical part of my work. All the chemical analyses and compound synthesis on which this study is based are the work of Richard Beard. I am indebted to him for the completion of this Herculean task. Thanks also goes to Pr. Jacobus Boomsma, for his work in coordinating the European Community “Training and Mobility of Researchers” and “Improving Human Potential” networks, which made this cooperation possible. Pr. Abraham Hefetz has shared with me his experience of ant-applied chemistry and I thank him very much for this. It is in histology that Pr. Johan Billen, Dr. Bruno Gobin and Karin Möller shared their knowledge with me, and I am grateful to them. For the same reason, as well as for valuable technical assistance and continuous support, I owe much to Malu Obermaier and I thank her. In an area to which the exercise of scientific activity is unavoidably bound, namely administration, Dr. Volker Neese has been an indispensable guide and master to me. I am indebted to him for his help and availability and thanks go to him. Discussions with Dr. Jürgen Gadau, Dr. Matthias Sanetra, and Virginie Cuvillier-Hot helped me in developing my ideas. Dr. Bruno Gobin, Dr. Thibaud Monnin, and Pr. Diana Wheeler commented on chapters of this thesis and helped improve it. In most of the above-mentioned categories and even more, the name of Dr. J. Liebig should have appeared. To avoid repetition, I express here my deep gratitude to him, for contributing greatly to this thesis. I am grateful to Pr. M.P. Schwarz, Dr. K. Hogendoorn, Dr. R. Leijs, Dr. S. Shattuck and A. McArthur for logistic and technical support as well as hospitality during my fieldwork in Australia. I would also like to thank those many people outside Academia in this country, who offered their help willingly on many occasions and for their kindness. Among these, I particularly acknowledge Russell, warden from the Coutts Camp, Waterfall, New South Wales. Richard Gabriel, Jan Geisendorfer, Arnold Kloos, Annette Laudahn, Dr. Christina Sauer, and Valenska Wenzel fed the ants, allowing me to avoid painful stinging and to occasionally leave the institute. Some of them managed to avoid the stings, some did not, but sincere thanks go to all of them for their help. Gerhard Eisenmann and Helga Heilman provided valuable technical help, I thank them, as well as all the people from the Institute who contributed in various ways to my work. I am indebted to Lalitha Thomas-Oppenländer for revising my English and to Anett Endler for the German translation. I am grateful to Anett, Chrimie, Christof, Christoph, Corinna, Jacqueline, Karl, Klaus, Olav and Walter and many others who contributed to a nice work and extra-work environment during my stay in Würzburg. Je remercie aussi chaleureusement mes parents pout leur soutient indéfectible tout au long de ces années. Last but not least, I thank Virginie for her heroic behaviour and her most precious help. Differentiation in reproductive potential and chemical communication of reproductive status in workers and queens of the ant Myrmecia gulosa I. Introduction..........................................................................................................................1 II. Generalities .........................................................................................................................5 II.A. The genus Myrmecia.............................................................................................5 II.B. Myrmecia gulosa...................................................................................................7 II.C. General methodology ............................................................................................8 II.C.a. Ant collection and laboratory rearing.....................................................8 II.C.b. Chemical analysis...................................................................................9 III. Caste specialisation and divergence in reproductive potential...................................11 III.A. Introduction........................................................................................................11 III.B. Methods..............................................................................................................12 III.C. Results................................................................................................................14 III.C.a. Colony size..........................................................................................14 III.C.b. Queen/worker and worker/worker polymorphism..............................15 III.C.c. Egg-laying activity..............................................................................18 III.C.d. Alternative reproductive strategy: gamergates ...................................23 III.C.e. Morphological aberration: ergatandromorphs.....................................24 III.D. Discussion..........................................................................................................25 IV. Queen pheromones..........................................................................................................33 IV.A. Introduction .......................................................................................................33 IV.B. Queen releaser pheromones: queen recognition and worker aggregation .........36 IV.B.a. Introduction.........................................................................................36 IV.B.b. Perception distance of queens by workers..........................................37 Introduction ...............................................................................37 Methods.....................................................................................37 Results .......................................................................................38 Discussion .................................................................................39 IV.B.c. The retinue ..........................................................................................40 Introduction ...............................................................................40 Methods.....................................................................................40 Results .......................................................................................42 Discussion .................................................................................44 IV.B.d. Source of the queen arrestant pheromone...........................................46 IV.B.d.i. Distribution of the arrestant pheromone on the queen’s body .........................................................46 Introduction ...............................................................................46 Methods.....................................................................................47 Results .......................................................................................47 Discussion .................................................................................48 IV.B.d.ii. The role of the cuticular hydrocarbons (CHCs) ...............50 Introduction ...............................................................................50 Methods.....................................................................................53 Results .......................................................................................56 Discussion .................................................................................65 IV.B.d.iii. The role of major glands .................................................68 Introduction ...............................................................................68
Recommended publications
  • Allergic Reactions to Bites and Stings
    Allergic Reactions to Bites and Stings ASCIA EDUCATION RESOURCES (AER) PATIENT INFORMATION Most insect bites and stings result in a localised itch and swelling that settles within a few days. Severe allergic reactions (anaphylaxis) to insects are relatively uncommon, and are usually due to bees, wasps or the Australian Jack Jumper ant. Fortunately, effective treatments are available to treat allergic reactions to bites and stings. Stinging insects are a common cause of anaphylaxis Allergies to venoms from stinging insects are one of the most common causes of severe allergic reactions (anaphylaxis) in Australia. Symptoms include an all over rash, swelling of tongue or throat, trouble breathing, gut cramps, diarrhoea, vomiting or even a drop in blood pressure (shock). Although the insects are all hymenoptera (which means membranous winged insects), their venoms are very different. Allergy to one type of stinging insect does not usually increase the risk of reaction to another. The Honey Bee is the most common cause of allergic reactions in Australia. Paper Wasps and European Wasps can sting multiple times. The European Wasp is becoming an increasing problem in Australia, is particularly aggressive and likes to get inside drink cans at barbeques, although the more familiar Paper Wasp is responsible for the majority of serious stings. The Australian Jack Jumper Ant (Myrmecia pilosula) is a medium sized black bull ant prevalent down the eastern side of Australia and Tasmania. It can be recognised by its characteristic hopping motion when it walks. It is a very aggressive ant and its sting can cause severe local pain. Severe allergic reactions are much more common than is seen with more common bull ants.
    [Show full text]
  • Mcabee Fossil Site Assessment
    1 McAbee Fossil Site Assessment Final Report July 30, 2007 Revised August 5, 2007 Further revised October 24, 2008 Contract CCLAL08009 by Mark V. H. Wilson, Ph.D. Edmonton, Alberta, Canada Phone 780 435 6501; email [email protected] 2 Table of Contents Executive Summary ..............................................................................................................................................................3 McAbee Fossil Site Assessment ..........................................................................................................................................4 Introduction .......................................................................................................................................................................4 Geological Context ...........................................................................................................................................................8 Claim Use and Impact ....................................................................................................................................................10 Quality, Abundance, and Importance of the Fossils from McAbee ............................................................................11 Sale and Private Use of Fossils from McAbee..............................................................................................................12 Educational Use of Fossils from McAbee.....................................................................................................................13
    [Show full text]
  • Walking with Ants Report by Arminel Ryan
    Walking with Ants Report by Arminel Ryan With a mere 45 other participants, I joined lively young ANU myrmecologist, Dr. Ajay Narendra, for a glimpse into the fascinating world of ants - one of the most dominant animals on the planet. Waltraud Pix had organised the adventure, and had had an overwhelming response – more than 200 enquiries! So, at Mt Majura on Sunday 28 February, we fortunate few assembled at 4.30 p.m. for our educational ramble. Our troupe travelled only a short distance in the 2 hours, but the range of fascinating facts that had emerged by 6.30 p.m. was truly phenomenal. I expect you know that ants play a leading role in the environment as predators and scavengers. You may be aware that their social organisation, communication systems and amazing navigation skills have been the object of research for generations. Ajay led us deeper into this world, using a few of the 45 species found on Mount Majura to illustrate his subject. The following is a brief summary of what I gleaned. Australia has around 1,200 species of ant. Ants have evolved from a wasp-like ancestor. Ants differ from wasps (and bees) in three visible anatomical features – . their flexible, conical “waist”, which allows their rear section (called a “gaster”) to flex, . “elbows” in their feelers, and . a metapleural gland that produces antbiotics that helps to prevent the growth of bacteria, fungus, spores on the ant and in its nest. In common with some kinds of wasps and bees, certain ant stings can hurt animals much larger than themselves, but most are harmless to humans.
