Warm Start for Parameter Selection of Linear Classifiers

Total Page:16

File Type:pdf, Size:1020Kb

Warm Start for Parameter Selection of Linear Classifiers Warm Start for Parameter Selection of Linear Classifiers Bo-Yu Chu Chia-Hua Ho Cheng-Hao Tsai Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science National Taiwan Univ., Taiwan National Taiwan Univ., Taiwan National Taiwan Univ., Taiwan [email protected] [email protected] [email protected] Chieh-Yen Lin Chih-Jen Lin Dept. of Computer Science Dept. of Computer Science National Taiwan Univ., Taiwan National Taiwan Univ., Taiwan [email protected] [email protected] ABSTRACT we may need to solve many optimization problems. Sec- In linear classification, a regularization term effectively reme- ondly, if we do not know the reasonable range of the pa- dies the overfitting problem, but selecting a good regulariza- rameters, we may need a long time to solve optimization tion parameter is usually time consuming. We consider cross problems under extreme parameter values. validation for the selection process, so several optimization In this paper, we consider using warm start to efficiently problems under different parameters must be solved. Our solve a sequence of optimization problems with different reg- aim is to devise effective warm-start strategies to efficiently ularization parameters. Warm start is a technique to reduce solve this sequence of optimization problems. We detailedly the running time of iterative methods by using the solution investigate the relationship between optimal solutions of lo- of a slightly different optimization problem as an initial point gistic regression/linear SVM and regularization parameters. for the current problem. If the initial point is close to the op- Based on the analysis, we develop an efficient tool to auto- timum, warm start is very useful. Recently, for incremental matically find a suitable parameter for users with no related and decremental learning, where a few data instances are background knowledge. added or removed, we have successfully applied the warm start technique for fast training [20]. Now for parameter selection, in contrast to the change of data, the optimiza- Keywords tion problem is slightly modified because of the parameter warm start; regularization parameter; linear classification change. Many considerations become different from those in [20]. As we will show in this paper, the relationship between 1. INTRODUCTION the optimization problem and the regularization parameter must be fully understood. Linear classifiers such as logistic regression and linear SVM Many past works have applied the warm-start technique are commonly used in machine learning and data mining. for solving optimization problems in machine learning meth- Because directly minimizing the training loss may overfit ods. For kernel SVM, [5, 15] have considered various initial the training data, the concept of regularization is usually ap- points from the solution information of the previous prob- plied. A linear classifier thus solves an optimization problem lem. While they showed effective time reduction for some that involves a parameter (often referred to as C) to balance data sets, warm start for kernel SVM has not been widely the training loss and the regularization term. Selecting the deployed because of the following reasons. regularization parameter is an important but difficult prac- - An initial point obtained using information from a related tical issue. An inappropriate setting may not only cause optimization problem may not cause fewer iterations than overfitting or underfitting, but also a lengthy training time. a naive initial point (zero in the case of kernel SVM). Several reasons make parameter selection a time-consuming - When kernels are used, SVM involves both regularization procedure. First, usually the search involves sweeping the and kernel parameters. The implementation of a warm- following sequence of parameters start technique can be complicated. For example, we of- 2 Cmin; ∆Cmin; ∆ Cmin;:::;Cmax; (1) ten cache frequently used kernel elements to avoid their repeated computation, but with the change of kernel pa- where ∆ is a given factor. At each parameter the perfor- rameters, maintaining the kernel cache is very difficult. mance must be estimated by, for example, cross validation In fact, [15] was our previous attempt to develop warm- (CV). Thus a sequence of training tasks are conducted, and start techniques for kernel SVM, but results are not mature Permission to make digital or hard copies of all or part of this work for personal or enough to be included in our popular SVM software LIBSVM classroom use is granted without fee provided that copies are not made or distributed [2]. In contrast, the situation for linear classification is sim- for profit or commercial advantage and that copies bear this notice and the full citation pler because on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or - the regularization parameter is the