Coleoptera, Chrysomelidae) of European Russia and Some General Tendencies of Leaf Beetle Invasions

Total Page:16

File Type:pdf, Size:1020Kb

Coleoptera, Chrysomelidae) of European Russia and Some General Tendencies of Leaf Beetle Invasions RESEARCH ARTICLE Alien leaf beetles (Coleoptera, Chrysomelidae) of European Russia and some general tendencies of leaf beetle invasions Andrzej O. Bieńkowski, Marina J. Orlova-Bienkowskaja* A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Invasions of leaf beetles can cause tremendous economic consequences because some of these insects become major pests in invaded territories. We present the first inventory of alien Chrysomelidae of European Russia that appeared in the region in the 20th and 21st centuries (9 species) with analysis of the history of their invasions and detailed maps of dis- OPEN ACCESS tribution. This case study revealed some general tendencies of invasions of leaf beetles: (1) Citation: Bieńkowski AO, Orlova-Bienkowskaja MJ Recently, a dramatic increase in the rate of Chrysomelidae invasions is observed, which (2018) Alien leaf beetles (Coleoptera, reflects the increase in international trade of living plants; (2) Alien leaf beetles can spread Chrysomelidae) of European Russia and some quickly, occupying almost all of Europe within several decades; (3) When the range of some general tendencies of leaf beetle invasions. PLoS ONE 13(9): e0203561. https://doi.org/10.1371/ leaf beetle species is quickly expanding, or when the species has been recorded established journal.pone.0203561 somewhere outside the native range, this species should be regarded as a potential invader Editor: Yulin Gao, Chinese Academy of Agricultural worldwide. and (4) Alien leaf beetles usually occur on alien or cultivated plants, but some Sciences Institute of Plant Protection, CHINA become naturalized in native communities. The specific information was the following. Two Received: February 9, 2018 species native to the Mediterranean region, Chrysolina americana (feeds on Rosmarinus and Lavandula) and Leptomona erythrocephala (feeds on Lotus corniculatus) were Accepted: August 22, 2018 recorded in European Russia for the first time. A polyphagous pest of floriculture Lupero- Published: September 7, 2018 morpha xanthodera native to China and Korea and a pest of soybeans Medythia nigrobili- Copyright: © 2018 Bieńkowski, Orlova- neata native to east Asia have been in the region since 2016. A pest of tobacco Epitrix Bienkowskaja. This is an open access article hirtipennis native to North America has occurred since 2011. A pest of corn Diabrotica virgi- distributed under the terms of the Creative Commons Attribution License, which permits fera was intercepted at the border of Russia in 2011 but has not established. Three alien unrestricted use, distribution, and reproduction in species have been in the region since the 20th century: Zygogramma suturalis introduced any medium, provided the original author and from North America for control of Ambrosia, Phyllotreta reitteri native to Afghanistan and source are credited. Tajikistan and feeding on Lepidium latifolium, and the Colorado potato beetle Leptinotarsa Data Availability Statement: All relevant data are decemlineata. within the paper and its Supporting Information files. Funding: The work of MOB and AB was supported by the Russian Science Foundation (http://rscf.ru/ en) grant 16-14-10031. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Introduction Competing interests: The authors have declared Major gaps in knowledge occur in regional alien floras and faunas, and data availability varies that no competing interests exist. among regions [1]. In particular, alien insects of European Russia are poorly studied. Most of PLOS ONE | https://doi.org/10.1371/journal.pone.0203561 September 7, 2018 1 / 23 Alien leaf beetles (Coleoptera, Chrysomelidae) of European Russia the information is published in local sources and remains unknown to a wider audience because the information is not included in international databases. We present the first inven- tory of alien leaf beetles of this territory. Leaf beetles (Chrysomelidae (except Bruchinae), Megalopididae and Orsodacnidae) are a large group of phytophagous beetles (more than 36 000 species worldwide, with approximately 600 in European Russia) [2, 3]. Negative economic impact of invasions of these insects