Growth, Thermodynamics, and Electrical Properties of Silicon Nanowires†

Total Page:16

File Type:pdf, Size:1020Kb

Growth, Thermodynamics, and Electrical Properties of Silicon Nanowires† Chem. Rev. 2010, 110, 361–388 361 Growth, Thermodynamics, and Electrical Properties of Silicon Nanowires† V. Schmidt,*,‡ J. V. Wittemann,‡ and U. Go¨sele‡,§,| Max Planck Institute of Microstructure Physics, Halle, Germany, and School of Engineering, Duke University, Durham, North Carolina Received April 7, 2009 Contents 1. Introduction 361 2. Silicon Nanowire Synthesis Techniques 363 2.1. High Temperature Chemical Vapor Deposition 363 2.2. Low Temperature Chemical Vapor Deposition 364 2.3. Supercritical-Fluid-Based and Solution-Based 365 Growth Techniques 2.4. Molecular Beam Epitaxy 366 2.5. Laser Ablation 367 2.6. Silicon Monoxide Evaporation 367 3. Catalyst Materials 368 3.1. Gold as Catalyst 368 3.2. Alternative Catalyst Materials 369 3.2.1. Type-A, Au-like Catalysts 370 Volker Schmidt studied Physics at the Bayerische Julius-Maximilians- 3.2.2. Type-B, Low Si Solubility Catalysts 371 Universita¨t Wu¨rzburg, Germany, and at the State University of New York at Buffalo. He received his Ph.D. from the Max Planck Institute of 3.2.3. Type-C, Silicide Forming Catalysts 371 Microstructure Physics in Halle, Germany, working on growth and 4. Crystallography 372 properties of silicon nanowires. Volker Schmidt also worked as a guest 5. Heterostructures 373 scientist at the IBM Zurich research laboratories in Ru¨schlikon, Switzerland, 6. Surface Induced Lowering of the Eutectic 375 and at the Materials Science Department of Stanford University, CA. Temperature 7. Diameter Expansion of the Nanowire Base 376 8. Surface Tension Criterion 378 9. Growth Velocity and Gibbs-Thomson Effect 379 10. Doping 380 11. Dopant Ionization 381 12. Surface States and Charge Carriers 382 13. Summary and Open Questions 385 14. Acknowledgments 386 15. References 386 1. Introduction Research on silicon nanowires has developed rapidly in recent years. This can best be inferred from the sharply Joerg V. Wittemann studied Physics at the Bayerische Julius-Maximilians- increasing number of publications in this field. In 2008, more Universita¨t Wu¨rzburg, Germany, and at the University at AlbanysState than 700 articles on silicon nanowires were published, which University of New York, where he received a M.Sc. in 2007. Afterward, is twice the number published in 2005. Because of this strong he joined the Max Planck Institute of Microstructure Physics as a Ph.D. increase in research activities and output, the vast majority student under the supervision of Prof. U. Go¨sele. He is currently working of publications on silicon nanowires are found to be younger on fabrication and characterization of silicon nanowires. than ten years. At first glance, one could therefore be tempted fashionable subject, driven by potential applications in to assume that Si nanowire research is a very young research nanoelectronics and sensors. field. This, however, is not the case. Si nanowire research The review, which to our knowledge is the first on silicon had a rather long incubation period before it became a wires, dates back to the late 1950s.1 Therein, Treuting and Arnold reported the successful synthesis of 〈111〉 oriented * To whom correspondence should be addressed. E-mail: vschmidt@ Si whiskers. The term whisker was at that time the commonly mpi-halle.de. used expression when reference was made to filamentary † This article is dedicated to the memory of Professor Ulrich Go¨sele. crystals. Nowadays, the term whisker has almost disappeared. ‡ MPI of Microstructure Physics. § Duke University. Instead, the terms “wire” and “nanowire” have found | Deceased. widespread use. In this article, we will adopt this newer 10.1021/cr900141g 2010 American Chemical Society Published on Web 01/13/2010 362 Chemical Reviews, 2010, Vol. 110, No. 1 Schmidt et al. Figure 1. (a) Schematics of the vapor-liquid-solid growth mechanism. (b) Scanning electron micrograph of epitaxially grown Si nanowires on Si 〈111〉. Transmission electron micrograph of the interface region between Si nanowire and substrate. Note the epitaxy Ulrich Go¨sele was Director of the Experimental Department II at the Max and the curved shape of the nanowire flank. Parts b and c are Planck Institute of Microsctructure Physics, Halle, Germany, Honorary reprinted from ref 3 with permission from Zeitschrift fu¨r Met- Professor of Experimental Physics at Martin Luther University Halle- allkunde, Carl Hanser Verlag, Mu¨nchen. Wittenberg, Germany, as well as Adjunct Professor of Materials Science at Duke University’s School of Engineering, Durham, North Carolina. While dissolved in the Au-Si droplets. The additional supply of staying with the Max Planck Institute of Metal Physics, Stuttgart, Germany, he received his Ph.D. from the University of Stuttgart in 1975. Afterward, Si from the gas phase therefore forces