only parameter to be republish, to post on servers or to redistribute to lists, requires prior specific permission chosen, and and/or a fee. Request permissions from [email protected]. - as pointed out in [20] and other works, it is more flexible to KDD’15, August 11–14, 2015, Sydney, NSW, Australia. choose optimization methods for linear rather than kernel. Copyright is held by the owner/author(s). Publication rights licensed to ACM. We will show that for different optimization methods, the ACM 978-1-4503-3664-2/15/08 . $15.00. effectiveness of warm-start techniques varies. http://dx.doi.org/10.1145/2783258.2783332. In this work we focus on linear classification and make warm effective warm-start setting for fast cross validation across start an efficient tool for the parameter selection. a sequence of regularization parameters. Second, we pro- Besides warm-start techniques, other methods have been vide an automatic parameter selection tool for users with proposed for the parameter selection of kernel methods. For no background knowledge. In particular, users do not need example, Hastie et al. [9] show that for L1-loss SVM, solu- to specify a sequence of parameter candidates. tions are a piece-wise linear function of regularization pa- This paper is organized as follows. In the rest of this sec- rameters. They obtain the regularization path by updat- tion, we introduce the primal and dual formulations of linear ing solutions according to the optimality condition. This classifiers. In Section 2, we discuss the relation between op- approach basically needs to maintain and manipulate the timization problems and regularization parameters. Based kernel matrix, a situation not applicable for large data sets. on the results, we propose an effective warm-start setting to Although this difficulty may be alleviated for linear classifi- reduce the training time in Section 3. To verify our anal- cation, we still see two potential problems. First, the proce- ysis, Section 4 provides detailed experiments. The conclu- dure to obtain the path depends on optimization problems sions are in Section 5. This research work has lead to a (e.g., primal and dual) and loss functions. Second, although useful parameter-selection tool1 extended from the popular an approximate solution path can be considered [8], the reg- package LIBLINEAR [6] for linear classification. Because of ularization path may still contain too many pieces of linear space limitation, we give proofs and more experiments in functions for large data sets. Therefore, in the current study, supplementary materials.1 we do not pursue this direction for the parameter selection of linear classification. Another approach for parameter se- 1.1 Primal and Dual Formulations lection is to minimize a function of parameters that approx- Although linear classification such as logistic regression imates the error (e.g., [18, 3, 4]). However, minimizing the (LR) and linear SVM have been well studied in literatures estimation may not lead to the the best parameters, and (e.g., a survey in [22]), for easy discussion we briefly list their the implementation of a two-level optimization procedure primal and dual formulations by mainly following the de- is complicated. Because linear classifiers involves a single scription in [20, Section 2]. Consider (label, feature-vector) n parameter C, simpler approaches might be appropriate. pairs of training data (yi; xi) 2 f−1; 1g × R ; i = 1; : : : ; l. While traditional linear classification considers L2 regu- A linear classifier obtains its model by solving the following larization (see formulations in Section 1.1), recently L1 reg- optimization problem. ularization has been popular because of its sparse model. 1 Warm start may be very useful for training L1-regularized min f(w) ≡ kwk2 + CL(w); (2) w 2 problems because some variables may remain to be zero after the change of parameters. In [13, 7], warm start is applied to where speed up two optimization methods: interior point method Xl L(w) ≡ ξ(w; xi; yi); and GLMNET, respectively. However, these works consider i=1 warm start as a trick without giving a full study on parame- is the sum of training losses, ξ(w; x; y) is the loss function, ter selection. They investigate neither the range of parame- and C is a user-specified regularization parameter to balance ters nor the relation between optimization problems and pa- the regularization term kwk2=2 and the loss term L(w). LR rameters. Another work [19] proposes a screening approach and linear SVM consider the following loss functions. that pre-identifies some zero elements in the final solution. 8 T Then a smaller optimization problem is solved. They ap- log(1 + e−yw x) logistic (LR) loss, <> ply warm-start techniques to keep track of nonzero elements ξ(w; x; y) ≡ max(0; 1 − ywT x) L1 loss, (3) of the solutions under different parameters. However, the :>max(0; 1 − ywT x)2 L2 loss. screening approach is not applicable to L2-regularized clas- sifiers because of the lack of sparsity.