can be significant, because some of them, e.g., Leptinotarsa decemlineata, Diabrotica virgifera and Epi- trix papa, are major pests of various crops [4]. Despite the impact, invasions of leaf beetles are poorly studied [5]. Before 2010, only 11 species alien to Europe had been recorded [6], and the information about invasions of leaf beetles to European Russia was restricted to Leptinotarsa decemlineata and Zygogramma suturalis [7±9]. Four alien species were first recorded in European Russia in 2011±2016: Diabrotica virgi- fera, Epitrix hirtipennis, Luperomorpha xanthodera and Medythia nigrobilineata [10±13]. Anal- ysis of the ecology and dynamics of ranges of Chrysolina eurina (Frivaldszky, 1883) (Chrysomelinae) and Lilioceris lilii (Scopoli, 1763) (Criocerinae) reveals that they could repre- sent archeoinvaders, i.e., alien species established in European Russia before the 20th century [14, 15]. Here, we present the first records of two alien species new to European Russia, Lepto- mona erythrocephala and Chrysolina americana, and a review of all other leaf beetles alien to this region. For each species, a database of records and a map of geographical distribution were compiled, and the following information was provided: data on host plants and other fea- tures of biology, description of native range, invasion history, possible vectors of dispersal and economic impact of establishment. This article is a part of the project "Alien beetles of Euro- pean Russia." Materials and methods Distribution of alien species was studied based on collecting by the authors in European Russia in 1988±2018 and examination of specimens from collections of ZIN (Zoological Institute of Russian Academy of Sciences, St. Petersburg, Russia), ZMMU (Zoological Museum of Mos- cow State University, Moscow, Russia), FNMS (Senckenberg Naturmuseum, Frankfurt am Main, Germany), HNHM (Hungarian Natural History Museum, Budapest, Hungary), MTD (Museum fuÈr Tierkunde, Dresden, Germany), NHMW (Naturhistorisches Museum, Wien, Austria), NMP (National Museum in Prague, Prague, Czech Republic), VNIIKR (Russian Plant Quarantine Center, Bykovo, Russia), BSU (Belgorod State University, Belgorod, Russia), OSU (Orel State University, Orel, Russia), BNR (Belogorie Nature Reserve, Borisovka, Russia), and 17 private collections in Russia: AB (A.O. Bieńkowski, Zelenograd), AK (A.G. Koval, St. Petersburg), AP (A.I. Prikhodko, Zelenograd), AR (A.B. Ruchin, Saransk), AU (A.S. Ukrainsky, Moscow), EI (E.V. Iljina, Makhachkala), GK (G.A. Korostov, Elista), MD (M.M. Dolgin, Syktyvkar), NN (N.E. Nikolaeva, Tver), NO (N.V. Okhrimenko, Krasnodar), PP (P.N. Petrov, Moscow), PR (P.V. Romantsov, St. Petersburg), RI (R.N. Ishin, Tambov), SM (S.A. Mosyakin, Simferopol), TM (T.A. Mogilevich, Zelenograd), VF (V.I. Filippov, Sochi), and YK (Y.N. Kovalenko, Moscow). Additionally, data from the Global Biodiversity Information Facil- ity and 82 literature sources were used. We used the criteria of alien status and terminology used in invasion biology defined by Richardson et al. [16] and Blackburn et al. [17]. The maps of distribution of species were prepared using the program DIVA-GIS (http://diva-gis.org/ download) [18]. These maps were based on GADM maps under a CC BY license, with permis- sion from Robert Hijmans, owner of GADM (original copyright 2001). In this study, we adhered to the system adopted in the Catalogue of Palaearctic Coleoptera [19±21]. We studied invasions of leaf beetles only in the narrow sense of the word, i.e., all PLOS ONE | https://doi.org/10.1371/journal.pone.0203561 September 7, 2018 2 / 23 Alien leaf beetles (Coleoptera, Chrysomelidae) of European Russia subfamilies of Chrysomelidae, except seed beetles (Bruchinae), because seed beetles are very different from other Chrysomelidae in biology and ecology and have different vectors and trends of invasions [6]. Megalopididae and Orsodacnidae are also leaf beetles, but we did not consider these families because no alien species of these groups occur in European Russia. The species below are presented in reverse chronological order of their first records in European Russia. 