The Software Vulnerability Ecosystem: Software Development in the Context of Adversarial Behavior
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alcatel-Lucent Security Advisory Sa0xx
Alcatel-Lucent Security Advisory No. SA0053 Ed. 04 Information about Poodle vulnerability Summary POODLE stands for Padding Oracle On Downgraded Legacy Encryption. The POODLE has been reported in October 14th 2014 allowing a man-in-the-middle attacker to decrypt ciphertext via a padding oracle side-channel attack. The severity is not considered as the same for Heartbleed and/or bash shellshock vulnerabilities. The official risk is currently rated Medium. The classification levels are: Very High, High, Medium, and Low. The SSLv3 protocol is only impacted while TLSv1.0 and TLSv1.2 are not. This vulnerability is identified CVE- 2014-3566. Alcatel-Lucent Enterprise voice products using protocol SSLv3 are concerned by this security alert. Openssl versions concerned by the vulnerability: OpenSSL 1.0.1 through 1.0.1i (inclusive) OpenSSL 1.0.0 through 1.0.0n (inclusive) OpenSSL 0.9.8 through 0.9.8zb (inclusive) The Alcatel-Lucent Enterprise Security Team is currently investigating implications of this security flaw and working on a corrective measure, for OpenTouch 2.1.1 planned in Q4 2015, to prevent using SSLv3 that must be considered as vulnerable. This note is for informational purpose about the padding-oracle attack identified as “POODLE”. References CVE-2014-3566 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3566 Advisory severity CVSS Base score : 4.3 (MEDIUM) - AV:N/AC:M/Au:N/C:P/I:N/A:N https://www.openssl.org/news/secadv_20141015.txt https://www.openssl.org/~bodo/ssl-poodle.pdf Description of the vulnerabilities Information about Poodle vulnerability (CVE-2014-3566). -
Docusign City Council Transmittal Coversheet
DocuSign Envelope ID: 77E59CA4-8312-4131-A8AC-30D35C765194 Docusign City Council Transmittal Coversheet 6470C FILE File Name PCWRP Raw Sewage Pump Station 2 - Change Order #2 Purchasing Contact Cindy Alonzo PUB Target Date July 9, 2018 City Council Target Date July 17, 2018 Contract Value Change Order #2: $137,016.17; Contract: $622,780.17 Piggy Back Option Not Applicable Contract Expiration N/A Ordinance DocuSign Envelope ID: 77E59CA4-8312-4131-A8AC-30D35C765194 EXHIBIT 2 FILE #6470 CHANGE ORDER NO. 2 XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX Approved as to Legal Form: 7/3/2018 By:_________________________ Aaron Leal, City Attorney City of Denton City of Denton Attest: Reviewed by: Approved by: 7/17/2018 PS Arora, P.E. Todd Hileman By:_________________________ Director of Wastewater City Manager Jennifer Walters, City Secretary DocuSign Envelope ID: 77E59CA4-8312-4131-A8AC-30D35C765194 DocuSign Envelope ID: 77E59CA4-8312-4131-A8AC-30D35C765194 DocuSign Envelope ID: 77E59CA4-8312-4131-A8AC-30D35C765194 Exhibit A House Bill 89 - Government Code 2270 VERIFICATION George Brown I, _______________________________________________, the undersigned representative of ______________________________CompanyControl Specialist Services, LP or Business name (hereafter referred to as company), being an adult over the age of eighteen (18) years of age, verify that the company named-above, under the provisions of Subtitle F, Title 10, Government Code Chapter 2270: 1. Does not boycott Israel currently; and 2. Will not boycott Israel during the term of the contract the above-named Company, business or individual with City of Denton. Pursuant to Section 2270.001, Texas Government Code: 1. “Boycott Israel” means refusing to deal with, terminating business activities with, or otherwise taking any action that is intended to penalize, inflict economic harm on, or limit commercial relations specifically with Israel, or with a person or entity doing business in Israel or in an Israeli-controlled territory, but does not include an action made for ordinary business purposes; and 2. -
Internet Security Threat Report VOLUME 21, APRIL 2016 TABLE of CONTENTS 2016 Internet Security Threat Report 2
