Neural Networks and Backpropagation

Total Page:16

File Type:pdf, Size:1020Kb

Neural Networks and Backpropagation 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Neural Networks and Backpropagation Neural Net Readings: Murphy -- Matt Gormley Bishop 5 Lecture 19 HTF 11 Mitchell 4 March 29, 2017 1 Reminders • Homework 6: Unsupervised Learning – Release: Wed, Mar. 22 – Due: Mon, Apr. 03 at 11:59pm • Homework 5 (Part II): Peer Review – Expectation: You Release: Wed, Mar. 29 should spend at most 1 – Due: Wed, Apr. 05 at 11:59pm hour on your reviews • Peer Tutoring 2 Neural Networks Outline • Logistic Regression (Recap) – Data, Model, Learning, Prediction • Neural Networks – A Recipe for Machine Learning – Visual Notation for Neural Networks – Example: Logistic Regression Output Surface – 2-Layer Neural Network – 3-Layer Neural Network • Neural Net Architectures – Objective Functions – Activation Functions • Backpropagation – Basic Chain Rule (of calculus) – Chain Rule for Arbitrary Computation Graph – Backpropagation Algorithm – Module-based Automatic Differentiation (Autodiff) 3 RECALL: LOGISTIC REGRESSION 4 Using gradient ascent for linear classifiers Key idea behind today’s lecture: 1. Define a linear classifier (logistic regression) 2. Define an objective function (likelihood) 3. Optimize it with gradient descent to learn parameters 4. Predict the class with highest probability under the model 5 Using gradient ascent for linear classifiers This decision function isn’t Use a differentiable differentiable: function instead: 1 T pθ(y =1t)= h(t)=sign(θ t) | 1+2tT( θT t) − sign(x) 1 logistic(u) ≡ −u 1+ e 6 Using gradient ascent for linear classifiers This decision function isn’t Use a differentiable differentiable: function instead: 1 T pθ(y =1t)= h(t)=sign(θ t) | 1+2tT( θT t) − sign(x) 1 logistic(u) ≡ −u 1+ e 7 Logistic Regression Data: Inputs are continuous vectors of length K. Outputs are discrete. (i) (i) N K = t ,y where t R and y 0, 1 D { }i=1 ∈ ∈ { } Model: Logistic function applied to dot product of parameters with input vector. 1 pθ(y =1t)= | 1+2tT( θT t) − Learning: finds the parameters that minimize some objective function. θ∗ = argmin J(θ) θ Prediction: Output is the most probable class. yˆ = `;Kt pθ(y t) y 0,1 | ∈{ } 8 NEURAL NETWORKS 9 A Recipe for Background Machine Learning 1. Given training data: Face Face Not a face 2. Choose each of these: – Decision function Examples: Linear regression, Logistic regression, Neural Network – Loss function Examples: Mean-squared error, Cross Entropy 10 A Recipe for Background Machine Learning 1. Given training data: 3. Define goal: 2. Choose each of these: – Decision function 4. Train with SGD: (take small steps opposite the gradient) – Loss function 11 A Recipe for Background GradientsMachine Learning 1. Given training dataBackpropagation: 3. Definecan goal: compute this gradient! And it’s a special case of a more general algorithm called reverse- 2. Choose each of these:mode automatic differentiation that – Decision functioncan compute4. Train the withgradient SGD: of any differentiable(take function small steps efficiently! opposite the gradient) – Loss function 12 A Recipe for Background Goals for Today’sMachine Lecture Learning 1. 