A Functional Study of Bacterial Orthologues of the Malarial Plastid Gene, Jc/24

Total Page:16

File Type:pdf, Size:1020Kb

A Functional Study of Bacterial Orthologues of the Malarial Plastid Gene, Jc/24 A Functional Study of Bacterial Orthologues of the Malarial Plastid Gene, jc/24 A thesis submitted for the degree of Doctor of Philosophy b y Anna Elizabeth Law Division of Parasitology National Institute for Medical Research ProQuest Number: U642662 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U642662 Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract Malaria parasites have two DNA containing organelles, a mitochondrion and a plastid. Most of the plastid genes are involved in gene expression however there are a number of open reading frames (ORFs) of unknown function. In Plasmodium falciparum, ORF470 is particularly interesting as it is highly conserved with an orthologue {ycf 24) in both algae and bacteria. Some annotations describe ycf 24’s product as an ABC transporter subunit but the level of significance is low. To investigate the function o îycflA , the cyanobacterium Synechocystis, strain PCC6803, was transformed with a disrupted version of the gene and allowed to undergo several rounds of replication before selection with kanamycin. Synechocystis 6803 was chosen as it carries up to 10 copies of its genome per cell, allowing the support and selection of lethal genes. Primary transformants formed “ragged” colonies attributable to the death of homoplasmic transformants (complete “knockouts”). This indicates that loss of the gene is lethal. After selection, transformants were shown to be heteroplasmic (containing both disrupted and wild type y c f 24). Furthermore, heteroplasmic cells plated in the absence of kanamycin resumed WT growth rate and colony morphology indicating that the presence of the disrupted gene was deleterious and/or that the gene product is required in stoichiometric amounts. When the gross morphology of cells fi'om ragged colonies was observed by scanning electron microscopy, a statistically significant accumulation of cells in the last stages of cell division was apparent. This suggests that disruption of y c f 24 leads to a defect in cytokinesis. Upon relaxation of kanamycin selection, the proportion of dividing cells returned to one resembling WT. Attempts were made to knock out the single copy of y c f 24 in E. coli. One approach made use of the temperature sensitive gene replacement vector pK03 that contains genes for chloramphenicol resistance and levansucrase, which is lethal to E. coli in the presence of sucrose. This protocol allowed both positive and negative selection of recombination at the y c f 24 locus. However, no viable knockouts were obtained. Over-expression of y c f 24 in E. coli using the pMAL-c2 vector resulted in moderate filamentation, the fusion protein localizing as a band on either side of the nucleoid, sometimes extending along the membrane to the cell poles. Unlike some other partition mutants, FtsZ ring formation was inhibited in such cells and the first division of nucleoids following induction resulted in their accumulation transverse to the cell’s length rather than longitudinally in the usual way. It is proposed ihdXycflA is an essential prokaryotic gene involved in cell division and/or DNA segregation. Acknowledgements Primarily I would like to thank my supervisor Iain Wilson for providing me with support and direction throughout my course of study. I would also like to thank Conrad Mullineaux at University College London for introducing me to cyanobacteria, and for all his help. For their