2017 ±Leptomona erythrocephala (Olivier, 1790) (Galerucinae) Native range. Leptomona erythrocephala is native to mainland Spain, Mallorca, Portugal, south France, Sicily, Algeria and Morocco (Fig 1) [20, 22±24]. Junior synonym Monolepta ver- ticalis Reitter, 1886 was described from Portugal [22]. Leptomona erythrocephala was also recorded from northern Italy, but this record is supposedly questionable [23]. Invasion history. This species was not previously recorded outside its native range. Records in European Russia. In June 2017 and May 2018, we found L. erythrocephala in the northwest Caucasus, on the Black Sea coast. Ten specimens were sweep-netted in ruderal plants at the Imereti Resort, Adler District, Sochi (43Ê240 N, 39Ê580 E), and approximately 50 specimens were found on the ruderal plant Lotus corniculatus in Razdolnoe Vill., on the flood- plain of the Bzugu River, Khosta District, Sochi (43Ê360 N, 39Ê460 E). Taxonomy and identification. The genus Leptomona BechyneÂ, 1958 was distinguished by J. Bechyne from the large genus Monolepta Chevrolat,
Recommended publications
  • Morphological Systematics of the Nightshade Flea Beetles Epitrix
    Clemson University TigerPrints All Theses Theses 8-2016 Morphological Systematics of the Nightshade Flea Beetles Epitrix Foudras and Acallepitrix Bechyné (Coleoptera: Chrysomelidae: Galerucinae: Alticini) in America North of Mexico Anthony Martin Deczynski Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Deczynski, Anthony Martin, "Morphological Systematics of the Nightshade Flea Beetles Epitrix Foudras and Acallepitrix Bechyné (Coleoptera: Chrysomelidae: Galerucinae: Alticini) in America North of Mexico" (2016). All Theses. 2479. https://tigerprints.clemson.edu/all_theses/2479 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. MORPHOLOGICAL SYSTEMATICS OF THE NIGHTSHADE FLEA BEETLES EPITRIX FOUDRAS AND ACALLEPITRIX BECHYNÉ (COLEOPTERA: CHRYSOMELIDAE: GALERUCINAE: ALTICINI) IN AMERICA NORTH OF MEXICO A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Entomology by Anthony Martin Deczynski August 2016 Accepted by: Dr. Michael Caterino, Committee Chair Dr. Peter Adler Dr. J. Antonio Baeza ABSTRACT The flea beetle genera Epitrix and Acallepitrix are revised for America North of Mexico, building on a prior preliminary revision of the genus Epitrix by the author (Deczynski 2014). Four new species are described: Epitrix cuprea sp. nov., E. rileyi sp. nov., E. latifrons sp. nov., and E. vasinoda sp. nov., bringing the North American Epitrix fauna to a total of 26 species. A key is provided to adults of all species.
    [Show full text]
  • NEW LATE EOCENE CHRYSOMELIDAE (INSECTA: COLEOPTERA) from BALTIC, ROVNO and DANISH AMBERS by KONSTANTIN S
    [Papers in Palaeontology, Vol. 2, Part 1, 2016, pp. 117–137] NEW LATE EOCENE CHRYSOMELIDAE (INSECTA: COLEOPTERA) FROM BALTIC, ROVNO AND DANISH AMBERS by KONSTANTIN S. NADEIN1, EVGENY E. PERKOVSKY1 and ALEXEY G. MOSEYKO2 1Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, B. Khmelnitsky 15, Kyiv, 01601, Ukraine; e-mails: [email protected], [email protected] 2Laboratory of Insect Systematics, Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, Saint-Petersburg, 199034, Russia; e-mail: [email protected] Typescript received 17 June 2015; accepted in revised form 25 September 2015 Abstract: New fossil taxa of Chrysomelidae are represented by four species of extant ‘Holarctic’ (temper- described: from Baltic amber, Succinispa stainesi Nadein ate) genera in contrast to one species of a Recent ‘tropi- gen. et. sp. nov. (Cassidinae: Oposispini); from Danish cal’ genus. Faunal composition of leaf beetles of late (Scandinavian) amber, Psyllototus viking Nadein sp. nov. Eocene succinites supports the opinion of Archibald and (Galerucinae: Alticini), Calomicroides danicus Nadein Farrell (2003) that arthropods with different climatic pref- gen. et sp. nov. (Galerucinae: Galerucini: Luperina), erences preserved in Baltic amber were able to co-exist Paleomolpus hirtus Nadein gen. et sp. nov. (Eumolpinae: under an extinct equable climate with temperate summers Eumolpini); from Rovno amber (Ukraine, Klesov), Archeal- and mild winters. tica convexa Nadein gen. et sp. nov. (Galerucinae: Alticini), Taphioporus rovnoi Moseyko and Perkovsky sp. nov. Key words: Chrysomelidae, Rovno amber, Danish amber, (Eumolpinae: Euryopini). Leaf beetles in succinites are Baltic amber, palaeoclimate. T HE family Chrysomelidae (leaf beetles) is one of the Baltic amber collection of the Palaeontological Institute of most species-rich groups of phytophagous Coleoptera and the Russian Academy of Sciences (PIN).