1.GivenExplore training a new data class: of 3.decision Define functionsgoal: (Neural Networks) 2. Consider variants of this recipe for training 2. Choose each of these: – Decision function 4. Train with SGD: (take small steps opposite the gradient) – Loss function 13 Decision Functions Linear Regression T y = hθ(x)=σ(θ x) Output where σ(a)=a θ1 θ2 θ3 θM Input … 14 Decision Functions Logistic Regression T y = hθ(x)=σ(θ x) 1 where σ(a)= Output 1+2tT( a) − θ1 θ2 θ3 θM Input … 15 Decision Functions Logistic Regression T y = hθ(x)=σ(θ x) 1 where σ(a)= Output 1+2tT( a) − Face Face Not a face θ1 θ2 θ3 θM Input … 16 Decision Functions Logistic Regression T y = hθ(x)=σ(θ x) 1 where σIn(-aClass)= Example Output 1+2tT( a) − 1 1 0 y x2 θ1 θ2 θ3 θM x1 Input … 17 Decision Functions Perceptron T y = hθ(x)=σ(θ x) 1 where σ(a)= Output 1+2tT( a) − θ1 θ2 θ3 θM Input … 18 From Biological to Artificial The motivation for Artificial Neural Networks comes from biology… Biological “Model” Artificial Model • Neuron: an excitable cell • Neuron: node in a directed acyclic • Synapse: connection between graph (DAG) neurons • Weight: multiplier on each edge • • Activation Function: nonlinear A neuron sends an thresholding function, which allows a electrochemical pulse along its neuron to “fire” when the input value synapses when a sufficient voltage is sufficiently high change occurs • Artificial Neural Network: collection • Biological Neural Network: of neurons into a DAG, which define collection of neurons along some some differentiable function pathway through the brain Biological “Computation” Artificial Computation • Neuron switching time : ~ 0.001 sec • Many neuron-like threshold switching • Number of neurons: ~ 1010 units • Connections per neuron: ~ 104-5 • Many weighted interconnections • Scene recognition time: ~ 0.1 sec among units • Highly parallel, distributed processes 19 Slide adapted from Eric Xing Decision Functions Logistic Regression T y = hθ(x)=σ(θ x) 1 where σ(a)= Output 1+2tT( a) − θ1 θ2 θ3 θM Input … 20 Neural Networks Whiteboard – Example: Neural Network w/1 Hidden Layer – Example: Neural Network w/2 Hidden Layers – Example: Feed Forward Neural Network 21 Neural Network Model Inputs Output Age 34 .6 .4 .2 S .1 .5 0.6 Gender 2 .2 S .3 .8 .7 S “Probability of beingAlive” Stage 4 .2 Dependent Independent Weights Hidden Weights variable variables Layer Prediction © Eric Xing @ CMU, 2006-2011 22 “Combined logistic models” Inputs Output Age 34 .6 .5 .1 0.6 Gender 2 S .7 .8 “Probability of beingAlive” Stage 4 Dependent Independent Weights Hidden Weights variable variables Layer Prediction © Eric Xing @ CMU, 2006-2011 23 Inputs Output Age 34 .5 .2 0.6 Gender 2 .3 S .8 “Probability of beingAlive” Stage 4 .2 Dependent Independent Weights Hidden Weights variable variables Layer Prediction © Eric Xing @ CMU, 2006-2011 24 Inputs Output Age 34 .6 .2 .5 .1 0.6 Gender 1 .3 S .7 .8 “Probability of beingAlive” Stage 4 .2 Dependent Independent Weights Hidden Weights variable variables Layer Prediction © Eric Xing @ CMU, 2006-2011 25 Not really, no target for hidden units... Age 34 .6 .4 .2 S .1 .5 0.6 Gender 2 .2 S .3 .8 .7 S “Probability of beingAlive” Stage 4 .2 Dependent Independent Weights Hidden Weights variable variables Layer Prediction © Eric Xing @ CMU, 2006-2011 26 Decision Functions Neural Network Output Hidden Layer … Input … 28 Decision Functions Neural Network (F) Loss J = 1 (y y(d))2 2 − (E) Output (sigmoid) 1 y = 1+2tT( b) Output − (D) Output (linear) D … b = βj zj Hidden Layer j=0 (C) Hidden (sigmoid) 1 zj = 1+2tT( a ) , j − j ∀ … Input (B) Hidden (linear) a = M α x , j j i=0 ji i ∀ (A) Input Given x , i 29 i ∀ NEURAL NETWORKS: REPRESENTATIONAL POWER 30 Building a Neural Net Q: How many hidden units, D, should we use? Output Features … 31 Building a Neural Net Q: How many hidden units, D, should we use? Output Hidden Layer … D = M 1 1 1 Input … 32 Building a Neural Net Q: How many hidden units, D, should we use? Output Hidden Layer … D = M Input … 33 Building a Neural Net Q: How many hidden units, D, should we use? Output Hidden Layer … D = M Input … 34 Building a Neural Net Q: How many hidden units, D, should we use? Output What method(s) is this setting similar to? Hidden Layer … D < M Input … 35 Building a Neural Net Q: How many hidden units, D, should we use? Output Hidden Layer … D > M What method(s) is this setting similar to? Input … 36 Decision Functions Deeper Networks Q: How many layers should we use? Output … Hidden Layer 1 … Input 37 Decision Functions Deeper Networks Q: How many layers should we use? Output … Hidden Layer 2 … Hidden Layer 1 … Input 38 Decision Functions Deeper Networks Q: How many layers should we use? Output … Hidden Layer 3 … Hidden Layer 2 … Hidden Layer 1 … Input 39 Decision Functions Deeper Networks Q: How many layers should we use? • Theoretical answer: – A neural network with 1 hidden layer is a universal function approximator – Cybenko (1989): For any continuous function g(x), there exists a 1-hidden-layer neural net hθ(x) s.t. | hθ(x) – g(x) | < ϵ for all x, assuming sigmoid activation functions Output • Empirical answer: – Before 2006: “Deep networks (e.g.… 3 or more hidden layers) are too hardHidden Layerto 1train” – After 2006: “Deep networks are easier to train than shallow networks (e.g. 2 or fewer layers) for many problems” … Input Big caveat: You need to know and use the right tricks. 40 Decision Boundary • 0 hidden layers: linear classifier – Hyperplanes y x1 x2 Example from to Eric Postma via Jason Eisner 41 Decision Boundary • 1 hidden layer – Boundary of convex region (open or closed) y x1 x2 Example from to Eric Postma via Jason Eisner 42 Decision Boundary y • 2 hidden layers – Combinations of convex regions x1 x2 Example from to Eric Postma via Jason Eisner 43 Decision Different Levels of Functions Abstraction • We don’t know the “right” levels of abstraction • So let the model figure it out! 44 Example from Honglak Lee (NIPS 2010) Decision Different Levels of Functions Abstraction Face Recognition: – Deep Network can build up increasingly higher levels of abstraction – Lines, parts, regions 45 Example from Honglak Lee (NIPS 2010) Decision Different Levels of Functions Abstraction Output … Hidden Layer 3 … Hidden Layer 2 … Hidden Layer 1 … Input 46 Example from Honglak Lee (NIPS 2010).
