Sustaining Rainforest Plants, People and Global Health: a Model For
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chromosome Numbers in Compositae, XII: Heliantheae
SMITHSONIAN CONTRIBUTIONS TO BOTANY 0 NCTMBER 52 Chromosome Numbers in Compositae, XII: Heliantheae Harold Robinson, A. Michael Powell, Robert M. King, andJames F. Weedin SMITHSONIAN INSTITUTION PRESS City of Washington 1981 ABSTRACT Robinson, Harold, A. Michael Powell, Robert M. King, and James F. Weedin. Chromosome Numbers in Compositae, XII: Heliantheae. Smithsonian Contri- butions to Botany, number 52, 28 pages, 3 tables, 1981.-Chromosome reports are provided for 145 populations, including first reports for 33 species and three genera, Garcilassa, Riencourtia, and Helianthopsis. Chromosome numbers are arranged according to Robinson’s recently broadened concept of the Heliantheae, with citations for 212 of the ca. 265 genera and 32 of the 35 subtribes. Diverse elements, including the Ambrosieae, typical Heliantheae, most Helenieae, the Tegeteae, and genera such as Arnica from the Senecioneae, are seen to share a specialized cytological history involving polyploid ancestry. The authors disagree with one another regarding the point at which such polyploidy occurred and on whether subtribes lacking higher numbers, such as the Galinsoginae, share the polyploid ancestry. Numerous examples of aneuploid decrease, secondary polyploidy, and some secondary aneuploid decreases are cited. The Marshalliinae are considered remote from other subtribes and close to the Inuleae. Evidence from related tribes favors an ultimate base of X = 10 for the Heliantheae and at least the subfamily As teroideae. OFFICIALPUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution’s annual report, Smithsonian Year. SERIESCOVER DESIGN: Leaf clearing from the katsura tree Cercidiphyllumjaponicum Siebold and Zuccarini. Library of Congress Cataloging in Publication Data Main entry under title: Chromosome numbers in Compositae, XII. -
MEDICINAL PLANTS OPIUM POPPY: BOTANY, TEA: CULTIVATION to of NORTH AFRICA Opidjd CHEMISTRY and CONSUMPTION by Loutfy Boulos
hv'IERIGAN BCXtlNICAL COJNCIL -----New Act(uisition~---------l ETHNOBOTANY FLORA OF LOUISIANA Jllll!llll GUIDE TO FLOWERING FLORA Ed. by Richard E. Schultes and Siri of by Margaret Stones. 1991. Over PLANT FAMILIES von Reis. 1995. Evolution of o LOUISIANA 200 beautiful full color watercolors by Wendy Zomlefer. 1994. 130 discipline. Thirty-six chapters from and b/w illustrations. Each pointing temperate to tropical families contributors who present o tru~ accompanied by description, habitat, common to the U.S. with 158 globol perspective on the theory and and growing conditions. Hardcover, plates depicting intricate practice of todoy's ethnobotony. 220 pp. $45. #8127 of 312 species. Extensive Hardcover, 416 pp. $49.95. #8126 glossary. Hardcover, 430 pp. $55. #8128 FOLK MEDICINE MUSHROOMS: TAXOL 4t SCIENCE Ed. by Richard Steiner. 1986. POISONS AND PANACEAS AND APPLICATIONS Examines medicinal practices of by Denis Benjamin. 1995. Discusses Ed. by Matthew Suffness. 1995. TAXQL® Aztecs and Zunis. Folk medicine Folk Medicine signs, symptoms, and treatment of Covers the discovery and from Indio, Fup, Papua New Guinea, poisoning. Full color photographic development of Toxol, supp~. Science and Australia, and Africa. Active identification. Health and nutritional biology (including biosynthesis and ingredients of garlic and ginseng. aspects of different species. biopharmoceutics), chemistry From American Chemical Society Softcover, 422 pp. $34.95 . #8130 (including structure, detection and Symposium. Softcover, isolation), and clinical studies. 223 pp. $16.95. #8129 Hardcover, 426 pp. $129.95 #8142 MEDICINAL PLANTS OPIUM POPPY: BOTANY, TEA: CULTIVATION TO OF NORTH AFRICA OpiDJD CHEMISTRY AND CONSUMPTION by Loutfy Boulos. 1983. Authoritative, Poppy PHARMACOLOGY TEA Ed. -
Morphology and Vascular Anatomy of the Flower of Lagerstroemia Indica L