Internet Security Threat Report VOLUME 21, APRIL 2016 TABLE OF CONTENTS 2016 Internet Security Threat Report 2 CONTENTS 4 Introduction 21 Tech Support Scams Go Nuclear, 39 Infographic: A New Zero-Day Vulnerability Spreading Ransomware Discovered Every Week in 2015 5 Executive Summary 22 Malvertising 39 Infographic: A New Zero-Day Vulnerability Discovered Every Week in 2015 8 BIG NUMBERS 23 Cybersecurity Challenges For Website Owners 40 Spear Phishing 10 MOBILE DEVICES & THE 23 Put Your Money Where Your Mouse Is 43 Active Attack Groups in 2015 INTERNET OF THINGS 23 Websites Are Still Vulnerable to Attacks 44 Infographic: Attackers Target Both Large and Small Businesses 10 Smartphones Leading to Malware and Data Breaches and Mobile Devices 23 Moving to Stronger Authentication 45 Profiting from High-Level Corporate Attacks and the Butterfly Effect 10 One Phone Per Person 24 Accelerating to Always-On Encryption 45 Cybersecurity, Cybersabotage, and Coping 11 Cross-Over Threats 24 Reinforced Reassurance with Black Swan Events 11 Android Attacks Become More Stealthy 25 Websites Need to Become Harder to 46 Cybersabotage and 12 How Malicious Video Messages Could Attack the Threat of “Hybrid Warfare” Lead to Stagefright and Stagefright 2.0 25 SSL/TLS and The 46 Small Business and the Dirty Linen Attack Industry’s Response 13 Android Users under Fire with Phishing 47 Industrial Control Systems and Ransomware 25 The Evolution of Encryption Vulnerable to Attacks 13 Apple iOS Users Now More at Risk than 25 Strength in Numbers 47 Obscurity is No Defense -
Designing and Implementing the OP and OP2 Web Browsers
Designing and Implementing the OP and OP2 Web Browsers CHRIS GRIER, SHUO TANG and SAMUEL T. KING, University of Illinois at Urbana-Champaign Current web browsers are plagued with vulnerabilities, providing hackers with easy access to computer systems via browser-based attacks. Browser security efforts that retrofit existing browsers have had lim- ited success because the design of modern browsers is fundamentally flawed. To enable more secure web browsing, we design and implement a new browser, called the OP web browser, that attempts to improve the state-of-the-art in browser security. We combine operating system design principles with formal methods to design a more secure web browser by drawing on the expertise of both communities. Our design philosophy is to partition the browser into smaller subsystems and make all communication between subsystems sim- ple and explicit. At the core of our design is a small browser kernel that manages the browser subsystems and interposes on all communications between them to enforce our new browser security features. To show the utility of our browser architecture, we design and implement three novel security features. First, we develop flexible security policies that allow us to include browser plugins within our security framework. Second, we use formal methods to prove useful security properties including user interface invariants and browser security policy. Third, we design and implement a browser-level information-flow tracking system to enable post-mortem analysis of browser-based attacks. In addition to presenting the OP browser architecture, we discuss the design and implementation of a second version of OP, OP2, that includes features from other secure web browser designs to improve on the overall security and performance of OP. -
Exploiting Thread-Related System Calls for Plagiarism Detection of Multithreaded Programs
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/303917139 Exploiting Thread-Related System Calls for Plagiarism Detection of Multithreaded Programs Article · June 2016 DOI: 10.1016/j.jss.2016.06.014 CITATION READS 1 126 6 authors, including: Zhenzhou Tian Ting Liu Xi'an University of Posts and Telecommunica… Xi'an Jiaotong University 10 PUBLICATIONS 24 CITATIONS 51 PUBLICATIONS 165 CITATIONS SEE PROFILE SEE PROFILE Qinghua Zheng Zijiang Yang Xi'an Jiaotong University Western Michigan University 246 PUBLICATIONS 1,409 CITATIONS 95 PUBLICATIONS 1,356 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: VACCS: Visualization and Analysis for C Code Security View project All content following this page was uploaded by Zhenzhou Tian on 27 June 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. The Journal of Systems and Software 119 (2016) 136–148 Contents lists available at ScienceDirect The Journal of Systems and Software journal homepage: www.elsevier.com/locate/jss Exploiting thread-related system calls for plagiarism detection of multithreaded programs ∗ Zhenzhou Tian a, Ting Liu a, , Qinghua Zheng a, Ming Fan a, Eryue Zhuang a, Zijiang Yang b,a a MOEKLINNS, Department of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China b Department of Computer Science, Western Michigan University, Kalamazoo, MI 49008, USA a r t i c l e i n f o a b s t r a c t Article history: Dynamic birthmarking used to be an effective approach to detecting software plagiarism. -