the droplets to find a he worked as a researcher for Siemens (Munich, Germany), IBM (Yorktown way of how to dispose of the excess Si. This is accomplished Heights, New York), NTT (Japan), and a nuclear research center in South by crystallizing solid Si at the droplet-wire interface. A Africa. In 1985, he became Full Professor of Materials Science and, later continuous supply of Si consequently leads to the growth of on, J. B. Duke Professor of Materials at Duke University, Durham, NC. wires with a Au-Si droplet at their tip, as schematically Since 1993, he was a Scientific Member of the Max Planck Society and Director at its Max Planck Institute of Microstructure Physics in Halle. indicated in Figure 1a. Ulrich Go¨sele was a Fellow of the American Physical Society and Great The name vapor-liquid-solid (VLS) mechanism reflects Britain’s Institute of Physics. He was a member of the German National Academy of Sciences and was on the board of the Materials Research the pathway of Si, which coming from the vapor phase Society in the USA. He passed away in November 2009. diffuses through the liquid droplet and ends up as a solid Si wire. Related is the so-called vapor-solid-solid (VSS) terminology. Rodlike crystals with a diameter of less than mechanism, which describes cases where a solid catalyst 100 nm will be referred to as nanowires. In places where particle instead of a liquid droplet is involved. An example rodlike crystals of larger diameters are considered, the term of Au-catalyzed Si nanowires grown homoepitaxially on a wire will be used. The term wire will also be used in a 〈111〉 substrate via the VLS-mechanism is shown in Figure generalized sense, i.e. when reference is to be made to both 1b. These nanowires were grown at about 450 °C using silane wires and nanowires. as precursor.3 The transmission electron micrograph in Figure Regarding silicon wire growth, it is remarkable to see how 1c proves the epitaxial relation between nanowire and much was already known in the 1960s. The best example of substrate. What should also be noted in Figure 1c is the - - this is the vapor liquid solid mechanism of Si wire growth curved shape of the nanowire flank; an aspect that will be proposed by Wagner and Ellis in their seminal article discussed in detail later on in section 7. The most remarkable 2 - - published in March 1964. Till today, the vapor liquid solid feature of the VLS growth mechanism, however, is its (VLS) growth mechanism was the most prominent method universality. VLS growth works well for a multitude of for silicon wire synthesis. The VLS mechanism really catalyst and wire materials and, regarding Si wire growth, represents the core of silicon wire research, though it does not only work for silicon but also for a much broader range over a size range of at least 5 orders of magnitude; from of wire materials. The VLS mechanism can best be explained wire diameters of just a few nanometers up to several on the basis of Au catalyzed Si wire growth on silicon hundred micrometers. substrates by means of chemical vapor deposition (CVD) The VLS mechanism has numerous direct and indirect using a gaseous silicon precursor such as silane. implications for Si wire growth. Consequently, a large part The Au-Si binary phase diagram possesses a characteristic of this review, which is an extended version of a previous peculiarity, namely that the melting point of the Au-Si alloy article,4 focuses on the limitations and implications of the strongly depends on composition. A mixture of 19 atom % VLS mechanism. This concerns experimental issues such as ° Si and 81 atom % Au already melts at 363 C, which is the choice of growth method (section 2) and catalyst material about 700 K lower than the melting point of pure Au and (section 3), the crystallography of the wires (section 4), and more than 1000 K lower than the melting point of pure Si. the synthesis of heterostructures (section 5), as well as Thus, heating Au in the presence of a sufficient amount of Si, considering e.g. a Au film on a Si substrate, to temper- theoretical issues such as the depression of the eutectic atures above 363 °C will result in the formation of liquid temperature (section 6), the expansion of the wire base Au-Si alloy droplets as schematically depicted in Figure (section 7), the surface tension criterion (section 8), and the 1a. Exposing these Au-Si alloy droplets to a gaseous silicon Gibbs-Thomson effect (section 9). The last part of this precursor such as silane, SiH4, will cause precursor molecules article deals with the electrical properties of silicon nanow- to preferentially crack at the surface of these droplets, thereby ires: from nanowire doping (section 10) and the question of supplying additional Si to the droplet. At equilibrium the dopant ionization (section 11) to the influence of surface phase diagram allows only for a limited amount of Si states on the effective charge carrier density (section 12).