Recommended publications
  • Backpropagation and Deep Learning in the Brain
    Backpropagation and Deep Learning in the Brain Simons Institute -- Computational Theories of the Brain 2018 Timothy Lillicrap DeepMind, UCL With: Sergey Bartunov, Adam Santoro, Jordan Guerguiev, Blake Richards, Luke Marris, Daniel Cownden, Colin Akerman, Douglas Tweed, Geoffrey Hinton The “credit assignment” problem The solution in artificial networks: backprop Credit assignment by backprop works well in practice and shows up in virtually all of the state-of-the-art supervised, unsupervised, and reinforcement learning algorithms. Why Isn’t Backprop “Biologically Plausible”? Why Isn’t Backprop “Biologically Plausible”? Neuroscience Evidence for Backprop in the Brain? A spectrum of credit assignment algorithms: A spectrum of credit assignment algorithms: A spectrum of credit assignment algorithms: How to convince a neuroscientist that the cortex is learning via [something like] backprop - To convince a machine learning researcher, an appeal to variance in gradient estimates might be enough. - But this is rarely enough to convince a neuroscientist. - So what lines of argument help? How to convince a neuroscientist that the cortex is learning via [something like] backprop - What do I mean by “something like backprop”?: - That learning is achieved across multiple layers by sending information from neurons closer to the output back to “earlier” layers to help compute their synaptic updates. How to convince a neuroscientist that the cortex is learning via [something like] backprop 1. Feedback connections in cortex are ubiquitous and modify the
    [Show full text]
  • Training Autoencoders by Alternating Minimization
    Under review as a conference paper at ICLR 2018 TRAINING AUTOENCODERS BY ALTERNATING MINI- MIZATION Anonymous authors Paper under double-blind review ABSTRACT We present DANTE, a novel method for training neural networks, in particular autoencoders, using the alternating minimization principle. DANTE provides a distinct perspective in lieu of traditional gradient-based backpropagation techniques commonly used to train deep networks. It utilizes an adaptation of quasi-convex optimization techniques to cast autoencoder training as a bi-quasi-convex optimiza- tion problem. We show that for autoencoder configurations with both differentiable (e.g. sigmoid) and non-differentiable (e.g. ReLU) activation functions, we can perform the alternations very effectively. DANTE effortlessly extends to networks with multiple hidden layers and varying network configurations. In experiments on standard datasets, autoencoders trained using the proposed method were found to be very promising and competitive to traditional backpropagation techniques, both in terms of quality of solution, as well as training speed. 1 INTRODUCTION For much of the recent march of deep learning, gradient-based backpropagation methods, e.g. Stochastic Gradient Descent (SGD) and its variants, have been the mainstay of practitioners. The use of these methods, especially on vast amounts of data, has led to unprecedented progress in several areas of artificial intelligence. On one hand, the intense focus on these techniques has led to an intimate understanding of hardware requirements and code optimizations needed to execute these routines on large datasets in a scalable manner. Today, myriad off-the-shelf and highly optimized packages exist that can churn reasonably large datasets on GPU architectures with relatively mild human involvement and little bootstrap effort.
    [Show full text]
  • Q-Learning in Continuous State and Action Spaces
    -Learning in Continuous Q State and Action Spaces Chris Gaskett, David Wettergreen, and Alexander Zelinsky Robotic Systems Laboratory Department of Systems Engineering Research School of Information Sciences and Engineering The Australian National University Canberra, ACT 0200 Australia [cg dsw alex]@syseng.anu.edu.au j j Abstract. -learning can be used to learn a control policy that max- imises a scalarQ reward through interaction with the environment. - learning is commonly applied to problems with discrete states and ac-Q tions. We describe a method suitable for control tasks which require con- tinuous actions, in response to continuous states. The system consists of a neural network coupled with a novel interpolator. Simulation results are presented for a non-holonomic control task. Advantage Learning, a variation of -learning, is shown enhance learning speed and reliability for this task.Q 1 Introduction Reinforcement learning systems learn by trial-and-error which actions are most valuable in which situations (states) [1]. Feedback is provided in the form of a scalar reward signal which may be delayed. The reward signal is defined in relation to the task to be achieved; reward is given when the system is successfully achieving the task. The value is updated incrementally with experience and is defined as a discounted sum of expected future reward. The learning systems choice of actions in response to states is called its policy. Reinforcement learning lies between the extremes of supervised learning, where the policy is taught by an expert, and unsupervised learning, where no feedback is given and the task is to find structure in data.
