Technical Supplement 14P--Gullies and Their Control
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characteristics and Importance of Rill and Gully Erosion: a Case Study in a Small Catchment of a Marginal Olive Grove
Cuadernos de Investigación Geográfica 2015 Nº 41 (1) pp. 107-126 ISSN 0211-6820 DOI: 10.18172/cig.2644 © Universidad de La Rioja CHARACTERISTICS AND IMPORTANCE OF RILL AND GULLY EROSION: A CASE STUDY IN A SMALL CATCHMENT OF A MARGINAL OLIVE GROVE E.V. TAGUAS1*, E. GUZMÁN1, G. GUZMÁN1, T. VANWALLEGHEM1, J.A. GÓMEZ2 1Rural Engineering Department/ Agronomy Department, University of Cordoba, Campus Rabanales, Leonardo Da Vinci building, 14071 Córdoba, Spain. 2Institute for Sustainable Agriculture, CSIC, Apartado 4084, 14080 Córdoba, Spain. ABSTRACT. Measurements of gullies and rills were carried out in an olive or- chard microcatchment of 6.1 ha over a 4-year period (2010-2013). No tillage management allowing the development of a spontaneous grass cover was imple- mented in the study period. Rainfall, runoff and sediment load were measured at the catchment outlet. The objectives of this study were: 1) to quantify erosion by concentrated flow in the catchment by analysis of the geometric and geomor- phologic changes of the gullies and rills between July 2010 and July 2013; 2) to evaluate the relative percentage of erosion derived from concentrated runoff to total sediment yield; 3) to explain the dynamics of gully and rill formation based on the hydrological patterns observed during the study period; and 4) to improve the management strategies in the olive grove. Control sections in gullies were established in order to get periodic measurements of width, depth and shape in each campaign. This allowed volume changes in the concentrated flow network to be evaluated over 3 periods (period 1 = 2010-2011; period 2 = 2011-2012; and period 3 = 2012-2013). -
Alluvial Fans in the Death Valley Region California and Nevada
Alluvial Fans in the Death Valley Region California and Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 466 Alluvial Fans in the Death Valley Region California and Nevada By CHARLES S. DENNY GEOLOGICAL SURVEY PROFESSIONAL PAPER 466 A survey and interpretation of some aspects of desert geomorphology UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1965 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publications as follows: Denny, Charles Storrow, 1911- Alluvial fans in the Death Valley region, California and Nevada. Washington, U.S. Govt. Print. Off., 1964. iv, 61 p. illus., maps (5 fold. col. in pocket) diagrs., profiles, tables. 30 cm. (U.S. Geological Survey. Professional Paper 466) Bibliography: p. 59. 1. Physical geography California Death Valley region. 2. Physi cal geography Nevada Death Valley region. 3. Sedimentation and deposition. 4. Alluvium. I. Title. II. Title: Death Valley region. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 CONTENTS Page Page Abstract.. _ ________________ 1 Shadow Mountain fan Continued Introduction. ______________ 2 Origin of the Shadow Mountain fan. 21 Method of study________ 2 Fan east of Alkali Flat- ___-__---.__-_- 25 Definitions and symbols. 6 Fans surrounding hills near Devils Hole_ 25 Geography _________________ 6 Bat Mountain fan___-____-___--___-__ 25 Shadow Mountain fan..______ 7 Fans east of Greenwater Range___ ______ 30 Geology.______________ 9 Fans in Greenwater Valley..-----_____. 32 Death Valley fans.__________--___-__- 32 Geomorpholo gy ______ 9 Characteristics of fans.._______-___-__- 38 Modern washes____. -
SCI Lecture Paper Series
SCI LECTURE PAPERS SERIES HIGHWAY DRAINAGE SYSTEMS Santi V Santhalingam Highways Agency, Room 4/41, St. Christopher House Southwark Street, London SE1 0TE Telephone +44 (0) 171 921 4954 Fax +44 (0) 171 921 4411 © Highways Agency 1999 copyright reserved ISSN 1353-114X LPS 102/99 Key words highways, drainage, runoff, surface, sub-surface, systems INTRODUCTION Appropriate drainage is an important feature of good highway design in terms of ensuring required level of service and value for money are achieved. Highway drainage has two major objectives: safety of the road user and longevity of the pavement. Speedy removal of surface water will help to ensure safe and comfortable conditions for the road user. Provision of effective sub-drainage