    [Show full text]
  • Borowiec Et Al-2020 Ants – Phylogeny and Classification
    A Ants: Phylogeny and 1758 when the Swedish botanist Carl von Linné Classification published the tenth edition of his catalog of all plant and animal species known at the time. Marek L. Borowiec1, Corrie S. Moreau2 and Among the approximately 4,200 animals that he Christian Rabeling3 included were 17 species of ants. The succeeding 1University of Idaho, Moscow, ID, USA two and a half centuries have seen tremendous 2Departments of Entomology and Ecology & progress in the theory and practice of biological Evolutionary Biology, Cornell University, Ithaca, classification. Here we provide a summary of the NY, USA current state of phylogenetic and systematic 3Social Insect Research Group, Arizona State research on the ants. University, Tempe, AZ, USA Ants Within the Hymenoptera Tree of Ants are the most ubiquitous and ecologically Life dominant insects on the face of our Earth. This is believed to be due in large part to the cooperation Ants belong to the order Hymenoptera, which also allowed by their sociality. At the time of writing, includes wasps and bees. ▶ Eusociality, or true about 13,500 ant species are described and sociality, evolved multiple times within the named, classified into 334 genera that make up order, with ants as by far the most widespread, 17 subfamilies (Fig. 1). This diversity makes the abundant, and species-rich lineage of eusocial ants the world’s by far the most speciose group of animals. Within the Hymenoptera, ants are part eusocial insects, but ants are not only diverse in of the ▶ Aculeata, the clade in which the ovipos- terms of numbers of species.
    [Show full text]
  • Biodiversity of Wasps Species Collected from District Karak, KP
    Journal of Entomology and Zoology Studies 2018; 6(2): 21-23 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Biodiversity of wasps species collected from JEZS 2018; 6(2): 21-23 © 2018 JEZS district Karak, KP, Pakistan Received: 09-01-2018 Accepted: 10-02-2018 Muhammad Arsalan, Arshad Abbas, Shafi Ullah Gul, Hameed Ur Rehman, Muhammad Arsalan Department of Zoology, GPGC, Sahibzada Muhammad Jawad, Wahid Shah and Arshad Mehmood Kohat, Pakistan Abstract Arshad Abbas Wasps are present throughout the world, mostly in tropical regions. The present research work is Department of Zoology, GPGC, Kohat, Pakistan conducted in various region of district Karak including Mithakhel, Esakchuntra, Palosa, Sabirabbadto find out wasp fauna. The fauna of wasp were observed during summer season, mostly from April- Shafi Ullah Gul September 2017. During the research survey 24 species of wasps were collected from open fields, Department of Zoology, GPGC, gardens and houses and are preserved in 70% ethanol, which belongs from 1 order Hymenoptera, 3 Kohat, Pakistan families Vespidae, Pompilidae, Ichneumonidae and 11 genera Polistes, Vespa, Dolichovespula, Vespula, Ropalidia, Cryptocheilus, Hemipepsis, Priocnemis, Anoplius, Arochnospila, Megarhyssa. Family Hameed Ur Rehman Pompilidae was the most abundant family having 12 species, family Vespidae has 11 species, while Department of Chemistry, Kohat family Ichneumonidae have 1 species. The present research survey suggests that District Karak has a University of Science and diverse wasp fauna. Similar research study is recommended on large scale to find out the remaining wasp Technology, KUST, Kohat, species in District Karak and its surrounded areas. Pakistan Keywords: wasp, fauna, family, region, district, Karak Sahibzada Muhammad Jawad Department of Zoology, Islamia College University Peshawar, Introduction KP, Pakistan In the present research study, fauna of wasp are observed in different areas of Karak to find out the pre-existing species of wasp.