Combat Top Security Vulnerabilities: HPE Tippingpoint Intrusion
Business white paper Combat top security vulnerabilities HPE TippingPoint intrusion prevention system Business white paper Page 2 The year 2014 marked a new pinnacle for hackers. Vulnerabilities were uncovered in some of the most widely deployed software in the world—some of it in systems actually intended to make you more secure. HPE TippingPoint next-generation intrusion prevention system (IPS) and next-generation firewall (NGFW) customers rely on us to keep their networks safe. And when it comes to cyber threats, every second matters. So how did HPE TippingPoint do? This brief highlights the top security vulnerabilities of 2014—the ones that sent corporate security executives scrambling to protect their businesses. And it describes how HPE TippingPoint responded to keep our customers safe. Heartbleed—HPE TippingPoint intrusion prevention system stops blood flow early Any vulnerability is concerning, but when a vulnerability is discovered in software designed to assure security, it leaves businesses exposed and vulnerable. That was the case with the Heartbleed vulnerability disclosed by the OpenSSL project on April 7, 2014. They found the vulnerability in versions of OpenSSL—the open-source cryptographic library widely used to encrypt Internet traffic. Heartbleed grew from a coding error that allowed remote attackers to read information from process memory by sending heartbeat packets that trigger a buffer over-read. As a demonstration of the vulnerability, the OpenSSL Project created a sample exploit that successfully stole private cryptography keys, user names and passwords, instant messages, emails, and business-critical documents and communications. We responded within hours to protect TippingPoint customers. On April 8, we released a custom filter package to defend against the vulnerability. -
IBM X-Force Threat Intelligence Quarterly, 1Q 2015
IBM Security Systems March 2015 IBM X-Force Threat Intelligence Quarterly, 1Q 2015 Explore the latest security trends—from “designer vulns” to mutations in malware— based on 2014 year-end data and ongoing research 2 IBM X-Force Threat Intelligence Quarterly 1Q 2015 Contents Executive overview 2 Executive overview When we look back in history to review and understand the past year, you can be assured it will be remembered as a year of 4 Roundup of security incidents in 2014 significant change. 11 Citadel, the financial malware that continues to adapt In early January 2014, companies large and small scrambled to Are mobile application developers for Android putting their 14 better understand and analyze a major retail breach that left users at risk? them asking whether or not their own security measures would 17 Shaking the foundation: Vulnerability disclosures in 2014 survive the next storm. Before spring was barely in motion, we had our first taste of the “designer vuln”—a critical 21 About X-Force vulnerability that not only proved lethal for targeted attacks, 22 Contributors but also had a cleverly branded logo, website and call-name (or handle) that would forever identify the disclosure. 22 For more information 23 Footnotes These designer vulns appeared within long-held foundational frameworks used by the majority of websites, and they continued throughout 2014, garnering catchy name after catchy name—Heartbleed, Shellshock, POODLE, and into 2015, Ghost and FREAK. This in and of itself raises the question of what it takes for a vulnerability to merit a marketing push, PR and logo design, while the other thousands discovered throughout the year do not. -
TLS Attacks & DNS Security