will maximise longevity of the pavement and its associated earthworks. Highway drainage can therefore be broadly classified into two elements – surface run-off and sub-surface run-off: these two elements are not completely disparate in that some of the surface water may find its way into the road foundation through surfaces which are not completely impermeable thence requiring removal by sub-drainage. Based on these fundamental principles, drainage methods in the UK are broadly divided into two categories: (a) combined systems, where the surface and sub-surface water are collected and transported in the same pipe, and (b) separate systems, where the two elements are collected and transported in separate pipes Within the broader definition of the two systems there are a number of different drainage methods that are in use on UK highways, some of them more common than others. -
Geography for the IB DIPLOMA
OXFORD IB STUDY GUIDES Garrett Nagle Briony Cooke Geography FOR THE IB DIPLOMA 2nd edition OPTION A FRESHWATER – DRAINAGE BASINS 1 DRAINAGE BASIN HYDROLOGY AND GEOMORPHOLOGY The drainage basin DEFINITIONS Evaporation is the physical process by which a liquid becomes a gas. It is a function of: The drainage basin is an area that is drained by a river • vapour pressure and its tributaries. Drainage basins have inputs, stores, • air temperature processes and outputs. The inputs and outputs cross the • wind boundary of the drainage basin, hence the drainage basin • rock surface, for example, bare soils and rocks have is an open system. The main input is precipitation, which is high rates of evaporation compared with surfaces regulated by various means of storage. The outputs include which have a protective tilth where rates are low. evaporation and transpiration. Flows include infiltration, throughflow, overland flow and base flow, and stores Transpiration is the loss of water from vegetation. include vegetation, soil, aquifers and the cryosphere (snow Evapotranspiration is the combined loss of water and ice). from vegetation and water surfaces to the atmosphere. Drainage basin hydrology Potential evapotranspiration is the rate of water loss from an area if there were no shortage of water. PRECIPITATION Channel Interception precipitation 1. VEGETATION FLOWS Stemflow & throughfall Infiltration is the process by which water sinks into the Overland flow 2. SURFACE STORAGE 5. CHANNEL ground. Infiltration capacity refers to the amount of Floods moisture that a soil can hold. By contrast, the infiltration Capilliary Infiltration rise rate refers to the speed with which water can enter the Interflow 3. -
Tennessee Erosion & Sediment Control Handbook
TENNESSEE EROSION & SEDIMENT CONTROL HANDBOOK A Stormwater Planning and Design Manual for Construction Activities Fourth Edition AUGUST 2012 Acknowledgements This handbook has been prepared by the Division of Water Resources, (formerly the Division of Water Pollution Control), of the Tennessee Department of Environment and Conservation (TDEC). Many resources were consulted during the development of this handbook, and when possible, permission has been granted to reproduce the information. Any omission is unintentional, and should be brought to the attention of the Division. We are very grateful to the following agencies and organizations for their direct and indirect contributions to the development of this handbook: TDEC Environmental Field Office staff Tennessee Division of Natural Heritage University of Tennessee, Tennessee Water Resources Research Center University of Tennessee, Department of Biosystems Engineering and Soil Science Civil and Environmental Consultants, Inc. North Carolina Department of Environment and Natural Resources Virginia Department of Conservation and Recreation Georgia Department of Natural Resources California Stormwater Quality Association ~ ii ~ Preface Disturbed soil, if not managed properly, can be washed off-site during storms. Unless proper erosion prevention and sediment control Best Management Practices (BMP’s) are used for construction activities, silt transport to a local waterbody is likely. Excessive silt causes adverse impacts due to biological alterations, reduced passage in rivers and streams, higher drinking water treatment costs for removing the sediment, and the alteration of water’s physical/chemical properties, resulting in degradation of its quality. This degradation process is known as “siltation”. Silt is one of the most frequently cited pollutants in Tennessee waterways. The division has experimented with multiple ways to determine if a stream, river, or reservoir is impaired due to silt. -