© Landesmuseum für Kärnten; download www.landesmuseum.ktn.gv.at/wulfenia; www.biologiezentrum.at Wulfenia 15 (2008): 51–62 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Morphology and vascular anatomy of the fl ower of Lagerstroemia indica L. (Lythraceae) with some phylogenetic implications Anastasiya Odintsova Summary: The main patterns of the fl oral vascular system and the structure of the syncarpous gynoecium of one of the most primitive members of Lythraceae, Lagerstroemia indica, have been studied. The vascular system of the fl ower consists of a vascular cylinder, in which consequently closed gaps with diverged traces to fl oral organs or composed vascular stands appear. The histological diff erentiation and vascular anatomy confi rm the prevalence of appendicular features in the fl oral tube of Lagerstroemia indica. The syncarpous gynoecium of Lagerstroemia indica is composed of fertile synascidiate and symplicate structural zones without an apocarpous zone. The most characteristic features of the gynoecium are a secretory epidermis on a massive placenta and on incomplete septa, prominent dorsal ridges inside the locules, and continuation of septal bundles into the style. Keywords: Lagerstroemia indica, Lythraceae, Myrtales, fl ower morphology, vascular anatomy, hypanthium, gynoecium Lythraceae, with 31 genera and 585 species, the third largest family of the Myrtales, are distributed worldwide and show a relatively great range of morphological variation (Conti et al. 1997). It is the only non-monotypic family within Myrtales with a superior ovary (Eichler 1878) and a multicellular archesporium in ovule (Tobe & Raven 1983) – both rather primitive characters for Myrtales. In contrast to most families of the Myrtales, in Lythraceae developmental studies of the fl owers are rare (Cheung & Sattler 1967; Ronse Decraene & Smets 1991), and vascular-anatomical data are incomplete: they concern certain problems of comparative fl oral morphology, e.g. -
Biologically Active Secondary Metabolites from Asteraceae and Polygonaceae Species
University of Szeged Faculty of Pharmacy Graduate School of Pharmaceutical Sciences Department of Pharmacognosy Biologically active secondary metabolites from Asteraceae and Polygonaceae species Ph.D. Thesis Ildikó Lajter Supervisors: Prof. Judit Hohmann Dr. Andrea Vasas Szeged, Hungary 2015 LIST OF PUBLICATIONS RELATED TO THE THESIS I. Lajter I, Zupkó I, Molnár J, Jakab G, Balogh L, Vasas A, Hohmann J. Antiproliferative activity of Polygonaceae species from the Carpathian Basin against human cancer cell lines Phytotherapy Research 2013; 27: 77-85. II. Lajter I, Vasas A, Orvos P, Bánsághi S, Tálosi L, Jakab G, Béni Z, Háda V, Forgo P, Hohmann J. Inhibition of G protein-activated inwardly rectifying K+ channels by extracts of Polygonum persicaria and isolation of new flavonoids from the chloroform extract of the herb Planta Medica 2013; 79: 1736-1741. III. Lajter I, Vasas A, Béni Z, Forgo P, Binder M, Bochkov V, Zupkó I, Krupitza G, Frisch R, Kopp B, Hohmann J. Sesquiterpenes from Neurolaena lobata and their antiproliferative and anti-inflammatory activities Journal of Natural Products 2014; 77: 576-582. IV. McKinnon R, Binder M, Zupkó I, Afonyushkin T, Lajter I, Vasas A, de Martin R, Unger C, Dolznig H, Diaz R, Frisch R, Passreiter CM, Krupitza G, Hohmann J, Kopp B, Bochkov VN. Pharmacological insight into the anti-inflammatory activity of sesquiterpene lactones from Neurolaena lobata (L.) R.Br. ex Cass. Phytomedicine 2014; 21: 1695-1701. V. Lajter I, Pan SP, Nikles S, Ortmann S, Vasas A, Csupor-Löffler B, Forgó P, Hohmann J, Bauer R. Inhibition of COX-2 and NF-κB1 gene expression, NO production, 5-LOX, and COX-1 and COX-2 enzymes by extracts and constituents of Onopordum acanthium Planta Medica 2015; 81: 1270-1276. -
NATIVE NAMES and USES of SOME PLANTS of EASTERN GUATEMALA Mid HONDURAS