    [Show full text]
  • 6.5 Applications of Exponential and Logarithmic Functions 469
    6.5 Applications of Exponential and Logarithmic Functions 469 6.5 Applications of Exponential and Logarithmic Functions As we mentioned in Section 6.1, exponential and logarithmic functions are used to model a wide variety of behaviors in the real world. In the examples that follow, note that while the applications are drawn from many different disciplines, the mathematics remains essentially the same. Due to the applied nature of the problems we will examine in this section, the calculator is often used to express our answers as decimal approximations. 6.5.1 Applications of Exponential Functions Perhaps the most well-known application of exponential functions comes from the financial world. Suppose you have $100 to invest at your local bank and they are offering a whopping 5 % annual percentage interest rate. This means that after one year, the bank will pay you 5% of that $100, or $100(0:05) = $5 in interest, so you now have $105.1 This is in accordance with the formula for simple interest which you have undoubtedly run across at some point before. Equation 6.1. Simple Interest The amount of interest I accrued at an annual rate r on an investmenta P after t years is I = P rt The amount A in the account after t years is given by A = P + I = P + P rt = P (1 + rt) aCalled the principal Suppose, however, that six months into the year, you hear of a better deal at a rival bank.2 Naturally, you withdraw your money and try to invest it at the higher rate there.
    [Show full text]
  • Double Backpropagation for Training Autoencoders Against Adversarial Attack
    1 Double Backpropagation for Training Autoencoders against Adversarial Attack Chengjin Sun, Sizhe Chen, and Xiaolin Huang, Senior Member, IEEE Abstract—Deep learning, as widely known, is vulnerable to adversarial samples. This paper focuses on the adversarial attack on autoencoders. Safety of the autoencoders (AEs) is important because they are widely used as a compression scheme for data storage and transmission, however, the current autoencoders are easily attacked, i.e., one can slightly modify an input but has totally different codes. The vulnerability is rooted the sensitivity of the autoencoders and to enhance the robustness, we propose to adopt double backpropagation (DBP) to secure autoencoder such as VAE and DRAW. We restrict the gradient from the reconstruction image to the original one so that the autoencoder is not sensitive to trivial perturbation produced by the adversarial attack. After smoothing the gradient by DBP, we further smooth the label by Gaussian Mixture Model (GMM), aiming for accurate and robust classification. We demonstrate in MNIST, CelebA, SVHN that our method leads to a robust autoencoder resistant to attack and a robust classifier able for image transition and immune to adversarial attack if combined with GMM. Index Terms—double backpropagation, autoencoder, network robustness, GMM. F 1 INTRODUCTION N the past few years, deep neural networks have been feature [9], [10], [11], [12], [13], or network structure [3], [14], I greatly developed and successfully used in a vast of fields, [15]. such as pattern recognition, intelligent robots, automatic Adversarial attack and its defense are revolving around a control, medicine [1]. Despite the great success, researchers small ∆x and a big resulting difference between f(x + ∆x) have found the vulnerability of deep neural networks to and f(x).
    [Show full text]
  • Warm Start for Parameter Selection of Linear Classifiers
    Warm Start for Parameter Selection of Linear Classifiers Bo-Yu Chu Chia-Hua Ho Cheng-Hao Tsai Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science National Taiwan Univ., Taiwan National Taiwan Univ., Taiwan National Taiwan Univ., Taiwan [email protected] [email protected] [email protected] Chieh-Yen Lin Chih-Jen Lin Dept. of Computer Science Dept. of Computer Science National Taiwan Univ., Taiwan National Taiwan Univ., Taiwan [email protected] [email protected] ABSTRACT we may need to solve many optimization problems. Sec- In linear classification, a regularization term effectively reme- ondly, if we do not know the reasonable range of the pa- dies the overfitting problem, but selecting a good regulariza- rameters, we may need a long time to solve optimization tion parameter is usually time consuming. We consider cross problems under extreme parameter values. validation for the selection process, so several optimization In this paper, we consider using warm start to efficiently problems under different parameters must be solved. Our solve a sequence of optimization problems with different reg- aim is to devise effective warm-start strategies to efficiently ularization parameters. Warm start is a technique to reduce solve this sequence of optimization problems. We detailedly the running time of iterative methods by using the solution investigate the relationship between optimal solutions of lo- of a slightly different optimization problem as an initial point gistic regression/linear SVM and regularization parameters. for the current problem. If the initial point is close to the op- Based on the analysis, we develop an efficient tool to auto- timum, warm start is very useful.