invaluable advice, instruction and friendship I want to thank all the other members of the lab at NIMR; Barbara Clough, Katherine Ellis, Kaveri Rangachari, Peter Preiser and Don Williamson and also Malcolm Strath for his help with protein purification, for running sequencing gels and for antibody production. In addition, I thank Liz Hirst at NIMR for the electron microscopy work and acknowledge Nick Fisher (UCL) and Elaine Davis (NIMR) for their advice on my E. coli gene knockout studies. For donating the antibiotic resistance genes, as well as his help, I would like to thank Mark Ashby (UCL). Likewise I’d like to thank Daniel Emlyn-Jones (UCL) for the kanamycin resistant Synechocystis strain; Elaine Davis (NIMR) for the KM4104 E. coli strain; and George Church (Harvard University) for the pK03 vector On a more personal note I owe a lot to Pete - 1 could not have done this without him. Finally, I thank my parents for their support and encouragement through thick and thin. Contents Page Abstract 2 Acknowledgements 4 Contents 5 List of Figures 11 List of Tables 15 Abbreviations 16 Chapter 1. Introduction 1.1 Malaria 19 1.1.1 Protozoans and the phylum Apicomplexa 19 1.1.2 sp. and the disease 19 1.1.3 Treatment and eradication of malaria 21 1.1.4 Malaria genome sequencing project 22 1.2 The 35kb extrachromosomal DNA element of malaria 22 1.2.1 Discovery 24 1.2.2 Genetic evidence for a plastid origin 24 1.2.2.1 Plastid or mitochondrial? 24 1.2.2.2 Red or green? 28 1.2.3 Questioning the evolution of apicomplexans 29 1.3 The plastid organelle 30 1.3.1 Discovery 30 1.3.2 Replication and division 35 1.4 Endosymbiosis and beyond: the acquisition and maintenance of a 37 vestigial plastid genome in malaria 1.4.1 The “Mr Gobbler” hypothesis 37 1.4.2 Translocation of plastid-encoded genes 38 1.4.2.1 The fate of “promiscuous” DNA 38 1.4.2.2 What type of genes have been lost to the nucleus and why 40 1.4.2.3 Evidence for translocation to the nucleus in secondary endosymbionts 41 1.4.3 Importation of nuclear-encoded proteins into plastids 42 1.4.3.1 Chloroplast import 43 1.4.3.2 Protein import into the apicomplexan plastid 45 1.5 Function 47 1.5.1 Is the plastid essential? 47 1.5.1.1 Active transcription, translation and the tRNA genes 47 1.5.1.2 Selective retention of genes across diverse genera of apicomplexans 49 1.5.1.3 Sensitivity to antibiotics 49 1.5.2 What might the plastid do? 5 0 1.5.2.1 General functions of plastids 50 1.5.2.2 Fatty acid biosynthesis? 51 1.5.2.3 Amino acid biosynthesis? 52 1.5.2.4 Plastid encoded open reading frames 53 1.6 Open reading frame ORF 470 {ycf24i) 53 1.6.1 Distribution 53 1.6.2 Unusual features of the y c f 24 orthologues 5 5 1.6.3 Function ofyc/'24 56 1.6.3.1 Metabolic role? 56 1.6.3.2 ABC transporter? 57 1.6.4 yc/"16 57 1.6.5 Co-transcription of yc/'24 and ycf 16: the yc/'24 operon 58 1.6.6 «//genes 59 1.6.7 Is y c f 24 an essential plastid gene? 59 1.7 Synechocystis PCC6803 60 1.7.1 Cyanobacteria 60 1.7.2 Natural competence to exogenous DNA 61 1.7.3 Transformation of *Sy«cc//ocy5^/5 PCC6803 61 1.8 Escherichia coli 63 1.8 1 Gene replacement using linear DNA 64 1.8.2 Gene replacement using pK03 65 1.8.2.1 Non-essential gene knockout 65 1.8.2.2 Essential gene knockout 66 1.9 Summary 66 Aims 68 Chapter 2. Materials and methods 2.1 General buffers and solutions 69 2.2 Growth media 69 2.2.1 £. co/z growth medium 69 2.2.2 Synechocystis growth medium 69 2.3 Bacterial strains and growth conditions 70 2.4 Analysis of growth of Synechocystis by colony area 71 2.5 DNA isolation 71 2.5.1 Synechocystis 71 2.5.2 E. coli 71 2.6 Agarose gel electrophoresis 72 2.7 Estimation of DNA concentration 72 2.8 Restriction enzyme digestion of DNA 72 2.9 Primer design 73 2.10 Amplification of DNA by PCR 73 2.11 Isolation of plasmid DNA 74 2.12 Purification of the kanamycin resistance and aadA genes 75 2.13 Cloning into plasmid vectors 75 2.13.1 Purification of insert DNA 75 2.13.2 Ligations 75 2.13.3 Transformation and selection of recombinants 76 2.