    [Show full text]
  • Hymenoptera, Formicidae) Fauna of Senegal
    Journal of Insect Biodiversity 5(15): 1-16, 2017 http://www.insectbiodiversity.org RESEARCH ARTICLE A preliminary checklist of the ant (Hymenoptera, Formicidae) fauna of Senegal Lamine Diamé1,2*, Brian Taylor3, Rumsaïs Blatrix4, Jean-François Vayssières5, Jean- Yves Rey1,5, Isabelle Grechi6, Karamoko Diarra2 1ISRA/CDH, BP 3120, Dakar, Senegal; 2UCAD, BP 7925, Dakar, Senegal; 311Grazingfield, Wilford, Nottingham, NG11 7FN, United Kingdom; 4CEFE UMR 5175, CNRS – Université de Montpellier – Université Paul Valéry Montpellier – EPHE, 1919 route de Mende, 34293 Montpellier Cedex 5, France; 5CIRAD; UPR HortSys; Montpellier, France; 6CIRAD, UPR HortSys, F-97410 Saint-Pierre, La Réunion, France. *Corresponding author: [email protected] Abstract: This work presents the first checklist of the ant species of Senegal, based on a review of the literature and on recent thorough sampling in Senegalese orchard agrosystems during rainy and dry seasons. Eighty-nine species belonging to 31 genera and 9 subfamilies of Formicidae are known. The most speciose genera were Monomorium Mayr, 1855, and Camponotus Mayr, 1861, with 13 and 12 species, respectively. The fresh collection yielded 31 species recorded for the first time in Senegal, including two undescribed species. The composition of the ant fauna reflects the fact that Senegal is in intermediate ecozone between North Africa and sub-Saharan areas, with some species previously known only from distant locations, such as Sudan. Key words: Ants, checklist, new records, sub-Saharan country, Senegal. Introduction Information on the ant fauna of Senegal is mostly known from scattered historical records, and no synthetic list has been published. The first record dates from 1793 while the most recent was in 1987 (see Table 1).
    [Show full text]
  • The Coexistence
    Myrmecological News 10 27-28 Vienna, September 2007 Cooperative self-defence: Matabele ants (Pachycondyla analis) against African driver ants (Dorylus sp.; Hymenoptera: Formicidae) Jan BECK & Britta K. KUNZ Abstract Only few documented cases of cooperative self-defence outside the nest are known in social insects. We report ob- servations of Pachycondyla analis (LATREILLE, 1802) workers helping each other against attacking epigaeic driver ants (Dorylus sp.) in a West African savannah. The considerably larger P. analis scanned each other's legs and antennae and removed Dorylus clinging to their extremities. In experimentally staged encounters we could reproduce this be- haviour. Key words: Altruism, interspecific interaction, Ivory Coast, social insects. Myrmecol. News 10: 27-28 Dr. Jan Beck (contact author), Department of Environmental Sciences, Institute of Biogeography, University of Basel, St. Johanns-Vorstadt 10, CH-4056 Basel, Switzerland. E-mail: [email protected] Dr. Britta K. Kunz, Department of Animal Ecology and Tropical Biology, Theodor-Boveri-Institute for Biosciences, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany. Introduction Worker ants exhibit a wide range of complex cooperative workers really are conspecific with the single male speci- behaviours. Examples include trophallaxis, which is al- men described by Illiger (e.g., RAIGNIER & VAN BOVEN most ubiquitous in ants, cooperative foraging and food trans- 1955; reviewed in TAYLOR 2006) we refer to these ants as port, and nest construction (HÖLLDOBLER & WILSON 1990). Dorylus sp. throughout this article. They live in extremely While cooperative nest defence is well known (HÖLL- large colonies of up to several million workers (GOT- DOBLER & WILSON 1990), the cooperative "self-defence" WALD 1995).