    [Show full text]
  • Neural Networks and Backpropagation
    CS 179: LECTURE 14 NEURAL NETWORKS AND BACKPROPAGATION LAST TIME Intro to machine learning Linear regression https://en.wikipedia.org/wiki/Linear_regression Gradient descent https://en.wikipedia.org/wiki/Gradient_descent (Linear classification = minimize cross-entropy) https://en.wikipedia.org/wiki/Cross_entropy TODAY Derivation of gradient descent for linear classifier https://en.wikipedia.org/wiki/Linear_classifier Using linear classifiers to build up neural networks Gradient descent for neural networks (Back Propagation) https://en.wikipedia.org/wiki/Backpropagation REFRESHER ON THE TASK Note “Grandmother Cell” representation for {x,y} pairs. See https://en.wikipedia.org/wiki/Grandmother_cell REFRESHER ON THE TASK Find i for zi: “Best-index” -- estimated “Grandmother Cell” Neuron Can use parallel GPU reduction to find “i” for largest value. LINEAR CLASSIFIER GRADIENT We will be going through some extra steps to derive the gradient of the linear classifier -- We’ll be using the “Softmax function” https://en.wikipedia.org/wiki/Softmax_function Similarities will be seen when we start talking about neural networks LINEAR CLASSIFIER J & GRADIENT LINEAR CLASSIFIER GRADIENT LINEAR CLASSIFIER GRADIENT LINEAR CLASSIFIER GRADIENT GRADIENT DESCENT GRADIENT DESCENT, REVIEW GRADIENT DESCENT IN ND GRADIENT DESCENT STOCHASTIC GRADIENT DESCENT STOCHASTIC GRADIENT DESCENT STOCHASTIC GRADIENT DESCENT, FOR W LIMITATIONS OF LINEAR MODELS Most real-world data is not separable by a linear decision boundary Simplest example: XOR gate What if we could combine the results of multiple linear classifiers? Combine two OR gates with an AND gate to get a XOR gate ANOTHER VIEW OF LINEAR MODELS NEURAL NETWORKS NEURAL NETWORKS EXAMPLES OF ACTIVATION FNS Note that most derivatives of tanh function will be zero! Makes for much needless computation in gradient descent! MORE ACTIVATION FUNCTIONS https://medium.com/@shrutijadon10104776/survey-on- activation-functions-for-deep-learning-9689331ba092 Tanh and sigmoid used historically.
    [Show full text]
  • Deep Learning Based Computer Generated Face Identification Using
    applied sciences Article Deep Learning Based Computer Generated Face Identification Using Convolutional Neural Network L. Minh Dang 1, Syed Ibrahim Hassan 1, Suhyeon Im 1, Jaecheol Lee 2, Sujin Lee 1 and Hyeonjoon Moon 1,* 1 Department of Computer Science and Engineering, Sejong University, Seoul 143-747, Korea; [email protected] (L.M.D.); [email protected] (S.I.H.); [email protected] (S.I.); [email protected] (S.L.) 2 Department of Information Communication Engineering, Sungkyul University, Seoul 143-747, Korea; [email protected] * Correspondence: [email protected] Received: 30 October 2018; Accepted: 10 December 2018; Published: 13 December 2018 Abstract: Generative adversarial networks (GANs) describe an emerging generative model which has made impressive progress in the last few years in generating photorealistic facial images. As the result, it has become more and more difficult to differentiate between computer-generated and real face images, even with the human’s eyes. If the generated images are used with the intent to mislead and deceive readers, it would probably cause severe ethical, moral, and legal issues. Moreover, it is challenging to collect a dataset for computer-generated face identification that is large enough for research purposes because the number of realistic computer-generated images is still limited and scattered on the internet. Thus, a development of a novel decision support system for analyzing and detecting computer-generated face images generated by the GAN network is crucial. In this paper, we propose a customized convolutional neural network, namely CGFace, which is specifically designed for the computer-generated face detection task by customizing the number of convolutional layers, so it performs well in detecting computer-generated face images.