    [Show full text]
  • Beetle Appreciation Diversity and Classification of Common Beetle Families Christopher E
    Beetle Appreciation Diversity and Classification of Common Beetle Families Christopher E. Carlton Louisiana State Arthropod Museum Coleoptera Families Everyone Should Know (Checklist) Suborder Adephaga Suborder Polyphaga, cont. •Carabidae Superfamily Scarabaeoidea •Dytiscidae •Lucanidae •Gyrinidae •Passalidae Suborder Polyphaga •Scarabaeidae Superfamily Staphylinoidea Superfamily Buprestoidea •Ptiliidae •Buprestidae •Silphidae Superfamily Byrroidea •Staphylinidae •Heteroceridae Superfamily Hydrophiloidea •Dryopidae •Hydrophilidae •Elmidae •Histeridae Superfamily Elateroidea •Elateridae Coleoptera Families Everyone Should Know (Checklist, cont.) Suborder Polyphaga, cont. Suborder Polyphaga, cont. Superfamily Cantharoidea Superfamily Cucujoidea •Lycidae •Nitidulidae •Cantharidae •Silvanidae •Lampyridae •Cucujidae Superfamily Bostrichoidea •Erotylidae •Dermestidae •Coccinellidae Bostrichidae Superfamily Tenebrionoidea •Anobiidae •Tenebrionidae Superfamily Cleroidea •Mordellidae •Cleridae •Meloidae •Anthicidae Coleoptera Families Everyone Should Know (Checklist, cont.) Suborder Polyphaga, cont. Superfamily Chrysomeloidea •Chrysomelidae •Cerambycidae Superfamily Curculionoidea •Brentidae •Curculionidae Total: 35 families of 131 in the U.S. Suborder Adephaga Family Carabidae “Ground and Tiger Beetles” Terrestrial predators or herbivores (few). 2600 N. A. spp. Suborder Adephaga Family Dytiscidae “Predacious diving beetles” Adults and larvae aquatic predators. 500 N. A. spp. Suborder Adephaga Family Gyrindae “Whirligig beetles” Aquatic, on water
    [Show full text]
  • An Annotated Checklist of Wisconsin Handsome Fungus Beetles (Coleoptera: Endomychidae)
    The Great Lakes Entomologist Volume 40 Numbers 3 & 4 - Fall/Winter 2007 Numbers 3 & Article 9 4 - Fall/Winter 2007 October 2007 An Annotated Checklist of Wisconsin Handsome Fungus Beetles (Coleoptera: Endomychidae) Michele B. Price University of Wisconsin Daniel K. Young University of Wisconsin Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Price, Michele B. and Young, Daniel K. 2007. "An Annotated Checklist of Wisconsin Handsome Fungus Beetles (Coleoptera: Endomychidae)," The Great Lakes Entomologist, vol 40 (2) Available at: https://scholar.valpo.edu/tgle/vol40/iss2/9 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Price and Young: An Annotated Checklist of Wisconsin Handsome Fungus Beetles (Cole 2007 THE GREAT LAKES ENTOMOLOGIST 177 AN Annotated Checklist of Wisconsin Handsome Fungus Beetles (Coleoptera: Endomychidae) Michele B. Price1 and Daniel K. Young1 ABSTRACT The first comprehensive survey of Wisconsin Endomychidae was initiated in 1998. Throughout Wisconsin sampling sites were selected based on habitat type and sampling history. Wisconsin endomychids were hand collected from fungi and under tree bark; successful trapping methods included cantharidin- baited pitfall traps, flight intercept traps, and Lindgren funnel traps. Examina- tion of literature records, museum and private collections, and field research yielded 10 species, three of which are new state records. Two dubious records, Epipocus unicolor Horn and Stenotarsus hispidus (Herbst), could not be con- firmed.