    [Show full text]
  • Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas
    Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas Neal L. Evenhuis, Lucius G. Eldredge, Keith T. Arakaki, Darcy Oishi, Janis N. Garcia & William P. Haines Pacific Biological Survey, Bishop Museum, Honolulu, Hawaii 96817 Final Report November 2010 Prepared for: U.S. Fish and Wildlife Service, Pacific Islands Fish & Wildlife Office Honolulu, Hawaii Evenhuis et al. — Pagan Island Arthropod Survey 2 BISHOP MUSEUM The State Museum of Natural and Cultural History 1525 Bernice Street Honolulu, Hawai’i 96817–2704, USA Copyright© 2010 Bishop Museum All Rights Reserved Printed in the United States of America Contribution No. 2010-015 to the Pacific Biological Survey Evenhuis et al. — Pagan Island Arthropod Survey 3 TABLE OF CONTENTS Executive Summary ......................................................................................................... 5 Background ..................................................................................................................... 7 General History .............................................................................................................. 10 Previous Expeditions to Pagan Surveying Terrestrial Arthropods ................................ 12 Current Survey and List of Collecting Sites .................................................................. 18 Sampling Methods ......................................................................................................... 25 Survey Results ..............................................................................................................
    [Show full text]
  • It Takes Two: Dimerization Is Essential for the Broad-Spectrum Predatory and Defensive Activities of the Venom Peptide Mp1a from the Jack Jumper Ant Myrmecia Pilosula
    biomedicines Article It Takes Two: Dimerization Is Essential for the Broad-Spectrum Predatory and Defensive Activities of the Venom Peptide Mp1a from the Jack Jumper Ant Myrmecia pilosula Samantha A. Nixon 1,2 , Zoltan Dekan 1 , Samuel D. Robinson 1, Shaodong Guo 1 , Irina Vetter 1,3 , Andrew C. Kotze 2, Paul F. Alewood 1, Glenn F. King 1,* and Volker Herzig 1,4,* 1 Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (S.A.N.); [email protected] (Z.D.); [email protected] (S.D.R.); [email protected] (S.G.); [email protected] (I.V.); [email protected] (P.F.A.) 2 CSIRO Agriculture and Food, St Lucia, QLD 4072, Australia; [email protected] 3 School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia 4 School of Science & Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia * Correspondence: [email protected] (G.F.K.); [email protected] (V.H.); Tel.: +61-7-3346-2025 (G.F.K.); +61-7-5456-5382 (V.H.) Received: 11 June 2020; Accepted: 24 June 2020; Published: 30 June 2020 Abstract: Ant venoms have recently attracted increased attention due to their chemical complexity, novel molecular frameworks, and diverse biological activities. The heterodimeric peptide D-myrtoxin-Mp1a (Mp1a) from the venom of the Australian jack jumper ant, Myrmecia pilosula, exhibits antimicrobial, membrane-disrupting, and pain-inducing activities. In the present study, we examined the activity of Mp1a and a panel of synthetic analogues against the gastrointestinal parasitic nematode Haemonchus contortus, the fruit fly Drosophila melanogaster, and for their ability to stimulate pain-sensing neurons.
    [Show full text]
  • Iridomyrmex Purpureus)
    This is a repository copy of Social and private information influence the decision making of Australian meat ants (Iridomyrmex purpureus). White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/135144/ Version: Accepted Version Article: Middleton, EJT, Reid, CR, Mann, RP orcid.org/0000-0003-0701-1274 et al. (1 more author) (2018) Social and private information influence the decision making of Australian meat ants (Iridomyrmex purpureus). Insectes Sociaux, 65 (4). pp. 649-656. ISSN 0020-1812 https://doi.org/10.1007/s00040-018-0656-1 © International Union for the Study of Social Insects (IUSSI) 2018. This is an author produced version of a paper published in Insectes Sociaux. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Title: Social and private information influence the decision making of Australian meat ants (Iridomyrmex 2 purpureus) 3 4 Authors: Eliza J.T.