Recommended publications
  • Niobium Doped BGO Glasses: Physical, Thermal and Optical Properties
    IOSR Journal of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861. Volume 3, Issue 5 (Mar. - Apr. 2013), PP 80-87 www.iosrjournals.org Niobium doped BGO glasses: Physical, Thermal and Optical Properties Khair-u-Nisa1, Ejaz Ahmed2, M. Ashraf Chaudhry3 1,2,3Department of Physics, Bahauddin Zakariya University, Multan (60800), Pakistan. Abstract: IR- transparent niobium substituted heavy metal oxide glass system in formula composition (100-x) BGO75- xNb2O5; 5 ≤ x ≤ 25 was fabricated by quenching and press molding technique. Glassy state was confirmed by XRD. Density ρexp varied 6.381 g/cc-7.028 g/cc ±0.06%. Modifying behavior of Nb2O5 was corroborated by rate of increase in theoretical volume Vth, measured volume Vexp and oxygen molar volume -2 5+ 4+ VMO . Nb had larger cation radius and greater polarizing strength as compared to Ge ions. It replaced 4+ o Ge sites introducing more NBOs in the network. Transformation temperatures Tg, Tx and Tp1 were 456 -469 C ±2 oC, 516 -537 oC ±2 oC and 589 -624 oC ±2 oC respectively. In the range from room temperature to 400 oC -6 -1 -6 -1 the coefficient of linear thermal expansion α was 5.431±0.001*10 K to 7.333±0.001*10 K . ΔT = Tx-Tg and ΔTP1 = TP1-Tg varied collinearly with increase in niobium concentration and revealed thermal stability against devitrification. The direct bandgap Eg values lay in 3.24 -2.63 eV ±0.01 eV range and decreased due to impurity states of Nb5+ within the forbidden band. Mobility edges obeyed Urbach law verifying amorphousness of the compositions.
    [Show full text]
  • Cu&Si Core–Shell Nanowire Thin Film As High-Performance Anode
    applied sciences Article Cu&Si Core–Shell Nanowire Thin Film as High-Performance Anode Materials for Lithium Ion Batteries Lifeng Zhang 1, Linchao Zhang 1,*, Zhuoming Xie 1 and Junfeng Yang 1,2,* 1 Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230032, China; [email protected] (L.Z.); [email protected] (Z.X.) 2 Lu’an Branch, Anhui Institute of Innovation for Industrial Technology, Lu’an 237100, China * Correspondence: [email protected] (L.Z.); [email protected] (J.Y.) Abstract: Cu@Si core–shell nanowire thin films with a Cu3Si interface between the Cu and Si were synthesized by slurry casting and subsequent magnetron sputtering and investigated as anode materials for lithium ion batteries. In this constructed core–shell architecture, the Cu nanowires were connected to each other or to the Cu foil, forming a three-dimensional electron-conductive network and as mechanical support for the Si during cycling. Meanwhile, the Cu3Si layer can enhance the interface adhesion strength of the Cu core and Si shell; a large amount of void spaces between the Cu@Si nanowires could accommodate the lithiation-induced volume expansion and facilitate electrolyte impregnation. As a consequence, this electrode exhibits impressive electrochemical properties: the initial discharge capacity and initial coulombic efficiency is 3193 mAh/g and 87%, respectively. After 500 cycles, the discharge capacity is about 948 mAh/g, three times that of graphite, corresponding to an average capacity fading rate of 0.2% per cycle. Keywords: lithium ion battery; anode; silicon; core–shell structure; magnetron sputtering Citation: Zhang, L.; Zhang, L.; Xie, Z.; Yang, J.