    [Show full text]
  • Green-Tree Retention and Controlled Burning in Restoration and Conservation of Beetle Diversity in Boreal Forests
    Dissertationes Forestales 21 Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Esko Hyvärinen Faculty of Forestry University of Joensuu Academic dissertation To be presented, with the permission of the Faculty of Forestry of the University of Joensuu, for public criticism in auditorium C2 of the University of Joensuu, Yliopistonkatu 4, Joensuu, on 9th June 2006, at 12 o’clock noon. 2 Title: Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Author: Esko Hyvärinen Dissertationes Forestales 21 Supervisors: Prof. Jari Kouki, Faculty of Forestry, University of Joensuu, Finland Docent Petri Martikainen, Faculty of Forestry, University of Joensuu, Finland Pre-examiners: Docent Jyrki Muona, Finnish Museum of Natural History, Zoological Museum, University of Helsinki, Helsinki, Finland Docent Tomas Roslin, Department of Biological and Environmental Sciences, Division of Population Biology, University of Helsinki, Helsinki, Finland Opponent: Prof. Bengt Gunnar Jonsson, Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden ISSN 1795-7389 ISBN-13: 978-951-651-130-9 (PDF) ISBN-10: 951-651-130-9 (PDF) Paper copy printed: Joensuun yliopistopaino, 2006 Publishers: The Finnish Society of Forest Science Finnish Forest Research Institute Faculty of Agriculture and Forestry of the University of Helsinki Faculty of Forestry of the University of Joensuu Editorial Office: The Finnish Society of Forest Science Unioninkatu 40A, 00170 Helsinki, Finland http://www.metla.fi/dissertationes 3 Hyvärinen, Esko 2006. Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests. University of Joensuu, Faculty of Forestry. ABSTRACT The main aim of this thesis was to demonstrate the effects of green-tree retention and controlled burning on beetles (Coleoptera) in order to provide information applicable to the restoration and conservation of beetle species diversity in boreal forests.
    [Show full text]
  • Integrated Pest Management: Current and Future Strategies
    Integrated Pest Management: Current and Future Strategies Council for Agricultural Science and Technology, Ames, Iowa, USA Printed in the United States of America Cover design by Lynn Ekblad, Different Angles, Ames, Iowa Graphics and layout by Richard Beachler, Instructional Technology Center, Iowa State University, Ames ISBN 1-887383-23-9 ISSN 0194-4088 06 05 04 03 4 3 2 1 Library of Congress Cataloging–in–Publication Data Integrated Pest Management: Current and Future Strategies. p. cm. -- (Task force report, ISSN 0194-4088 ; no. 140) Includes bibliographical references and index. ISBN 1-887383-23-9 (alk. paper) 1. Pests--Integrated control. I. Council for Agricultural Science and Technology. II. Series: Task force report (Council for Agricultural Science and Technology) ; no. 140. SB950.I4573 2003 632'.9--dc21 2003006389 Task Force Report No. 140 June 2003 Council for Agricultural Science and Technology Ames, Iowa, USA Task Force Members Kenneth R. Barker (Chair), Department of Plant Pathology, North Carolina State University, Raleigh Esther Day, American Farmland Trust, DeKalb, Illinois Timothy J. Gibb, Department of Entomology, Purdue University, West Lafayette, Indiana Maud A. Hinchee, ArborGen, Summerville, South Carolina Nancy C. Hinkle, Department of Entomology, University of Georgia, Athens Barry J. Jacobsen, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman James Knight, Department of Animal and Range Science, Montana State University, Bozeman Kenneth A. Langeland, Department of Agronomy, University of Florida, Institute of Food and Agricultural Sciences, Gainesville Evan Nebeker, Department of Entomology and Plant Pathology, Mississippi State University, Mississippi State David A. Rosenberger, Plant Pathology Department, Cornell University–Hudson Valley Laboratory, High- land, New York Donald P.