Recommended publications
  • Neural Networks and Backpropagation
    CS 179: LECTURE 14 NEURAL NETWORKS AND BACKPROPAGATION LAST TIME Intro to machine learning Linear regression https://en.wikipedia.org/wiki/Linear_regression Gradient descent https://en.wikipedia.org/wiki/Gradient_descent (Linear classification = minimize cross-entropy) https://en.wikipedia.org/wiki/Cross_entropy TODAY Derivation of gradient descent for linear classifier https://en.wikipedia.org/wiki/Linear_classifier Using linear classifiers to build up neural networks Gradient descent for neural networks (Back Propagation) https://en.wikipedia.org/wiki/Backpropagation REFRESHER ON THE TASK Note “Grandmother Cell” representation for {x,y} pairs. See https://en.wikipedia.org/wiki/Grandmother_cell REFRESHER ON THE TASK Find i for zi: “Best-index” -- estimated “Grandmother Cell” Neuron Can use parallel GPU reduction to find “i” for largest value. LINEAR CLASSIFIER GRADIENT We will be going through some extra steps to derive the gradient of the linear classifier -- We’ll be using the “Softmax function” https://en.wikipedia.org/wiki/Softmax_function Similarities will be seen when we start talking about neural networks LINEAR CLASSIFIER J & GRADIENT LINEAR CLASSIFIER GRADIENT LINEAR CLASSIFIER GRADIENT LINEAR CLASSIFIER GRADIENT GRADIENT DESCENT GRADIENT DESCENT, REVIEW GRADIENT DESCENT IN ND GRADIENT DESCENT STOCHASTIC GRADIENT DESCENT STOCHASTIC GRADIENT DESCENT STOCHASTIC GRADIENT DESCENT, FOR W LIMITATIONS OF LINEAR MODELS Most real-world data is not separable by a linear decision boundary Simplest example: XOR gate What if we could combine the results of multiple linear classifiers? Combine two OR gates with an AND gate to get a XOR gate ANOTHER VIEW OF LINEAR MODELS NEURAL NETWORKS NEURAL NETWORKS EXAMPLES OF ACTIVATION FNS Note that most derivatives of tanh function will be zero! Makes for much needless computation in gradient descent! MORE ACTIVATION FUNCTIONS https://medium.com/@shrutijadon10104776/survey-on- activation-functions-for-deep-learning-9689331ba092 Tanh and sigmoid used historically.
    [Show full text]
  • Lecture 2: Linear Classifiers
    Lecture 2: Linear Classifiers Andr´eMartins Deep Structured Learning Course, Fall 2018 Andr´eMartins (IST) Lecture 2 IST, Fall 2018 1 / 117 Course Information • Instructor: Andr´eMartins ([email protected]) • TAs/Guest Lecturers: Erick Fonseca & Vlad Niculae • Location: LT2 (North Tower, 4th floor) • Schedule: Wednesdays 14:30{18:00 • Communication: piazza.com/tecnico.ulisboa.pt/fall2018/pdeecdsl Andr´eMartins (IST) Lecture 2 IST, Fall 2018 2 / 117 Announcements Homework 1 is out! • Deadline: October 10 (two weeks from now) • Start early!!! List of potential projects will be sent out soon! • Deadline for project proposal: October 17 (three weeks from now) • Teams of 3 people Andr´eMartins (IST) Lecture 2 IST, Fall 2018 3 / 117 Today's Roadmap Before talking about deep learning, let us talk about shallow learning: • Supervised learning: binary and multi-class classification • Feature-based linear classifiers • Rosenblatt's perceptron algorithm • Linear separability and separation margin: perceptron's mistake bound • Other linear classifiers: naive Bayes, logistic regression, SVMs • Regularization and optimization • Limitations of linear classifiers: the XOR problem • Kernel trick. Gaussian and polynomial kernels. Andr´eMartins (IST) Lecture 2 IST, Fall 2018 4 / 117 Fake News Detection Task: tell if a news article / quote is fake or real. This is a binary classification problem. Andr´eMartins (IST) Lecture 2 IST, Fall 2018 5 / 117 Fake Or Real? Andr´eMartins (IST) Lecture 2 IST, Fall 2018 6 / 117 Fake Or Real? Andr´eMartins (IST) Lecture 2 IST, Fall 2018 7 / 117 Fake Or Real? Andr´eMartins (IST) Lecture 2 IST, Fall 2018 8 / 117 Fake Or Real? Andr´eMartins (IST) Lecture 2 IST, Fall 2018 9 / 117 Fake Or Real? Can a machine determine this automatically? Can be a very hard problem, since fact-checking is hard and requires combining several knowledge sources ..