IAIK TLS Attacks & DNS Security Information Security 2019 Johannes Feichtner [email protected] IAIK Outline TCP / IP Model ● Browser Issues Application SSLStrip Transport MITM Attack revisited Network Link layer ● PKI Attacks (Ethernet, WLAN, LTE…) Weaknesses HTTP TLS / SSL FLAME FTP DNS Telnet SSH ● Implementation Attacks ... ● Protocol Attacks ● DNS Security IAIK Review: TLS Services All applications running TLS are provided with three essential services Authentication HTTPS FTPS Verify identity of client and server SMTPS ... Data Integrity Detect message tampering and forgery, TLS e.g. malicious Man-in-the-middle TCP IP Encryption Ensure privacy of exchanged communication Note: Technically, not all services are required to be used Can raise risk for security issues! IAIK Review: TLS Handshake RFC 5246 = Establish parameters for cryptographically secure data channel Full handshake Client Server scenario! Optional: ClientHello 1 Only with ServerHello Client TLS! Certificate 2 ServerKeyExchange Certificate CertificateRequest ClientKeyExchange ServerHelloDone CertificateVerify 3 ChangeCipherSpec Finished ChangeCipherSpec 4 Finished Application Data Application Data IAIK Review: Certificates Source: http://goo.gl/4qYsPz ● Certificate Authority (CA) = Third party, trusted by both the subject (owner) of the certificate and the party (site) relying upon the certificate ● Browsers ship with set of > 130 trust stores (root CAs) IAIK Browser Issues Overview Focus: Relationship between TLS and HTTP Problem? ● Attacker wants to access encrypted data ● Browsers also have to deal with legacy websites Enforcing max. security level would „break“ connectivity to many sites Attack Vectors ● SSLStrip ● MITM Attack …and somehow related: Cookie Stealing due to absent „Secure“ flag… IAIK Review: ARP Poisoning How? Attacker a) Join WLAN, ● Sniff data start ARP Poisoning ● Manipulate data b) Create own AP ● Attack HTTPS connections E.g. -
Exploit Kits, Which Seemed Nearly Dormant Last Year Following the Demise of Illicit Cryptocurrency Mining, the Hot New Thing in 2018, Appear to Be Making a Comeback
2020 TRUSTWAVE GLOBAL SECURITY REPORT Table of Contents Introduction ........................ 3 Threat Intelligence .................22 Email Threats ......................... 23 Executive Summary ................. 4 Extortion Scams ....................... 25 Data Compromises ..................... 4 Archive Mutant Tricks .................. 28 Email Threats .......................... 6 Multi-Stage Phishing Using Web Attacks ........................... 8 Trusted Cloud Providers ................ 29 Exploits ............................... 8 Office 365 Account Phishing ............30 Malware ............................... 9 Emotet: The Threat is in the Mail ......... 33 Database and Network Security ......... 10 Web Attacks .......................... 36 Database Compromise ...............11 Humans: The Lowest Hanging Fruit ....... 38 Compromise Demographics ..............11 Exploits .............................. 39 Compromises Per Environment ...........14 Finding Insights Through Trustwave Fusion ......................44 Environments Compromised by Industry ............................15 Malware ..............................46 Compromises by Region .................17 More and More Magecart ...............50 Compromise Duration ...................18 The State of Security ............... 51 Methods of Compromise .................19 Data Security ......................... 52 Sources of Detection ...................20 Network Security ...................... 56 Contributors ....................... 59 2 Introduction Welcome to the 2020 Trustwave -
Olson's Standard Poodles
Sun-Golden Kennels STANDARD POODLE PUPPY PURCHASE AGREEMENT LIMITED REGISTRATION BREEDER/Seller: Mike or Sharon Long 7812 N. Longview Ct. Edgerton, WI. 53534 608-884-4000 [email protected] www.sungoldenkennels.com Definitions used herein include: "BUYER" shall herein be define as: ___________________________ BREEDER" or “SELLER” Shall herein be defined as: Mike or Sharon Long "PUPPY" shall herein be defined as “A PUPPY”, registered with the American Kennel Club (AKC) with the registered name of: SHARMIK’S________________________________ AKC Litter registration # PRXXXXXX Sire: AKC #PRXXXXXX Reg Name ____________________________________ Dam: AKC# PRXXXXXX Reg Name ___________________________________ The Sun-Golden Standard Poodle described above is sold for the sum of $1000.00 Payment to be made in full with cash or visa/mc. A pet puppy is defined here to be a Standard Poodle puppy which is in good health at the time of sale, and embodies the characteristics of the Standard Poodle breed. This puppy is purebred and the litter has been (registered) with the American Kennel Club. The Parents of this Puppy have had OFA x-rays to establish that they are free of Hip Dysplasia, Elbow disease, Heart disease and Eye disease The puppy is registered with a limited registration, which will prohibit breeding and registering offspring. The BUYER agrees this PUPPY is to be spayed/neutered at the appropriate age of (9-12 months) allowing for some sexual maturity of the pup which is necessary for their development. Veterinarian confirmation of this procedure must be supplied to the BREEDER by the time the pup is 1year of age or the contract is null and void. -
Check-Point-2015-Security-Report
2015 SECURITY REPORT CHECK POINT 2015 SECURITY REPORT 01 INTRODUCTION AND METHODOLOGY 04 02 UNKNOWN MALWARE: THE VAST UNKNOWN 10 03 KNOWN MALWARE: KNOWN AND DANGEROUS 18 04 MOBILE SECURITY: DON’T FENCE ME IN 32 05 APPLICATIONS: GETTING YOU WHERE IT HURTS 40 06 DATA LOSS: LIKE SAND THROUGH THE HOUR GLASS 48 07 CONCLUSION AND RECOMMENDATIONS: 56 THE PATH TO PROTECTION REFERENCES 60 CHECK POINT - 2015 SECURITY REPORT | 3 01 INTRODUCTION AND METHODOLOGY “The first time you do something, it’s science. The second time you do something, it’s engineering.” 1 –Clifford Stoll, astronomer, author, digital forensics pioneer CHECKINTRODUCTION POINT - 2015 AND SECURITY METHODOLOGY REPORT | 4 THE EVOLUTION OF MALWARE THE SECURITY LANDSCAPE | ACCELERATION OF OF MALWARE 25 YEARS AGO 20 YEARS AGO 15 YEARS AGO 10 YEARS AGO 5 YEARS AGO NOW Invention of Invention of Prevalent Use URL Filtering, NGFW Threat Intelligence, Firewall Stateful of Anti-Virus, UTM Threat Prevention, Inspection VPN, IPS Mobile Security > 1988 1994 1998 2003 2006 2010 2014 2020 Morris Worm Green Card Lottery Melissa Anonymous WikiLeaks DDoS Bitcoin IoT Everywhere Formed Attacks: Stuxnet SCADA 2000 2007 2013 2017 I Love You Zeus Trojan Dragonfly Driverless Cars Hacked? 2011 Stolen Authentication 2012 Information Flame Malware In science, it’s all about discovery—studying cause other mobile devices might not be tools, per se, but and effect. Once something is understood and can be they can be hijacked to give hackers the ability to predicted, it then becomes a process of engineering, penetrate corporate networks. to replicate. In the world of cyber threats, it’s the same. -
Mission Accomplished? HTTPS Security After Diginotar
Mission Accomplished? HTTPS Security after DigiNotar Johanna Amann* ICSI / LBL / Corelight Oliver Gasser* Technical University of Munich Quirin Scheitle* Technical University of Munich Lexi Brent The University of Sydney Georg Carle Technical University of Munich Ralph Holz The University of Sydney * Joint First Authorship Internet Measurement Conference (IMC) 2017 TLS/HTTPS Security Extensions • Certificate Transparency • HSTS (HTTP Strict Transport Security) • HPKP (HTTP Public Key Pinning) • SCSV (TLS Fallback Signaling Cipher Suite Value) • CAA (Certificate Authority Authorization) • DANE-TLSA (DNS Based Authentication of Named Entities) Methodology • Active & passive scans • Shared pipeline where possible • Active measurements from 2 continents • Largest Domain-based TLS scan so far • More than 192 Million domains • Passive measurements on 3 continents • More than 2.4 Billion observed TLS connections Certificate Transparency CA Issues Certificates Provides publicly auditable, append-only Log of certificates CT Log Also provides proof of inclusion Browser Verifies Proof of Inclusion Certificate Transparency CT Log CA Webserver Browser Certificate Transparency CT Log CA Certificate Webserver Browser Certificate Transparency CT Log CA Certificate Certificate Webserver Browser Certificate Transparency CT Log CA SCT Certificate Certificate Webserver Browser Certificate Transparency CT Log CA SCT Certificate Certificate Webserver Browser Certificate, SCT in TLS Ext. Certificate Transparency CT Log CA Webserver Browser Certificate Transparency Precertificate