    [Show full text]
  • 'Jack Jumper' Ant Venom by Mass Spectrometry
    Characterisation of Major Peptides in ‘Jack Jumper’ Ant Venom by Mass Spectrometry Noel W. Davies 1* , Michael D.Wiese 2 and Simon G. A. Brown 3 1. Central Science Laboratory University of Tasmania Private Bag 74 Hobart 7001 Tasmania, AUSTRALIA Fax: 61 3 6226 2494 Email: [email protected] 2. Department of Pharmacy Royal Hobart Hospital GPO Box 1061L Hobart, Tasmania 7001 Australia 3 Department of Emergency Medicine Royal Hobart Hospital GPO Box 1061L Hobart, Tasmania 7001 Australia * Corresponding author : Running title: ‘Jack Jumper’ ant venom peptides 1 Abstract: The jack jumper ant, Myrmecia pilosula , is endemic to South-Eastern Australia, where around 2.7% of the population has a history of systemic allergic reactions (anaphylaxis) to its venom. Previous work had indicated that there were several allergenic peptides derived from the cDNA Myr p 1, the major expressed allergenic product being a 56-residue peptide (Myr p 1 57 →112, "pilosulin 1", ~6052 Da). Another major allergen had been described as a 27 residue peptide derived from the cDNA Myr p 2 (Myr p 2 49 →75, "pilosulin 2", ~3212 Da), possibly existing as part of a disulfide complex. As a preliminary step in detailed stability studies of a pharmaceutical product used for venom immunotherapy, LC-MS and Edman sequencing analysis of venom collected from various locations by both electrical stimulation and venom sac dissection was undertaken. More than 50 peptides in the 4kDa to 9kDa range were detected in LC-MS analyses. A subsequence of Myr p 2 was found as part of the major peptide present in all samples; this was a bis- disulphide linked, antiparallel aligned heterodimer consisting of Myr p 2 49 →74, (des-Gly 27 -pilosulin 2, ~3155 Da) and a previously unreported peptide of ~2457 Da.
    [Show full text]
  • Picture As Pdf Download
    RESEARCH Causes of ant sting anaphylaxis in Australia: the Australian Ant Venom Allergy Study Simon G A Brown, Pauline van Eeden, Michael D Wiese, Raymond J Mullins, Graham O Solley, Robert Puy, Robert W Taylor and Robert J Heddle he prevalence of systemic allergy to ABSTRACT native ant stings in Australia is as high as 3% in areas where these Objective: To determine the Australian native ant species associated with ant sting T anaphylaxis, geographical distribution of allergic reactions, and feasibility of diagnostic insects are commonly encountered, such as Tasmania and regional Victoria.1,2 In one venom-specific IgE (sIgE) testing. large Tasmanian emergency department Design, setting and participants: Descriptive clinical, entomological and study, ant sting allergy was the most com- immunological study of Australians with a history of ant sting anaphylaxis, recruited in mon cause of anaphylaxis (30%), exceeding 2006–2007 through media exposure and referrals from allergy practices and emergency cases attributed to bees, wasps, antibiotics physicians nationwide. We interviewed participants, collected entomological or food.3 specimens, prepared reference venom extracts, and conducted serum sIgE testing Myrmecia pilosula (jack jumper ant [JJA]) against ant venom panels relevant to the species found in each geographical region. is theThe major Medical cause Journal of ant ofsting Australia anaphylaxis ISSN: Main outcome measures: Reaction causation attributed using a combination of ant 2 in Tasmania.0025-729X A 18double-blind, July 2011 195 randomised 2 69-73 identification and sIgE testing. placebo-controlled©The Medical Journaltrial has of Australiademonstrated 2011 Results: 376 participants reported 735 systemic reactions. Of 299 participants for whom the effectivenesswww.mja.com.au of JJA venom immuno- a cause was determined, 265 (89%; 95% CI, 84%–92%) had reacted clinically to Myrmecia therapyResearch (VIT) to reduce the risk of sting species and 34 (11%; 95% CI, 8%–16%) to green-head ant (Rhytidoponera metallica).
    [Show full text]