    [Show full text]
  • Lecture 4 (Pdf)
    GFD 2006 Lecture 4: Interfacial instability in two-component melts Grae Worster; notes by Shane Keating and Takahide Okabe March 15, 2007 So far, we have looked at some of the fundamentals associated with solidification of pure melts. When we try to solidify a solution of two or more components, salt and water, for example, the character of the solidification changes considerably. In particular, the presence of salt can depress the temperature at which ice and salt water can coexist in thermal equilibrium. This has an important consequence for the growth of sea ice: unless there is some other mechanism for the transport of the salt field, such as convection, the growth of the ice is limited by the rate at which excess salt can diffuse away from the interface. Finally, we will discuss the morphological instability in two-component melts. We shall see that the solute field is destabilizing and can give rise to morphological instability even when the liquid phase is not initially supercooled. 1 Two-component melts 1.1 A simple demonstration We shall begin with a simple demonstration. Crushed ice at 0◦C is placed in a cup with a thermometer. We add a handful of salt at room temperature and stir briskly. The ice begins to melt, but what happens to the temperature? We notice that there is some melt water in the cup, which helps bring the ice and salt into contact, and see a fairly rapid decrease in the temperature measured by the thermometer: after a few minutes, it reads almost 10 C.
    [Show full text]
  • Recent Advances in Vertically Aligned Nanowires for Photonics Applications
    micromachines Review Recent Advances in Vertically Aligned Nanowires for Photonics Applications Sehui Chang, Gil Ju Lee and Young Min Song * School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; [email protected] (S.C.); [email protected] (G.J.L.) * Correspondence: [email protected]; Tel.: +82-62-715-2655 Received: 29 June 2020; Accepted: 25 July 2020; Published: 26 July 2020 Abstract: Over the past few decades, nanowires have arisen as a centerpiece in various fields of application from electronics to photonics, and, recently, even in bio-devices. Vertically aligned nanowires are a particularly decent example of commercially manufacturable nanostructures with regard to its packing fraction and matured fabrication techniques, which is promising for mass-production and low fabrication cost. Here, we track recent advances in vertically aligned nanowires focused in the area of photonics applications. Begin with the core optical properties in nanowires, this review mainly highlights the photonics applications such as light-emitting diodes, lasers, spectral filters, structural coloration and artificial retina using vertically aligned nanowires with the essential fabrication methods based on top-down and bottom-up approaches. Finally, the remaining challenges will be briefly discussed to provide future directions. Keywords: nanowires; photonics; LED; nanowire laser; spectral filter; coloration; artificial retina 1. Introduction In recent years, nanowires originated from a wide variety of materials have arisen as a centerpiece for optoelectronic applications such as sensors, solar cells, optical filters, displays, light-emitting diodes and photodetectors [1–12]. Tractable but outstanding, optical features of nanowire arrays achieved by modulating its physical properties (e.g., diameter, height and pitch) allow to confine and absorb the incident light considerably, albeit its compact configuration.
    [Show full text]
  • Fluidized Bed Chemical Vapor Deposition of Zirconium Nitride Films
    INL/JOU-17-42260-Revision-0 Fluidized Bed Chemical Vapor Deposition of Zirconium Nitride Films Dennis D. Keiser, Jr, Delia Perez-Nunez, Sean M. McDeavitt, Marie Y. Arrieta July 2017 The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance INL/JOU-17-42260-Revision-0 Fluidized Bed Chemical Vapor Deposition of Zirconium Nitride Films Dennis D. Keiser, Jr, Delia Perez-Nunez, Sean M. McDeavitt, Marie Y. Arrieta July 2017 Idaho National Laboratory Idaho Falls, Idaho 83415 http://www.inl.gov Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 Fluidized Bed Chemical Vapor Deposition of Zirconium Nitride Films a b c c Marie Y. Arrieta, Dennis D. Keiser Jr., Delia Perez-Nunez, * and Sean M. McDeavitt a Sandia National Laboratories, Albuquerque, New Mexico 87185 b Idaho National Laboratory, Idaho Falls, Idaho 83401 c Texas A&M University, Department of Nuclear Engineering, College Station, Texas 77840 Received November 11, 2016 Accepted for Publication May 23, 2017 Abstract — – A fluidized bed chemical vapor deposition (FB-CVD) process was designed and established in a two-part experiment to produce zirconium nitride barrier coatings on uranium-molybdenum particles for a reduced enrichment dispersion fuel concept. A hot-wall, inverted fluidized bed reaction vessel was developed for this process, and coatings were produced from thermal decomposition of the metallo-organic precursor tetrakis(dimethylamino)zirconium (TDMAZ) in high- purity argon gas. Experiments were executed at atmospheric pressure and low substrate temperatures (i.e., 500 to 550 K). Deposited coatings were characterized using scanning electron microscopy, energy dispersive spectroscopy, and wavelength dis-persive spectroscopy.