\2>3.\ Synechocystis VCC6%02> 76 2.13.3.2 E. coli 76 2.13.4 Analysis of recombinants 78 2.14 Sequencing 78 2.1.4.1 Manual DNA sequencing 78 2.1.4.2 Automated DNA sequencing 79 2.15 Southern analysis 79 2.15.1 Southern transfer 79 2.15.2 Template preparation for hybridization 80 2.15.3 Labelling reaction 80 2.15.4 Purification of the radiolabelled probe 80 2.15.5 Pre-hybridization and hybridization to the radiolabelled probe 80 2.15.6 Post-hybridization 80 2.16 Stripping of Southern blots 81 2.17 Copy number analysis of inactivated Synechocystis yc f 24 81 2.18 Transmission electron microscopy 81 2.18.1 Fixation 81 2.18.2 Agarose embedding 81 2.18.3 Refixation and staining 82 2.18.4 Dehydration 82 2.18.5 Further staining 82 2.19 Scanning electron microscopy 82 2.19.1 Fixation 82 2.19.2 Post fixation 83 2.20 DAPI staining 83 2.21 Giemsa staining 83 2.22 Autofluorescence of Synechocystis 83 2.23 Statistical analysis of SEM data- the Chi-square test 84 2.24 Analysis of Synechocystis cell cycle 84 2.25 PAGE 84 2.26 Western blotting 85 2.26.1 Protein transfer to nitrocellulose membrane 85 2.26.2 Probing and developing the membrane 86 2.27 Immunofluorescence 86 2.28 Purification and cleavage of maltose binding protein (MBP) 87 2.29 Purification of polyhistidine-containing recombinant proteins 87 2.30 Over-expression and cleavage of glutathione-S-transferase (GST) 88 fusion protein Chapter 3.
Recommended publications
  • Non-Invasive Surveillance for Plasmodium in Reservoir Macaque
    Siregar et al. Malar J (2015) 14:404 DOI 10.1186/s12936-015-0857-2 METHODOLOGY Open Access Non‑invasive surveillance for Plasmodium in reservoir macaque species Josephine E. Siregar1, Christina L. Faust2*, Lydia S. Murdiyarso1, Lis Rosmanah3, Uus Saepuloh3, Andrew P. Dobson2 and Diah Iskandriati3 Abstract Background: Primates are important reservoirs for human diseases, but their infection status and disease dynamics are difficult to track in the wild. Within the last decade, a macaque malaria, Plasmodium knowlesi, has caused disease in hundreds of humans in Southeast Asia. In order to track cases and understand zoonotic risk, it is imperative to be able to quantify infection status in reservoir macaque species. In this study, protocols for the collection of non-invasive samples and isolation of malaria parasites from naturally infected macaques are optimized. Methods: Paired faecal and blood samples from 60 Macaca fascicularis and four Macaca nemestrina were collected. All animals came from Sumatra or Java and were housed in semi-captive breeding colonies around West Java. DNA was extracted from samples using a modified protocol. Nested polymerase chain reactions (PCR) were run to detect Plasmodium using primers targeting mitochondrial DNA. Sensitivity of screening faecal samples for Plasmodium was compared to other studies using Kruskal Wallis tests and logistic regression models. Results: The best primer set was 96.7 % (95 % confidence intervals (CI): 83.3–99.4 %) sensitive for detecting Plasmo- dium in faecal samples of naturally infected macaques (n 30). This is the first study to produce definitive estimates of Plasmodium sensitivity and specificity in faecal samples= from naturally infected hosts.