    [Show full text]
  • Hyperplane Based Classification: Perceptron and (Intro
    Hyperplane based Classification: Perceptron and (Intro to) Support Vector Machines Piyush Rai CS5350/6350: Machine Learning September 8, 2011 (CS5350/6350) Hyperplane based Classification September8,2011 1/20 Hyperplane Separates a D-dimensional space into two half-spaces Defined by an outward pointing normal vector w RD ∈ (CS5350/6350) Hyperplane based Classification September8,2011 2/20 Hyperplane Separates a D-dimensional space into two half-spaces Defined by an outward pointing normal vector w RD ∈ w is orthogonal to any vector lying on the hyperplane (CS5350/6350) Hyperplane based Classification September8,2011 2/20 Hyperplane Separates a D-dimensional space into two half-spaces Defined by an outward pointing normal vector w RD ∈ w is orthogonal to any vector lying on the hyperplane Assumption: The hyperplane passes through origin. (CS5350/6350) Hyperplane based Classification September8,2011 2/20 Hyperplane Separates a D-dimensional space into two half-spaces Defined by an outward pointing normal vector w RD ∈ w is orthogonal to any vector lying on the hyperplane Assumption: The hyperplane passes through origin. If not, have a bias term b; we will then need both w and b to define it b > 0 means moving it parallely along w (b < 0 means in opposite direction) (CS5350/6350) Hyperplane based Classification September8,2011 2/20 Linear Classification via Hyperplanes Linear Classifiers: Represent the decision boundary by a hyperplane w For binary classification, w is assumed to point towards the positive class (CS5350/6350) Hyperplane based Classification
    [Show full text]
  • 2 Linear Classifiers and Perceptrons
    Linear Classifiers and Perceptrons 7 2 Linear Classifiers and Perceptrons CLASSIFIERS You are given sample of n observations, each with d features [aka predictors]. Some observations belong to class C; some do not. Example: Observations are bank loans Features are income & age (d = 2) Some are in class “defaulted,” some are not Goal: Predict whether future borrowers will default, based on their income & age. Represent each observation as a point in d-dimensional space, called a sample point / a feature vector / independent variables. overfitting X X X X X X X C X X X X X C X C C X C C X C X C C C income income income X C C X C X C X X X C C X C C C X C C C C C age age age [Draw this by hand; decision boundaries last. classify3.pdf ] [We draw these lines/curves separating C’s from X’s. Then we use these curves to predict which future borrowers will default. In the last example, though, we’re probably overfitting, which could hurt our predic- tions.] decision boundary: the boundary chosen by our classifier to separate items in the class from those not. overfitting: When sinuous decision boundary fits sample points so well that it doesn’t classify future points well. [A reminder that underlined phrases are definitions, worth memorizing.] Some (not all) classifiers work by computing a decision function: A function f (x) that maps a point x to a scalar such that f (x) > 0 if x class C; 2 f (x) 0 if x < class C.