    [Show full text]
  • Flea Beetles (Order: Coleoptera, Family: Chrysomelidae/Alticinae) Tobacco (Epitrix Hirtipennis (Melsheimer)) Southern Tobacco (
    Flea beetles (Order: Coleoptera, Family: Chrysomelidae/Alticinae) Tobacco (Epitrix hirtipennis (Melsheimer)) Southern tobacco (Epitrix fasciata (Blatchley)) Pale striped (Systena blanda (Melsheimer)) Description: Adult: The tobacco and southern tobacco flea beetle adults are small (1.4- 2.2 mm in length) and reddish, yellow brown, with a brown patch across the width of the elytra. The southern tobacco adult is slightly smaller and wider than the tobacco flea beetle. The pale striped flea beetle adult is larger (3.0- 4.3 mm long) and has a pair of pale yellow stripes lengthwise down the back, one stripe on each elytron. Immature stages: All of the above species have three larval instars that are whitish with darker heads, and all feed on fine roots near the soil surface or occasionally tunnel into larger roots. The tobacco flea beetle larvae range Tobacco flea beetle adult. from 1 mm after hatching to 4.2 mm at maturity, while the pale stripe larvae range from 1 to 11 mm. Biology: Life cycle: Tobacco flea beetle females can lay up to 200 eggs which hatch in 6- 8 days. The larval development typically lasts from 16-20 days under warm conditions. The last instar larva forms a small cell in the soil where it pupates, and the adult emerges 4-5 days later for a total of 26-33 days. The pale striped flea beetle requires a longer time to develop from egg to adult, 28-54 days total. Seasonal distribution: There are 3-4 generations of the tobacco flea beetles per year. High numbers have been observed in south Georgia in late June in Solanaceous crop transplants, and we think that this is likely a second generation.
    [Show full text]
  • Coleoptera: Cucujoidea) Matthew Immelg Louisiana State University and Agricultural and Mechanical College, [email protected]
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2011 Revision and Reclassification of the Genera of Phalacridae (Coleoptera: Cucujoidea) Matthew immelG Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Entomology Commons Recommended Citation Gimmel, Matthew, "Revision and Reclassification of the Genera of Phalacridae (Coleoptera: Cucujoidea)" (2011). LSU Doctoral Dissertations. 2857. https://digitalcommons.lsu.edu/gradschool_dissertations/2857 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. REVISION AND RECLASSIFICATION OF THE GENERA OF PHALACRIDAE (COLEOPTERA: CUCUJOIDEA) A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Entomology by Matthew Gimmel B.S., Oklahoma State University, 2005 August 2011 ACKNOWLEDGMENTS I would like to thank the following individuals for accommodating and assisting me at their respective institutions: Roger Booth and Max Barclay (BMNH), Azadeh Taghavian (MNHN), Phil Perkins (MCZ), Warren Steiner (USNM), Joe McHugh (UGCA), Ed Riley (TAMU), Mike Thomas and Paul Skelley (FSCA), Mike Ivie (MTEC/MAIC/WIBF), Richard Brown and Terry Schiefer (MEM), Andy Cline (CDFA), Fran Keller and Steve Heydon (UCDC), Cheryl Barr (EMEC), Norm Penny and Jere Schweikert (CAS), Mike Caterino (SBMN), Michael Wall (SDMC), Don Arnold (OSEC), Zack Falin (SEMC), Arwin Provonsha (PURC), Cate Lemann and Adam Slipinski (ANIC), and Harold Labrique (MHNL).
    [Show full text]
  • Subfamily Criocerinae
    Subfamily Criocerinae Checklist From the Checklist of Beetles of the British Isles, 2008 edition, edited by A. G. Duff (available from www.coleopterist.org.uk/checklist.htm). Currently accepted names are written in bold italics, synonyms used by Joy in italics. CRIOCERIS Geoffroy, 1762 asparagi (Linnaeus, 1758) LEMA Fabricius, 1798 cyanella (Linnaeus, 1758) (= puncticollis Curtis, 1830) LILIOCERIS Reitter, 1912 lilii (Scopoli, 1763) OULEMA des Gozis, 1886 erichsoni (Suffrian, 1841) melanopus (Linnaeus, 1758) (= melanopa). obscura (Stephens, 1831) (= lichenis) rufocyanea (Suffrian, 1847) (= melanopa; rufocyanea and melanopus separated later) septentrionis (Weise, 1880) Image Credits The illustrations in this key are reproduced from the Iconographia Coleopterorum Poloniae, with permission kindly granted by Lech Borowiec. © Mike Hackston (2009) Subfamily Criocerinae Key to British genera and species adapted from Joy (1932) by Mike Hackston 1 Elytra green or blue with the sides reddish and with three yellow marks on each elytron which sometimes run together. ........................................ .......... Crioceris asparagi England northwards to Derbyshire on Asparagus officinalis. Length 5-6.5 mm. Elytra more or less uniformly reddish. ....................................... .......... Lilioceris lilii First recorded in 1940 this species has spread rapidly through England and south Wales, reaching central Scotland and Northern Ireland by 2002. It is a pest of Lilium species Elytra uniformly green or blue to bluish black. .....................................................2