    [Show full text]
  • Plasmodium Vivax in Vitro Continuous Culture: the Spoke in the Wheel
    Bermúdez et al. Malar J (2018) 17:301 https://doi.org/10.1186/s12936-018-2456-5 Malaria Journal REVIEW Open Access Plasmodium vivax in vitro continuous culture: the spoke in the wheel Maritza Bermúdez1, Darwin Andrés Moreno‑Pérez2,3, Gabriela Arévalo‑Pinzón1, Hernando Curtidor1,4 and Manuel Alfonso Patarroyo2,4* Abstract Understanding the life cycle of Plasmodium vivax is fundamental for developing strategies aimed at controlling and eliminating this parasitic species. Although advances in omic sciences and high-throughput techniques in recent years have enabled the identifcation and characterization of proteins which might be participating in P. vivax inva‑ sion of target cells, exclusive parasite tropism for invading reticulocytes has become the main obstacle in maintaining a continuous culture for this species. Such advance that would help in defning each parasite protein’s function in the complex process of P. vivax invasion, in addition to evaluating new therapeutic agents, is still a dream. Advances related to maintenance, culture medium supplements and the use of diferent sources of reticulocytes and parasites (strains and isolates) have been made regarding the development of an in vitro culture for P. vivax; however, only some cultures having few replication cycles have been obtained to date, meaning that this parasite’s maintenance goes beyond the technical components involved. Although it is still not yet clear which molecular mechanisms P. vivax prefers for invading young ­CD71+ reticulocytes [early maturation stages (I–II–III)], changes related to mem‑ brane proteins remodelling of such cells could form part of the explanation. The most relevant aspects regarding P. vivax in vitro culture and host cell characteristics have been analysed in this review to explain possible reasons why the species’ continuous in vitro culture is so difcult to standardize.
    [Show full text]
  • A Gene Required for the Regulation of Photosynthetic Light Harvesting in the Cyanobacterium Synechocystis PCC6803
    A gene required for the regulation of photosyuthetic light harvesting in the cyanobacterium Synechocystis PCC6803 A thesis submitted for the degree of Doctor of Philosophy by Daniel Emlyn-Jones B.Sc. (Hons) Department of Biology University College London ProQuest Number: 10013938 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10013938 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 THESIS ABSTRACT In cyanobacteria, state transitions serve to regulate the distribution of excitation energy delivered to the two photosystem reaction centres from the accessory light harvesting system, the phycobilisome. The trigger for state transitions is the redox state of the cytochrome b f complex/plastoquinone pool. The signal transduction events that connect this redox signal to changes in light harvesting are unknown. In order to identify signal transduction factors required for the state transition, random cartridge mutagenesis was employed in the cyanobacterium Synechocystis PCC6803 to generate a library of random, genetically tagged mutants. The state transition in cyanobacteria is accompanied by a change in fluorescence emission from PS2. By using a fluorescence video imaging system to observe this fluorescence change in mutant colonies it was possible to isolate mutants unable to perform state transitions.
    [Show full text]
  • Quantifying the Removal of Red Blood Cells in Macaca Mulatta During a Plasmodium Coatneyi Infection Luis L
    Fonseca et al. Malar J (2016) 15:410 DOI 10.1186/s12936-016-1465-5 Malaria Journal RESEARCH Open Access Quantifying the removal of red blood cells in Macaca mulatta during a Plasmodium coatneyi infection Luis L. Fonseca1,4*, Harnel S. Alezi1, Alberto Moreno2,4, John W. Barnwell3,4, Mary R. Galinski2,4 and Eberhard O. Voit1,4 Abstract Background: Malaria is the most deadly parasitic disease in humans globally, and the long-time coexistence with malaria has left indelible marks in the human genome that are the causes of a variety of genetic disorders. Although anaemia is a common clinical complication of malaria, the root causes and mechanisms involved in the pathogenesis of malarial anaemia are unclear and difficult to study in humans. Non-human primate (NHP) model systems enable the mechanistic study and quantification of underlying causative factors of malarial anaemia, and particularly the onset of severe anaemia. Methods: Data were obtained in the course of Plasmodium coatneyi infections of malaria-naïve and semi-immune rhesus macaques (Macaca mulatta), whose red blood cells (RBCs) were labelled in situ with biotin at the time the infections were initiated. The data were used for a survival analysis that permitted, for the first time, an accurate esti- mation of the lifespan of erythrocytes in macaques. The data furthermore formed the basis for the development and parameterization of a recursive dynamic model of erythrocyte turnover, which was used for the quantification of RBC production and removal in each macaque. Results: The computational analysis demonstrated that the lifespan of erythrocytes in macaques is 98 21 days.