Planning, Design and Estimation of a Check Dam B.H
ISSN XXXX XXXX © 2017 IJESC Research Article Volume 7 Issue No.4 Planning, Design and Estimation of a Check Dam B.H. Ramathilagam1, S. Murugesan2, M. Manikandan3, A. Arumugaraja4, Assistant professor1, U. G. student2, 3, 4 Department of Civil Sethu institute of technology, Virudhunagar, India Abstract To overcome these issues on a global scale, water erosion is the most severe type of soil erosion. It occurs mostly in the form of running water. This study was to develop information from dam which check dam can be adopted for the purpose of ground water recharge. Dams are constructions built across a river or a stream and used to interrupt and store water for special purpose. Check dams are comparatively smaller and more temporary to other types of dams for the purpose of ground water recharge. The Study consisted of a site selection phase, a surveying phase, an planning phase, an design phase and estimation analysis. .This Particular scheme lies in highly favourable zone for recharge as classified in the zonation map for Ground water recharge. By implementing this scheme, with in the zone of influence of about 1 km radius from the check dam site will be benefitted by way of percolation. Increase the Ground water level and increase the revenue through the ayacut . Totally 185.02.0 Ha Ayacut is benefitted through Seventy Eight No’s of wells. Moreover, all the wells (both domestic and agricultural wells) within the zone of influence will be recharged. The length of the check dam is 106m. The design and Estimation of the structure is done using the software Ms-Excel. -
CHAPTER 5 Temporary Runoff Control
CHAPTER 5 Temporary Runoff Control Temporary runoff control is important designer and contractor recognize these on developing sites to minimize on-site opportunities to reduce site runoff. erosion and to prevent off-site sediment Sediment laden water must be routed to discharge. Temporary runoff control an appropriate sediment control device primarily consists of two main strate- before leaving the site. Conveying run- gies: keeping off site water clean and off through stabilized temporary diver- managing on site sediment laden water. sions and slope drains not only directs Off site water that passes through an muddy water to treatment devices but active construction site should be kept also reduces further erosion and pre- as clean as possible. This is accom- vents costly re-grading associated with plished by routing this flow through gully development. Effective runoff the site without opportunity to mix control also makes re-vegetation easier with untreated site runoff or by divert- and less costly. ing clean water can be diverted around The practices outlined in this chapter construction areas. Sediment control will significantly increase the effective- practices generally will be more effec- ness of a sediment and erosion control tive, less expensive and require less plan. maintenance by not incorporating off site water. Diversions and temporary crossings are examples of runoff con- trols that are designed to keep off site water clean. Once construction begins, erosion will occur. To minimize erosion, site 5.1 Rock Check Dam ....................................3 runoff must be managed. This starts by minimizing the amount of disturbance 5.2 Slope Drain ..............................................7 and maintaining existing vegetation as 5.3 Temporary Diversion ..............................10 much as possible to reduce the volume 5.4 Stream Utility Crossing ..........................15 of runoff generated and subsequent 5.5 Temporary Stream Crossing ..................23 erosion. -
Engineering and Mitigation