NATIVE NAMES AND USES OF SOME PLANTS OF EASTERN GUATEMALA MiD HONDURAS. By S. F. BLAKE. INTRODUCTION. In the spring of 1919 an Economic Survey Mission of the United States State Department, headed by the late Maj. Percy H. Ashmead, made a brief examination of the natural products and resources of the region lying between the Chamelec6n Valley in Honduras and the Motagua VaUey in Guatemala. Work was also done by the botanists of the expedition in the vicinity of Izabal on Lak.. Izaba!. Descriptions of the new species collected by the expedition, with a short account of its itinerary, have already been published by the writer,' and a number of the new forms have been illustrated. The present list is based · wholly on the data and specimens collected by the botanists and foresters of this expedition-H. Pittier, S. F. Blake, G. B. Gilbert, L. R. Stadtmiller, and H. N. Whitford-and no attempt has been made to incorporate data from other regions of Central America. Such information will be found chiefly in various papers published by Henry Pittier,' J. N. Rose,' and P. C. Standley.' LIST OF NATIVE NAllES AND USES. Acacia sp. CACHITO. eoaNIZuELO. ISCAN.... L. FAAACEJ..E. Acacla sp. I....&GAR'l"O. SANPlWBANO. FABACE'·. A tree up to 25 meters high and 45 em. to diameter. The wood is lISed for bunding. Acalypha sp. Co8TII I A DE PANTA. EUPHOllBlAc!:a. 'Contr. U. S. Not. Herb. 24: 1-32. pl •. 1-10, ,. 1-4. 1922. • Ensayo oobre las plantas usuatee de Costa Rica. pp. 176, pk. -
A Quarter Century of Pharmacognostic Research on Panamanian Flora: a Review*
Reviews 1189 A Quarter Century of Pharmacognostic Research on Panamanian Flora: A Review* Authors Catherina Caballero-George 1, Mahabir P. Gupta2 Affiliations 1 Institute of Scientific Research and High Technology Services (INDICASAT‑AIP), Panama, Republic of Panama 2 Center for Pharmacognostic Research on Panamanian Flora (CIFLORPAN), College of Pharmacy, University of Panama, Panama, Republic of Panama Key words Abstract with novel structures and/or interesting bioactive l" bioassays ! compounds. During the last quarter century, a to- l" Panamanian plants Panama is a unique terrestrial bridge of extreme tal of approximately 390 compounds from 86 l" ethnomedicine biological importance. It is one of the “hot spots” plants have been isolated, of which 160 are new l" novel compounds and occupies the fourth place among the 25 most to the literature. Most of the work reported here plant-rich countries in the world, with 13.4% en- has been the result of many international collabo- demic species. Panamanian plants have been rative efforts with scientists worldwide. From the screened for a wide range of biological activities: results presented, it is immediately obvious that as cytotoxic, brine shrimp-toxic, antiplasmodial, the Panamanian flora is still an untapped source antimicrobial, antiviral, antioxidant, immunosup- of new bioactive compounds. pressive, and antihypertensive agents. This re- view concentrates on ethnopharmacological uses Supporting information available at of medicinal plants employed by three Amerin- http://www.thieme-connect.de/ejournals/toc/ dian groups of Panama and on selected plants plantamedica Introduction are a major component of the Panamanian tropi- ! cal forest. Mosses abound in moist cloud forests as Medicinal plants remain an endless source of new well as other parts of the country. -
Plant List 2021-08-25 (12:18)
Plant List 2021-09-24 (14:25) Plant Plant Name Botanical Name in Price Stock Per Unit AFRICAN DREAM ROOT - 1 Silene capensis Yes R92 AFRICAN DREAM ROOT - 2 Silene undulata Yes R92 AFRICAN POTATO Hypoxis hemerocallidea Yes R89 AFRICAN POTATO - SILVER-LEAFED STAR FLOWER Hypoxis rigidula Yes R89 AGASTACHE - GOLDEN JUBILEE Agastache foeniculum No R52 AGASTACHE - HYSSOP, WRINKLED GIANT HYSSOP Agastache rugosa Yes R59 AGASTACHE - LICORICE MINT HYSSOP Agastache rupestris No R59 AGASTACHE - PINK POP Agastache astromontana No R54 AGRIMONY Agrimonia eupatoria No R54 AJWAIN Trachyspermum ammi No R49 ALFALFA Medicago sativa Yes R59 ALOE VERA - ORANGE FLOWER A. barbadensis Yes R59 ALOE VERA - YELLOW FLOWER syn A. barbadensis 'Miller' No R59 AMARANTH - ‘LOVE-LIES-BLEEDING’ Amaranthus caudatus No R49 AMARANTH - CHINESE SPINACH Amaranthus species No R49 AMARANTH - GOLDEN GIANT Amaranthus cruentas No R49 AMARANTH - RED LEAF Amaranthus cruentas No R49 ARTICHOKE - GREEN GLOBE Cynara scolymus Yes R54 ARTICHOKE - JERUSALEM Helianthus tuberosus Yes R64 ARTICHOKE - PURPLE GLOBE Cynara scolymus No R54 ASHWAGANDA, INDIAN GINSENG Withania somniferia Yes R59 ASPARAGUS - GARDEN Asparagus officinalis Yes R54 BALLOON FLOWER - PURPLE Platycodon grandiflorus 'Apoyama' Yes R59 BALLOON FLOWER - WHITE Platycodon grandiflorus var. Albus No R59 BASIL - CAMPHOR Ocimum kilimandscharicum Yes R59 BASIL HOLY - GREEN TULSI, RAM TULSI Ocimum Sanctum Yes R54 BASIL HOLY - TULSI KAPOOR Ocimum sanctum Linn. No R54 BASIL HOLY - TULSI TEMPERATE Ocimum africanum No R54 BASIL HOLY - TULSI -