    [Show full text]
  • Journal of Bacteriology
    JOURNAL OF BACTERIOLOGY Volume 169 June 1987 No. 6 STRUCTURE AND FUNCTION Assembly of a Chemically Synthesized Peptide of Escherichia coli Type 1 Fimbriae into Fimbria-Like Antigenic Structures. Soman N. Abraham and Edwin H. Beachey ....... 2460-2465 Structure of the Staphylococcus aureus Cell Wall Determined by the Freeze- Substitution Method. Akiko Umeda, Yuji Ueki, and Kazunobu Amako ... 2482-2487 Labeling of Binding Sites for 02-Microglobulin (02m) on Nonfibrillar Surface Structures of Mutans Streptococci by Immunogold and I21m-Gold Electron Microscopy. Dan Ericson, Richard P. Ellen, and Ilze Buivids ........... 2507-2515 Bicarbonate and Potassium Regulation of the Shape of Streptococcus mutans NCTC 10449S. Lin Tao, Jason M. Tanzer, and T. J. MacAlister......... 2543-2547 Periodic Synthesis of Phospholipids during the Caulobacter crescentus Cell Cycle. Edward A. O'Neill and Robert A. Bender.............................. 2618-2623 Association of Thioredeoxin with the Inner Membrane and Adhesion Sites in Escherichia coli. M. E. Bayer, M. H. Bayer, C. A. Lunn, and V. Pigiet 2659-2666 Cell Wall and Lipid Composition of Isosphaera pallida, a Budding Eubacterium from Hot Springs. S. J. Giovannoni, Walter Godchaux III, E. Schabtach, and R. W. Castenholz.............................................. 2702-2707 Charge Distribution on the S Layer of Bacillus stearothermophilus NRS 1536/3c and Importance of Charged Groups for Morphogenesis and Function. Margit Saira and Uwe B. Sleytr ....................................... 2804-2809 PLANT MICROBIOLOGY Rhizobium meliloti ntrA (rpoN) Gene Is Required for Diverse Metabolic Functions. Clive W. Ronson, B. Tracy Nixon, Lisa M. Albright, and Frederick M. Ausubel............................................... 2424-2431 Bradyrhizobium japonicum Mutants Defective in Nitrogen Fixation and Molybde- num Metabolism. Robert J.
    [Show full text]
  • (Bsc Zoology and Microbiology) Concept of Introns and Exons
    Unit-5 Molecular Biology (BSc Zoology and Microbiology) Concept of introns and exons Most of the portion of a gene in higher eukaryotes consists of noncoding DNA that interrupts the relatively short segments of coding DNA. The coding sequences are called exons. The noncoding sequences are called introns. Intron: An intron is a portion of a gene that does not code for amino acids An intron is any nucleotide sequence within a gene which is represented in the primary transcript of the gene, but not present in the final processed form. In other words, Introns are noncoding regions of an RNA transcript which are eliminated by splicing before translation. Sequences that are joined together in the final mature RNA after RNA splicing are exons. Introns are very large chunks of RNA within a messenger RNA molecule that interfere with the code of the exons. And these introns get removed from the RNA molecule to leave a string of exons attached to each other so that the appropriate amino acids can be encoded for. Introns are rare in genes of prokaryotes. #Look carefully at the diagram above, we have already discussed about the modification and processing of eukaryotic RNA. In which 5’ guanine cap and 3’poly A tail is added. So at that time, noncoding regions i.e. introns are removed. We hv done ths already. Ok Exon: The coding sequences are called Exon. An exon is the portion of a gene that codes for amino acids. In the cells of plants and animals, most gene sequences are broken up by one or more DNA sequences called introns.