Engineering and Mitigation 919 7th International Conference on Debris-Flow Hazards Mitigation Predicting debris-flow scour depth downstream from a check dam Hua-Yong Chena,b,c*, Xiao-Qing Chena,b,c, Jian-Gang Chena,b,c, and Jin-Bo Tanga,b a Key Laboratory of Mountain Hazards and Earth Surface Process/Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China b University of Chinese Academy of Sciences, Beijing 100049, China c CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, 100101, China Abstract Debris flows often pose great threats to people’s lives and property in mountainous regions. For example on August 8, 2010, a debris flow with a volume of 220×104 m3 occurred in ZhouQu county, Gansu province, China. The debris flow resulted in not only significant loss of farmlands, but also in 1,248 deaths and 496 people missing. The construction of check dams in debris- flow valleys is a useful way to mitigate deaths and damages. Herein, we investigate scour downstream from check dam spillway structures. We propose that the main parameters which determine scour depth of a scour hole downstream from check dams, include flow density, flow depth, flow discharge per unit width, and acceleration due to gravity. Physical experiments were also carried out to investigate debris flow movement and scour characteristics. In addition, a theoretical expression was deduced to predict the maximum scour depth downstream from check dams. There was a good correlation between experimental data and results predicted from theory. The results obtained in this paper can provide constraints for the design of check dams in mountainous areas. -
Regional Drainage Plan and Environmental Investigation for Major Tributaries in the Cypress Creek Watershed TWDB Contract No
Regional Drainage Plan and Environmental Investigation for Major Tributaries in the Cypress Creek Watershed TWDB Contract No. 2000-483-356 Table C3: 100-Year Flow Comparison Table (Baseline vs. Recommended Plan) HEC-1 Analysis Baseline Recommended Baseline vs. Recommended Plan Point Condition (cfs) Condition (cfs)· Difference (cfs) "10 Change K12402#1 2073 2073 0 -- K12402#2 2445 2445 0 -- K124A 1784 1614 -170 -10 K124#1 2278 1901 -377 -16 K124#2US 2933 2456 -477 -16 K124#2DS 5234 4842 -392 -7 K124#3 5989 5569 -420 -7 K124#4 6448 5433 -1015 -16 Table C4' HEC-1 Peak Flow Rates for Recommended Plan Conditions· HEC-1 Analysis Point 2-Year S-Year 10-Year 2S-Year SO-Year 100-Year 2S0-Year SOO-Year (cis) (cis) (cis) (cis) (cis) (cis) (cis) ~cls) K12402#1 746 1124 1377 1625 1844 2073 2376 2599 K12402#2 937 1428 1729 1973 2199 2445 2788 3049 K124A 588 881 1076 1269 1436 1614 1845 2017 K124#1 694 1042 1270 1496 1692 1901 2162 2358 K124#2US 889 1339 1636 1934 2184 2456 2797 3048 K124#2DS 1813 2745 3355 3883 4346 4842 5510 6026 K124#3 2136 3182 3898 4507 4999 5569 6328 6912 K124#4A 2325 3466 4221 4878 5407 6027 6839 7462 K124#4 2325 3466 4145 4653 5022 5433 5953 6349 February 2003 FINAL REPORT Page 20 Appendix C - Seals Gully (HCFC Unit I.D. #KI24-00-00) Regional Drainage Plan and Environmental Investigation for Major Tributaries in the Cypress Creek Watershed TWDB Contract No. 2000-483-356 Table C5: Comparison of Water Surface Elevations (100-Year) Seals Gully (K124-00-00' Baseline Condition Recommended Plan Difference Station Location Flow WSEL -
Section 6 - Structural Bmps Volume/Peak Rate Reduction by Infiltration Bmps BMP 6.7: Constructed Filter
Section 6 - Structural BMPs Volume/Peak Rate Reduction by Infiltration BMPs BMP 6.7: Constructed Filter Filters are structures or excavated areas containing a layer of sand, compost, organic material, peat, or other filter media that reduce pollutant levels in stormwater runoff by filtering sediments, metals, hydrocarbons, and other pollutants. Key Design Elements Potential Applications • Drain down – should empty within 72 hrs Residential: LIMITED Commercial: YES Ultra Urban: YES • Minimum permeability of filtration medium required Industrial: YES Retrofit: YES • Minimum depth of filtering medium = 18" Highway/Road: YES • Perforated pipes (4" min) in stone Stormwater Functions • May be designed to collect and convey filtered runoff down-gradient Volume Reduction: Low-Med* Recharge: Low-Med* • May be designed to infiltrate Peak Rate Control: Low/High Water Quality: High • Pretreatment for debris and sediment may be needed *If Infiltration Used • Must be sized for drainage area Pollutant Removal TSS: 85% • Regular inspection and maintenance required for TP: 85% continued functioning NO3: 30% • Positive overflow is required Other Considerations • Certain applications may warrant spill containment • Infiltration Systems Guidelines and Soil Investigation Guidelines should be followed, see Section 6.8. Draft Pennsylvania Stormwater Management Manual 6-277 Section 6 - Structural BMPs Description A stormwater filter is a structure or excavation filled with material and designed to filter stormwater runoff to improve water quality. The filter media may be comprised of materials such as sand, peat, compost, granular activated carbon (GAC), perlite, or other material. In some applications the stormwater runoff flows through an open air, “pretreatment” chamber to allow the large particles and debris to settle out (sedimentation). -
Gully Prevention and Control
Gully Rehabilitation Principle: “Prevention is better than Cure” 2012 Nile Basin Initiative Eastern Nile Subsidiary Action Program (ENSAP) Eastern Nile Technical Regional Office (ENTRO) Eastern Nile Watershed Management Project A Field Guide on Gully Prevention and Control March 2012 Prepared by: LAKEW DESTA & BELAYNEH ADUGNA P.O. Box 27173‐1000, Addis Ababa, Ethiopia Tel. +251 (11) 646 1130/646 1132, fax: +251 (11) 645 9407 Email: [email protected] or [email protected] Web site: www.nilebasin.org/entro Gully Rehabilitation Principle: “Prevention is better than Cure” 2012 Table of Contents 1. Introduction ................................................................................................................................................ 1 2. Process of Soil Erosion and Gully Formation ............................................................................................ 4 3. Factors Affecting Gully Formation ............................................................................................................ 8 3.1. Man-made factors .............................................................................................................................. 9 3.1.1. Improper land use....................................................................................................................... 9 3.1.2. Forest and grass fires .................................................................................................................. 9 3.1.3. Overgrazing/Free grazing ....................................................................................................... -
Gully Erosion and Its Causes
Gully Erosion – Part 1 GULLY EROSION AND ITS CAUSES Gully erosion – “A complex of processes whereby the removal of soil is characterised by incised channels in the landscape.” NSW Soil Conservation Service, 1986. Photo 1 – Head of gully erosion (Qld) Photo 2 – Rural gully erosion (SA) Introduction Gully erosion is usually distinguished from the boarder term ‘watercourse erosion’ by the path the erosion follows, which is normally along an overland flow path rather than along a creek. Prior to the occurrence of the gully erosion, the overland flow path would likely have carried only shallow concentrated flows conveying stormwater runoff to a down-slope watercourse. Gully erosion, however, can also occur within a watercourse, typically within the upper reaches, and typically resulting from an active ‘head-cut’ migrating rapidly up the valley. Gully erosion is best characterised as a ‘bed instability’ that subsequently causes in ‘bank instabilities’. Unstable banks maybe the most visible aspect of gully erosion; but stabilisation of a gully normally needs to start with stabilisation of the gully bed. The mechanics of gully erosion Most gullies start out as shallow overland flow paths that carry flows only during periods of heavy rainfall (Figure 1). An extraordinary event of some type causes an initial erosion point or ‘nick’ point (Photo 3) to form somewhere along the drainage path. A bell-shaped scour hole sometimes forms at the head of the gully (Photo 4), which is usually deeper than the immediate downstream gully bed. Photo 3 – ‘Nick’ point representing the Photo 4 – Early stage of gully erosion early stages of gully erosion (SA) within an urban overland flow path (Qld) © Catchments & Creeks Pty Ltd April 2010 Page 1 The initial nick point usually occurs at the downstream end of the gully, and usually at a significant change in grade along the flow path, such as the point where the overland flow spills into a watercourse.