    [Show full text]
  • Unsupervised Speech Representation Learning Using Wavenet Autoencoders Jan Chorowski, Ron J
    1 Unsupervised speech representation learning using WaveNet autoencoders Jan Chorowski, Ron J. Weiss, Samy Bengio, Aaron¨ van den Oord Abstract—We consider the task of unsupervised extraction speaker gender and identity, from phonetic content, properties of meaningful latent representations of speech by applying which are consistent with internal representations learned autoencoding neural networks to speech waveforms. The goal by speech recognizers [13], [14]. Such representations are is to learn a representation able to capture high level semantic content from the signal, e.g. phoneme identities, while being desired in several tasks, such as low resource automatic speech invariant to confounding low level details in the signal such as recognition (ASR), where only a small amount of labeled the underlying pitch contour or background noise. Since the training data is available. In such scenario, limited amounts learned representation is tuned to contain only phonetic content, of data may be sufficient to learn an acoustic model on the we resort to using a high capacity WaveNet decoder to infer representation discovered without supervision, but insufficient information discarded by the encoder from previous samples. Moreover, the behavior of autoencoder models depends on the to learn the acoustic model and a data representation in a fully kind of constraint that is applied to the latent representation. supervised manner [15], [16]. We compare three variants: a simple dimensionality reduction We focus on representations learned with autoencoders bottleneck, a Gaussian Variational Autoencoder (VAE), and a applied to raw waveforms and spectrogram features and discrete Vector Quantized VAE (VQ-VAE). We analyze the quality investigate the quality of learned representations on LibriSpeech of learned representations in terms of speaker independence, the ability to predict phonetic content, and the ability to accurately re- [17].
    [Show full text]
  • Lecture 2: Linear Classifiers
    Lecture 2: Linear Classifiers Andr´eMartins Deep Structured Learning Course, Fall 2018 Andr´eMartins (IST) Lecture 2 IST, Fall 2018 1 / 117 Course Information • Instructor: Andr´eMartins ([email protected]) • TAs/Guest Lecturers: Erick Fonseca & Vlad Niculae • Location: LT2 (North Tower, 4th floor) • Schedule: Wednesdays 14:30{18:00 • Communication: piazza.com/tecnico.ulisboa.pt/fall2018/pdeecdsl Andr´eMartins (IST) Lecture 2 IST, Fall 2018 2 / 117 Announcements Homework 1 is out! • Deadline: October 10 (two weeks from now) • Start early!!! List of potential projects will be sent out soon! • Deadline for project proposal: October 17 (three weeks from now) • Teams of 3 people Andr´eMartins (IST) Lecture 2 IST, Fall 2018 3 / 117 Today's Roadmap Before talking about deep learning, let us talk about shallow learning: • Supervised learning: binary and multi-class classification • Feature-based linear classifiers • Rosenblatt's perceptron algorithm • Linear separability and separation margin: perceptron's mistake bound • Other linear classifiers: naive Bayes, logistic regression, SVMs • Regularization and optimization • Limitations of linear classifiers: the XOR problem • Kernel trick. Gaussian and polynomial kernels. Andr´eMartins (IST) Lecture 2 IST, Fall 2018 4 / 117 Fake News Detection Task: tell if a news article / quote is fake or real. This is a binary classification problem. Andr´eMartins (IST) Lecture 2 IST, Fall 2018 5 / 117 Fake Or Real? Andr´eMartins (IST) Lecture 2 IST, Fall 2018 6 / 117 Fake Or Real? Andr´eMartins (IST) Lecture 2 IST, Fall 2018 7 / 117 Fake Or Real? Andr´eMartins (IST) Lecture 2 IST, Fall 2018 8 / 117 Fake Or Real? Andr´eMartins (IST) Lecture 2 IST, Fall 2018 9 / 117 Fake Or Real? Can a machine determine this automatically? Can be a very hard problem, since fact-checking is hard and requires combining several knowledge sources ..