    [Show full text]
  • Designing a Nanoelectronic Circuit to Control a Millimeter-Scale Walking Robot
    Designing a Nanoelectronic Circuit to Control a Millimeter-scale Walking Robot Alexander J. Gates November 2004 MP 04W0000312 McLean, Virginia Designing a Nanoelectronic Circuit to Control a Millimeter-scale Walking Robot Alexander J. Gates November 2004 MP 04W0000312 MITRE Nanosystems Group e-mail: [email protected] WWW: http://www.mitre.org/tech/nanotech Sponsor MITRE MSR Program Project No. 51MSR89G Dept. W809 Approved for public release; distribution unlimited. Copyright © 2004 by The MITRE Corporation. All rights reserved. Gates, Alexander Abstract A novel nanoelectronic digital logic circuit was designed to control a millimeter-scale walking robot using a nanowire circuit architecture. This nanoelectronic circuit has a number of benefits, including extremely small size and relatively low power consumption. These make it ideal for controlling microelectromechnical systems (MEMS), such as a millirobot. Simulations were performed using a SPICE circuit simulator, and unique device models were constructed in this research to assess the function and integrity of the nanoelectronic circuit’s output. It was determined that the output signals predicted for the nanocircuit by these simulations meet the requirements of the design, although there was a minor signal stability issue. A proposal is made to ameliorate this potential problem. Based on this proposal and the results of the simulations, the nanoelectronic circuit designed in this research could be used to begin to address the broader issue of further miniaturizing circuit-micromachine systems. i Gates, Alexander I. Introduction The purpose of this paper is to describe the novel nanoelectronic digital logic circuit shown in Figure 1, which has been designed by this author to control a millimeter-scale walking robot.
    [Show full text]
  • Formation of Silicon Nanowires by Chemical Vapour Deposition Technique Using Indium Catalyst
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Malaya Students Repository FORMATION OF SILICON NANOWIRES BY CHEMICAL VAPOUR DEPOSITION TECHNIQUE USING INDIUM CATALYST CHONG SU KONG DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF PHYSICS FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2012 UNIVERSITI MALAYA ORIGINAL LITERARY WORK DECLARATION Name of Candidate: CHONG SU KONG (I.C/Passport No: 850515-01-6097) Registration/Matric No: SGR090004 Name of Degree: MASTER OF SCIENCE (DISSERTATION) Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”): FORMATION OF SILICON NANOWIRES BY CHEMICAL VAPOUR DEPOSITION TECHNIQUE USING INDIUM CATALYST Field of Study: NANOTECHNOLOGY I do solemnly and sincerely declare that: (1) I am the sole author/writer of this Work; (2) This Work is original; (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work; (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work; (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained; (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.