    [Show full text]
  • Chrysomela 43.10-8-04
    CHRYSOMELA newsletter Dedicated to information about the Chrysomelidae Report No. 43.2 July 2004 INSIDE THIS ISSUE Fabreries in Fabreland 2- Editor’s Page St. Leon, France 2- In Memoriam—RP 3- In Memoriam—JAW 5- Remembering John Wilcox Statue of 6- Defensive Strategies of two J. H. Fabre Cassidine Larvae. in the garden 7- New Zealand Chrysomelidae of the Fabre 9- Collecting in Sholas Forests Museum, St. 10- Fun With Flea Beetle Feces Leons, France 11- Whither South African Cassidinae Research? 12- Indian Cassidinae Revisited 14- Neochlamisus—Cryptic Speciation? 16- In Memoriam—JGE 16- 17- Fabreries in Fabreland 18- The Duckett Update 18- Chrysomelidists at ESA: 2003 & 2004 Meetings 19- Recent Chrysomelid Literature 21- Email Address List 23- ICE—Phytophaga Symposium 23- Chrysomela Questionnaire See Story page 17 Research Activities and Interests Johan Stenberg (Umeå Univer- Duane McKenna (Harvard Univer- Eduard Petitpierre (Palma de sity, Sweden) Currently working on sity, USA) Currently studying phyloge- Mallorca, Spain) Interested in the cy- coevolutionary interactions between ny, ecological specialization, population togenetics, cytotaxonomy and chromo- the monophagous leaf beetles, Altica structure, and speciation in the genus somal evolution of Palearctic leaf beetles engstroemi and Galerucella tenella, and Cephaloleia. Needs Arescini and especially of chrysomelines. Would like their common host plant Filipendula Cephaloleini in ethanol, especially from to borrow or exchange specimens from ulmaria (meadow sweet) in a Swedish N. Central America and S. America. Western Palearctic areas. Archipelago. Amanda Evans (Harvard University, Maria Lourdes Chamorro-Lacayo Stefano Zoia (Milan, Italy) Inter- USA) Currently working on a phylogeny (University of Minnesota, USA) Cur- ested in Old World Eumolpinae and of Leptinotarsa to study host use evolu- rently a graduate student working on Mediterranean Chrysomelidae (except tion.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • Morphology of the Male Reproductive Tract in the Water Scavenger Beetle Tropisternus Collaris Fabricius, 1775 (Coleoptera: Hydrophilidae)
    Revista Brasileira de Entomologia 65(2):e20210012, 2021 Morphology of the male reproductive tract in the water scavenger beetle Tropisternus collaris Fabricius, 1775 (Coleoptera: Hydrophilidae) Vinícius Albano Araújo1* , Igor Luiz Araújo Munhoz2, José Eduardo Serrão3 1Universidade Federal do Rio de Janeiro, Instituto de Biodiversidade e Sustentabilidade (NUPEM), Macaé, RJ, Brasil. 2Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil. 3Universidade Federal de Viçosa, Departamento de Biologia Geral, Viçosa, MG, Brasil. ARTICLE INFO ABSTRACT Article history: Members of the Hydrophilidae, one of the largest families of aquatic insects, are potential models for the Received 07 February 2021 biomonitoring of freshwater habitats and global climate change. In this study, we describe the morphology of Accepted 19 April 2021 the male reproductive tract in the water scavenger beetle Tropisternus collaris. The reproductive tract in sexually Available online 12 May 2021 mature males comprised a pair of testes, each with at least 30 follicles, vasa efferentia, vasa deferentia, seminal Associate Editor: Marcela Monné vesicles, two pairs of accessory glands (a bean-shaped pair and a tubular pair with a forked end), and an ejaculatory duct. Characters such as the number of testicular follicles and accessory glands, as well as their shape, origin, and type of secretion, differ between Coleoptera taxa and have potential to help elucidate reproductive strategies and Keywords: the evolutionary history of the group. Accessory glands Hydrophilid Polyphaga Reproductive system Introduction Coleoptera is the most diverse group of insects in the current fauna, The evolutionary history of Coleoptera diversity (Lawrence et al., with about 400,000 described species and still thousands of new species 1995; Lawrence, 2016) has been grounded in phylogenies with waiting to be discovered (Slipinski et al., 2011; Kundrata et al., 2019).
    [Show full text]