    [Show full text]
  • Contrasts in the Prevalence of Avian Malaria in Shorebird Species
    University of Groningen Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats Mendes, L; Piersma, T; Lecoq, M; Spaans, B; Ricklefs, RE; Ricklefs, Robert E. Published in: Oikos DOI: 10.1111/j.0030-1299.2005.13509.x IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2005 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Mendes, L., Piersma, T., Lecoq, M., Spaans, B., Ricklefs, RE., & Ricklefs, R. E. (2005). Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats. Oikos, 109(2), 396-404. https://doi.org/10.1111/j.0030-1299.2005.13509.x Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 27-09-2021 OIKOS 109: 396Á/404, 2005 Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats Luisa Mendes, Theunis Piersma, Miguel Lecoq, Bernard Spaans and Robert E.
    [Show full text]
  • Characterization of Cyanobacterial Phycobilisomes in Zwitterionic
    Proc. Natl. Acad. Sci. USA Vol. 76, No. 12, pp. 6162-6166, December 1979 Biochemistry Characterization of cyanobacterial phycobilisomes in zwitterionic detergents (Synechococcus/photosynthetic accessory pigments/sedimentation/electron microscopy/aggregation) ALEXANDER N. GLAZER*, ROBLEY C. WILLIAMSt, GREGORY YAMANAKA*, AND H. K. SCHACHMANt *Department of Microbiology and Immunology, and tDepartment of Molecular Biology, University of California, Berkeley, California 94720 Contributed by Robley C. Williams, September 10, 1979 ABSTRACT Properties of cyanobacterial phycobilisomes preparations of nearly uniform-sized phycobilisomes were (from Synechococcus spp. 6301 and 6312 and Synechocystis sp. obtained. Ultrastructural studies of the particles prepared in 6701) prepared in the presence of two different zwitterionic detergents were compared to those of phycobilisomes detached zwitterionic detergents were facilitated by the marked decrease from membranes with the nonionic detergent Triton X-100 and in aggregation. Such studies show that phycobilisomes from then freed from Triton by sedimentation through high-salt su- different organisms have certain characteristics in common, crose density gradients. The absorption spectra, polypeptide as concluded by others (1, 7, 8), but also exhibit distinctive composition, and ultrastructure of phycobilisomes were inde- structural features. pendent of the detergent used during the preparation. Phyco- bilisomes from certain cyanobacteria aggregated in the absence MATERIALS AND METHODS of detergent. Such
    [Show full text]
  • Photobiology of Bacteria
    UvA-DARE (Digital Academic Repository) Photobiology of bacteria Hellingwerf, K.J.; Crielaard, W.; Hoff, W.D.; Matthijs, H.C.P.; Mur, L.R.; van Rotterdam, B.J. DOI 10.1007/BF00872217 Publication date 1994 Published in Antonie van Leeuwenhoek Link to publication Citation for published version (APA): Hellingwerf, K. J., Crielaard, W., Hoff, W. D., Matthijs, H. C. P., Mur, L. R., & van Rotterdam, B. J. (1994). Photobiology of bacteria. Antonie van Leeuwenhoek, 65, 331-347. https://doi.org/10.1007/BF00872217 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:02 Oct 2021 Antonie van Leeuwenhoek 65:331-347, 1994. 331 @ 1994 Kluwer Academic Publishers. Printed in the Netherlands. Photobiology of Bacteria K.J. Hellingwerf a, W.