    [Show full text]
  • Technical Glasses
    Technical Glasses Physical and Technical Properties 2 SCHOTT is an international technology group with 130 years of ex­ perience in the areas of specialty glasses and materials and advanced technologies. With our high­quality products and intelligent solutions, we contribute to our customers’ success and make SCHOTT part of everyone’s life. For 130 years, SCHOTT has been shaping the future of glass technol­ ogy. The Otto Schott Research Center in Mainz is one of the world’s leading glass research institutions. With our development center in Duryea, Pennsylvania (USA), and technical support centers in Asia, North America and Europe, we are present in close proximity to our customers around the globe. 3 Foreword Apart from its application in optics, glass as a technical ma­ SCHOTT Technical Glasses offers pertinent information in terial has exerted a formative influence on the development concise form. It contains general information for the deter­ of important technological fields such as chemistry, pharma­ mination and evaluation of important glass properties and ceutics, automotive, optics, optoelectronics and information also informs about specific chemical and physical character­ technology. Traditional areas of technical application for istics and possible applications of the commercial technical glass, such as laboratory apparatuses, flat panel displays and glasses produced by SCHOTT. With this brochure, we hope light sources with their various requirements on chemical­ to assist scientists, engineers, and designers in making the physical properties, have led to the development of a great appropriate choice and make optimum use of SCHOTT variety of special glass types. Through new fields of appli­ products. cation, particularly in optoelectronics, this variety of glass types and their modes of application have been continually Users should keep in mind that the curves or sets of curves enhanced, and new forming processes have been devel­ shown in the diagrams are not based on precision measure­ oped.
    [Show full text]
  • A Simulation Study of a Gate-All-Around Nanowire Transistor with a Core–Insulator
    micromachines Article A Simulation Study of a Gate-All-Around Nanowire Transistor with a Core–Insulator Yannan Zhang † , Ke Han † and and Jiawei Li * School of Electronic Engineering, Beijing University of Posts and Telecommunications, Haidian district, Beijing 100876, China; [email protected] (Y.Z.); [email protected] (K.H.) * Correspondence: [email protected] † These authors contributed equally to this work. Received: 27 December 2019; Accepted: 18 February 2020; Published: 21 February 2020 Abstract: Ultra-low power and high-performance logical devices have been the driving force for the continued scaling of complementary metal oxide semiconductor field effect transistors which greatly enable electronic devices such as smart phones to be energy-efficient and portable. In the pursuit of smaller and faster devices, researchers and scientists have worked out a number of ways to further lower the leaking current of MOSFETs (Metal oxide semiconductor field effect transistor). Nanowire structure is now regarded as a promising candidate of future generation of logical devices due to its ultra-low off-state leaking current compares to FinFET. However, the potential of nanowire in terms of off-state current has not been fully discovered. In this article, a novel Core–Insulator Gate-All-Around (CIGAA) nanowire has been proposed, investigated, and simulated comprehensively and systematically based on 3D numerical simulation. Comparisons are carried out between GAA and CIGAA. The new CIGAA structure exhibits low off-state current compares to that of GAA, making it a suitable candidate of future low-power and energy-efficient devices. Keywords: CMOS; core-insulator; gate-all-around; field effect transistor; GAA; nanowire 1.
    [Show full text]
  • Effect of Size and Shape on Electrochemical Performance of Nano-Silicon-Based Lithium Battery
    nanomaterials Article Effect of Size and Shape on Electrochemical Performance of Nano-Silicon-Based Lithium Battery Caroline Keller 1,2, Antoine Desrues 3, Saravanan Karuppiah 1,2, Eléa Martin 1, John P. Alper 2,3, Florent Boismain 3, Claire Villevieille 1 , Nathalie Herlin-Boime 3,Cédric Haon 2 and Pascale Chenevier 1,* 1 CEA, CNRS, IRIG, SYMMES, STEP, University Grenoble Alpes, 38000 Grenoble, France; [email protected] (C.K.); [email protected] (S.K.); [email protected] (E.M.); [email protected] (C.V.) 2 CEA, LITEN, DEHT, University Grenoble Alpes, 38000 Grenoble, France; [email protected] (J.P.A.); [email protected] (C.H.) 3 CEA, CNRS, IRAMIS, NIMBE, LEDNA, University Paris Saclay, 91191 Gif-sur-Yvette, France; [email protected] (A.D.); fl[email protected] (F.B.); [email protected] (N.H.-B.) * Correspondence: [email protected] Abstract: Silicon is a promising material for high-energy anode materials for the next generation of lithium-ion batteries. The gain in specific capacity depends highly on the quality of the Si dispersion and on the size and shape of the nano-silicon. The aim of this study is to investigate the impact of the size/shape of Si on the electrochemical performance of conventional Li-ion batteries. The scalable synthesis processes of both nanoparticles and nanowires in the 10–100 nm size range are discussed. In cycling lithium batteries, the initial specific capacity is significantly higher for nanoparticles than for nanowires. We demonstrate a linear correlation of the first Coulombic efficiency with the specific area of the Si materials.