    [Show full text]
  • Approaching Hanabi with Q-Learning and Evolutionary Algorithm
    St. Cloud State University theRepository at St. Cloud State Culminating Projects in Computer Science and Department of Computer Science and Information Technology Information Technology 12-2020 Approaching Hanabi with Q-Learning and Evolutionary Algorithm Joseph Palmersten [email protected] Follow this and additional works at: https://repository.stcloudstate.edu/csit_etds Part of the Computer Sciences Commons Recommended Citation Palmersten, Joseph, "Approaching Hanabi with Q-Learning and Evolutionary Algorithm" (2020). Culminating Projects in Computer Science and Information Technology. 34. https://repository.stcloudstate.edu/csit_etds/34 This Starred Paper is brought to you for free and open access by the Department of Computer Science and Information Technology at theRepository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Computer Science and Information Technology by an authorized administrator of theRepository at St. Cloud State. For more information, please contact [email protected]. Approaching Hanabi with Q-Learning and Evolutionary Algorithm by Joseph A Palmersten A Starred Paper Submitted to the Graduate Faculty of St. Cloud State University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Science December, 2020 Starred Paper Committee: Bryant Julstrom, Chairperson Donald Hamnes Jie Meichsner 2 Abstract Hanabi is a cooperative card game with hidden information that requires cooperation and communication between the players. For a machine learning agent to be successful at the Hanabi, it will have to learn how to communicate and infer information from the communication of other players. To approach the problem of Hanabi the machine learning methods of Q- learning and Evolutionary algorithm are proposed as potential solutions.
    [Show full text]
  • Matrix Calculus
    Appendix D Matrix Calculus From too much study, and from extreme passion, cometh madnesse. Isaac Newton [205, §5] − D.1 Gradient, Directional derivative, Taylor series D.1.1 Gradients Gradient of a differentiable real function f(x) : RK R with respect to its vector argument is defined uniquely in terms of partial derivatives→ ∂f(x) ∂x1 ∂f(x) , ∂x2 RK f(x) . (2053) ∇ . ∈ . ∂f(x) ∂xK while the second-order gradient of the twice differentiable real function with respect to its vector argument is traditionally called the Hessian; 2 2 2 ∂ f(x) ∂ f(x) ∂ f(x) 2 ∂x1 ∂x1∂x2 ··· ∂x1∂xK 2 2 2 ∂ f(x) ∂ f(x) ∂ f(x) 2 2 K f(x) , ∂x2∂x1 ∂x2 ··· ∂x2∂xK S (2054) ∇ . ∈ . .. 2 2 2 ∂ f(x) ∂ f(x) ∂ f(x) 2 ∂xK ∂x1 ∂xK ∂x2 ∂x ··· K interpreted ∂f(x) ∂f(x) 2 ∂ ∂ 2 ∂ f(x) ∂x1 ∂x2 ∂ f(x) = = = (2055) ∂x1∂x2 ³∂x2 ´ ³∂x1 ´ ∂x2∂x1 Dattorro, Convex Optimization Euclidean Distance Geometry, Mεβoo, 2005, v2020.02.29. 599 600 APPENDIX D. MATRIX CALCULUS The gradient of vector-valued function v(x) : R RN on real domain is a row vector → v(x) , ∂v1(x) ∂v2(x) ∂vN (x) RN (2056) ∇ ∂x ∂x ··· ∂x ∈ h i while the second-order gradient is 2 2 2 2 , ∂ v1(x) ∂ v2(x) ∂ vN (x) RN v(x) 2 2 2 (2057) ∇ ∂x ∂x ··· ∂x ∈ h i Gradient of vector-valued function h(x) : RK RN on vector domain is → ∂h1(x) ∂h2(x) ∂hN (x) ∂x1 ∂x1 ··· ∂x1 ∂h1(x) ∂h2(x) ∂hN (x) h(x) , ∂x2 ∂x2 ··· ∂x2 ∇ .
    [Show full text]