    [Show full text]
  • Plasmodium Asexual Growth and Sexual Development in the Haematopoietic Niche of the Host
    REVIEWS Plasmodium asexual growth and sexual development in the haematopoietic niche of the host Kannan Venugopal 1, Franziska Hentzschel1, Gediminas Valkiūnas2 and Matthias Marti 1* Abstract | Plasmodium spp. parasites are the causative agents of malaria in humans and animals, and they are exceptionally diverse in their morphology and life cycles. They grow and develop in a wide range of host environments, both within blood- feeding mosquitoes, their definitive hosts, and in vertebrates, which are intermediate hosts. This diversity is testament to their exceptional adaptability and poses a major challenge for developing effective strategies to reduce the disease burden and transmission. Following one asexual amplification cycle in the liver, parasites reach high burdens by rounds of asexual replication within red blood cells. A few of these blood- stage parasites make a developmental switch into the sexual stage (or gametocyte), which is essential for transmission. The bone marrow, in particular the haematopoietic niche (in rodents, also the spleen), is a major site of parasite growth and sexual development. This Review focuses on our current understanding of blood-stage parasite development and vascular and tissue sequestration, which is responsible for disease symptoms and complications, and when involving the bone marrow, provides a niche for asexual replication and gametocyte development. Understanding these processes provides an opportunity for novel therapies and interventions. Gametogenesis Malaria is one of the major life- threatening infectious Malaria parasites have a complex life cycle marked Maturation of male and female diseases in humans and is particularly prevalent in trop- by successive rounds of asexual replication across gametes. ical and subtropical low- income regions of the world.
    [Show full text]
  • Digital Cinematography Dedication
    Digital Cinematography Dedication To my wife Anne With all my love Digital Cinematography Paul Wheeler BSC FBKS Focal Press An imprint of Elsevier Science Linacre House, Jordan Hill, Oxford OX2 8DP 225 Wildwood Avenue, Woburn, MA 01801-2041 First published 2001 Reprinted 2002 Copyright © 2001, Paul Wheeler. All rights reserved. The right of Paul Wheeler to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988 All rights reserved. No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright holder except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England W1T 4LP. Applications for the copyright holder’s written permission to reproduce any part of this publication should be addressed to the publishers British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloguing in Publication Data A catalogue record for this book is available from the Library of Congress ISBN 0 240 51614 1 Printed and bound in Great Britain Contents Preface xi About the author xiii Acknowledgements xv Introduction xvii PART ONE Digital Cinematography 1 1 Why digital
    [Show full text]
  • OFFICIAL HANDBOOK of RULES and REGULATIONS 2020 | 68Th Edition
    OFFICIAL HANDBOOK OF RULES AND REGULATIONS 2020 | 68th edition AMERICAN QUARTER HORSE An American Quarter Horse possesses acceptable pedigree, color and mark- ings, and has been issued a registration certificate by the American Quarter Horse Association. This horse has been bred and developed to have a kind and willing disposition, well-balanced conformation and agile speed. The American Quarter Horse is the world’s most versatile breed and is suited for a variety of purposes - from working cattle on ranches to international reining competition. There is an American Quarter Horse for every purpose. AQHA MISSION STATEMENT • To record and preserve the pedigrees of the American Quarter Horse, while maintaining the integrity of the breed and welfare of its horses. • To provide beneficial services for its members that enhance and encourage American Quarter Horse ownership and participation. • To develop diverse educational programs, material and curriculum that will position AQHA as the leading resource organization in the equine industry. • To generate growth of AQHA membership via the marketing, promo- tion, advertising and publicity of the American Quarter Horse. • To ensure the American Quarter Horse is treated humanely, with dignity, respect and compassion, at all times. FOREWORD The American Quarter Horse Association was organized in 1940 to collect, record and preserve the pedigrees of American Quarter Horses. AQHA also serves as an information center for its members and the general public on matters pertaining to shows, races and projects designed to improve the breed and aid the industry, including seeking beneficial legislation for its breeders and all horse owners. AQHA also works to promote horse owner- ship and to grow markets for American Quarter Horses.
    [Show full text]