Population Genetic Structure in Phyla Scaberrima from Mexico and Colombia Assessed by AFLP Markers and Implications for Conservation
Population genetic structure in Phyla scaberrima from Mexico and Colombia assessed by AFLP markers and implications for conservation L.G. Androcioli1*, E.A. Ruas1*, L.A. Rodrigues2, C.F. Ruas1 , H.E.R. Perilla2 and P.M. Ruas1 1Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, PR, Brasil 2Programa de Pós-Graduação em Agronomia, Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, PR, Brasil *These authors contributed equally to this study. Corresponding author: E.A. Ruas E-mail: [email protected] Genet. Mol. Res. 14 (4): 15697-15704 (2015) Received July 12, 2015 Accepted October 5, 2015 Published December 1, 2015 DOI http://dx.doi.org/10.4238/2015.December.1.21 ABSTRACT. Phyla scaberrima (Verbenaceae) is a herbaceous peren- nial species that is distributed from Mexico (center of origin) to Colom- bia, growing in forest and swamp edges or grasslands from sea level up to an altitude of 1800 m. The chemical properties and uses in popular medicine have drastically affected the population size of this species. In this study, we investigated genetic variability in populations of P. scaberrima using AFLP markers. Three AFLP primer combinations rendered a total of 997 markers in a sample of 131 individuals from five populations, including two populations from Mexico and three from Colombia. The average percentage of polymorphic loci, gene diversity and Shannon-Wiener index were 46.62, 0.0695, and 0.119, respectively. Analysis of molecular variance showed that the distribution of the ge- Genetics and Molecular Research 14 (4): 15697-15704 (2015) ©FUNPEC-RP www.funpecrp.com.br L.G. -
Biodiversity in Forests of the Ancient Maya Lowlands and Genetic
Biodiversity in Forests of the Ancient Maya Lowlands and Genetic Variation in a Dominant Tree, Manilkara zapota (Sapotaceae): Ecological and Anthropogenic Implications by Kim M. Thompson B.A. Thomas More College M.Ed. University of Cincinnati A Dissertation submitted to the University of Cincinnati, Department of Biological Sciences McMicken College of Arts and Sciences for the degree of Doctor of Philosophy October 25, 2013 Committee Chair: David L. Lentz ABSTRACT The overall goal of this study was to determine if there are associations between silviculture practices of the ancient Maya and the biodiversity of the modern forest. This was accomplished by conducting paleoethnobotanical, ecological and genetic investigations at reforested but historically urbanized ancient Maya ceremonial centers. The first part of our investigation was conducted at Tikal National Park, where we surveyed the tree community of the modern forest and recovered preserved plant remains from ancient Maya archaeological contexts. The second set of investigations focused on genetic variation and structure in Manilkara zapota (L.) P. Royen, one of the dominant trees in both the modern forest and the paleoethnobotanical remains at Tikal. We hypothesized that the dominant trees at Tikal would be positively correlated with the most abundant ancient plant remains recovered from the site and that these trees would have higher economic value for contemporary Maya cultures than trees that were not dominant. We identified 124 species of trees and vines in 43 families. Moderate levels of evenness (J=0.69-0.80) were observed among tree species with shared levels of dominance (1-D=0.94). From the paleoethnobotanical remains, we identified a total of 77 morphospecies of woods representing at least 31 plant families with 38 identified to the species level. -
A Synopsis of the Native Combretaceae in the Malay Peninsula Citation: Ian M