    [Show full text]
  • The Correlation Between Reduced Glass Transition Temperature and Glass Forming Ability of Bulk Metallic Glasses Z.P
    http://www.paper.edu.cn Scripta mater. 42 (2000) 667–673 www.elsevier.com/locate/scriptamat THE CORRELATION BETWEEN REDUCED GLASS TRANSITION TEMPERATURE AND GLASS FORMING ABILITY OF BULK METALLIC GLASSES Z.P. Lu, H. Tan, Y. Li* and S.C. Ngϩ Department of Materials Science, National University of Singapore, Singapore 119260, People’s Republic of China ϩDepartment of Physics, National University of Singapore, Singapore 119260, People’s Republic of China (Received October 4, 1999) (Accepted November 9, 1999) Keywords: Differential thermal analysis (DTA); Metallic glasses; Melt-spinning; Glass forming ability (GFA) 1. Introduction Based on theoretical work on crystal nucleation in undercooled liquid metals, Turnbull [1] proposed that the glass-forming tendency should increase with the reduced glass transition temperature, Trg, which was defined by Tg/Tl. Here, Tg is the glass transition temperature and Tl is the liquidus temperature. Later work of Uhlmann, Davies and others on the crystal nucleation further identified this dimension- less parameter as a crucial figure of merit in determining glass forming ability (GFA) [2–4]. There are many reported values of Trg in the literature [5], but unfortunately most of them were calculated using Tg/Tm (Tm: onset melting point) with minimal report of Tg/Tl [6,7]. Tg/Tm and Tg/Tl were used for evaluation of Trg interchangeably by most of researchers. Also many used crystallization temperature Tx instead of Tg, since for most of the metallic glass, these two were regarded as the same [3]. In this study, onset temperature (solidus), Tm and offset temperature (liquidus) Tl of melting of a series of bulk glass forming alloys based on Zr, La, Mg, Pd and rare-earth elements were measured by studying systematically the melting behaviour of these alloys using DTA or DSC.
    [Show full text]
  • Relationship Between the Liquidus Surface and Structures of Zr–Cu–Al Bulk Amorphous Alloys
    Materials Transactions, Vol. 43, No. 3 (2002) pp. 575 to 579 c 2002 The Japan Institute of Metals Relationship Between the Liquidus Surface and Structures of Zr–Cu–Al Bulk Amorphous Alloys Yoshihiko Yokoyama1, Hiroshi Inoue1, Kenzo Fukaura1 and Akihisa Inoue2 1Faculty of Engineering, Himeji Institute of Technology, Shosha, Himeji 671-2201, Japan 2Institute for Materials Research, Tohoku University, Katahira, Aobaku, Sendai 980-8577, Japan By using a Al2O3 cell coated with Si3N4, the melting point (Tm) of the cast bulk amorphous samples were measured on DTA curves cooled from the molten state. Based on the Tm data, the partial liquidus surface of Zr–Cu–Al ternary alloys was determined. A ternary eutectic point is located around Zr50Cu40Al10, and low melting temperatures of less than 1273 K were obtained in a wide compositional area of 40– 70 at%Zr, 30–60 at% Cu and 0–10 at%Al. Bulk amorphous alloys in Zr–Cu–Al ternary system were produced by an arc-casting method and the highest tensile strength of 2000 MPa was observed in Zr50Cu40Al10. (Received November 14, 2001; Accepted January 28, 2002) Keywords: liquidus surface, isothermal section, zirconium-copper-aluminum alloy system, ternary eutectic point, bulk amorphous alloy, mechanical properties 1. Introduction isothermal section and to examine relation between liquidus surface and primary crystallized phases of Zr–Cu–Al bulk The glass-forming ability of Zr-based bulk amorphous al- amorphous alloys. Furthermore, based on the liquidus sur- loys can be evaluated by the wide temperature range of super- face and isothermal sections, Zr–Cu–Al bulk amorphous al- cooled liquid region1) before crystallization because all bulk loys were prepared by an arc-casting method and mechanical amorphous alloys have been obtained in the alloy composi- properties was examined.
    [Show full text]