Journal of Plant Firenze University Press Taxonomy www.fupress.com/webbia WEBBIA and Geography A synopsis of the native Combretaceae in the Malay Peninsula Citation: Ian M. Turner (2020) A synop- sis of the native Combretaceae in the Malay Peninsula. Webbia. Journal of Plant Taxonomy and Geography 75(2): Ian M. Turner 263-280. doi: 10.36253/jopt-8891 Singapore Botanical Liaison Officer, Royal Botanic Gardens, Kew, Richmond, Surrey Received: May 14, 2020 TW9 3AE, UK; Herbarium, Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, Singapore 259569 Accepted: July 6, 2020 E-mail: [email protected] Published: November 18, 2020 Abstract. A synopsis of the native species of Combretaceae in the Malay Peninsula Copyright: © 2020 Ian M. Turner. This is an open access, peer-reviewed arti- (Peninsular Thailand, Peninsular Malaysia and Singapore) is presented. A total of 29 cle published by Firenze University species in four genera (Combretum, Getonia, Lumnitzera and Terminalia) are recog- Press (http://www.fupress.com/webbia) nised. Keys to genera and species are included with synonymy and typification. In total and distributed under the terms of the 63 lectotypifications, three second-step lectotypifications and 11 neotypifications are Creative Commons Attribution License, proposed in the paper. which permits unrestricted use, distri- bution, and reproduction in any medi- Keywords: Calycopteris, Combretum, Getonia, Lumnitzera, Quisqualis, Terminalia. um, provided the original author and source are credited. Data Availability Statement: All rel- evant data are within the paper and its Supporting Information files. INTRODUCTION Competing Interests: The Author(s) The Combretaceae include about 500 species of predominantly trees and declare(s) no conflict of interest. -
Medicinal Plants Used in the Traditional Management of Diabetes and Its Sequelae in Central America: a Review
King’s Research Portal DOI: 10.1016/j.jep.2016.02.034 Document Version Peer reviewed version Link to publication record in King's Research Portal Citation for published version (APA): Giovannini, P., Howes, M-J. R., & Edwards, S. E. (2016). Medicinal plants used in the traditional management of diabetes and its sequelae in Central America: a review. Journal of Ethnopharmacology. https://doi.org/10.1016/j.jep.2016.02.034 Citing this paper Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections. General rights Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. •Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research. •You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. -
Natural Products As a Source for Treating Neglected Parasitic Diseases
Int. J. Mol. Sci. 2013, 14, 3395-3439; doi:10.3390/ijms14023395 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Natural Products as a Source for Treating Neglected Parasitic Diseases Dieudonné Ndjonka 1,†, Ludmila Nakamura Rapado 2,†, Ariel M. Silber 2, Eva Liebau 3,* and Carsten Wrenger 2,* 1 Department of Biological Sciences, Faculty of Science, University of Ngaoundere, B. P. 454, Cameroon; E-Mail: [email protected] 2 Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes 1374, 05508-000 São Paulo-SP, Brazil; E-Mails: [email protected] (L.N.R.); [email protected] (A.M.S.) 3 Institute for Zoophysiology, Schlossplatz 8, D-48143 Münster, Germany † These authors contributed equally to this work. * Authors to whom correspondence should be addressed; E-Mails: [email protected] (E.L.); [email protected] (C.W.); Tel.: +49-251-83-21710 (E.L.); +55-11-3091-7335 (C.W.); Fax: +49-251-83-21766 (E.L.); +55-11-3091-7417 (C.W.). Received: 21 December 2012; in revised form: 12 January 2013 / Accepted: 16 January 2013 / Published: 6 February 2013 Abstract: Infectious diseases caused by parasites are a major threat for the entire mankind, especially in the tropics. More than 1 billion people world-wide are directly exposed to tropical parasites such as the causative agents of trypanosomiasis, leishmaniasis, schistosomiasis, lymphatic filariasis and onchocerciasis, which represent a major health problem, particularly in impecunious areas. Unlike most antibiotics, there is no “general” antiparasitic drug available.