    [Show full text]
  • Machine Learning Empirical Risk Minimization
    Machine Learning Empirical Risk Minimization Dmitrij Schlesinger WS2014/2015, 08.12.2014 Recap – tasks considered before n For a training dataset L = (xl, yl) ... with xl ∈ R (data) and yl ∈ {+1, −1} (classes) fing a separating hyperplane yl · [hw, xli + b] ≥ 0 ∀l → Perceptron algorithm The goal is to fing a "corridor" (stripe) of the maximal width that separates the data → Large Margin learning, linear SVM 1 kwk2 → min 2 w s.t. yl[hw, xli + b] ≥ 1 In both cases the data is assumed to be separable. What if not? ML: Empirical Risk Minimization 08.12.2014 2 Empirical Risk Minimization Let a loss function C(y, y0) be given that penalizes deviations between the true class and the estimated one (like the loss in the Bayesian Decision theory). The Empirical Risk of a decision strategy is the total loss over the training set: X R(e) = C yl, e(xl) → min e l It should bi minimized with respect to the decision strategy e. Special case (today): – the set of decisions is {+1, −1} – the loss is the delta-function C(y, y0) = δ(y 6= y0) – the decision strategy can be expressed in the form e(x) = sign f(x) with an evaluation function f : X → R Example: f(x) = hw, xi − b is a linear classifier. ML: Empirical Risk Minimization 08.12.2014 3 Hinge Loss The problem: the subject is not convex The way out: replace the real loss by its convex upper bound ← example for y = 1 (for y = −1 it should be flipped) δ y 6= sign f(x) ≤ max 0, 1 − y · f(x) It is called Hinge Loss ML: Empirical Risk Minimization 08.12.2014 4 Sub-gradient algorithm Let the evaluation function be parameterized, i.e.
    [Show full text]
  • Using Linear Classifier Probes
    Under review as a conference paper at ICLR 2017 UNDERSTANDING INTERMEDIATE LAYERS USING LINEAR CLASSIFIER PROBES Guillaume Alain & Yoshua Bengio Department of Computer Science and Operations Research Universite´ de Montreal´ Montreal, QC. H3C 3J7 [email protected] ABSTRACT Neural network models have a reputation for being black boxes. We propose a new method to better understand the roles and dynamics of the intermediate layers. This has direct consequences on the design of such models and it enables the expert to be able to justify certain heuristics (such as adding auxiliary losses in middle layers). Our method uses linear classifiers, referred to as “probes”, where a probe can only use the hidden units of a given intermediate layer as discriminating features. Moreover, these probes cannot affect the training phase of a model, and they are generally added after training. They allow the user to visualize the state of the model at multiple steps of training. We demonstrate how this can be used to develop a better intuition about models and to diagnose potential problems. 1 INTRODUCTION The recent history of deep neural networks features an impressive number of new methods and technological improvements to allow the training of deeper and more powerful networks. Despite this, models still have a reputation for being black boxes. Neural networks are criticized for their lack of interpretability, which is a tradeoff that we accept because of their amazing performance on many tasks. Efforts have been made to identify the role played by each layer, but it can be hard to find a meaning to individual layers.
    [Show full text]
  • Chapter 2 Classification
    Chapter 2 Classification In this chapter we study one of the most basic topics in machine learning called classi- fication. By classification we meant a supervised learning procedure where we try to classify a sample based on a model learned from the data in a training dataset. The goal of this chapter is to understand the general principle of classification, to explore various methodologies so that we can do classification, and to make connections between different methods. 2.1 Discriminant Function Basic Terminologies A classification method always starts with a pair of variables (x; y). The first variable x 2 X ⊂ Rd is an input vector. The set X is called the input space. Depending on the application, an input could the intensity of a pixel, a wavelet coefficient, the phase angle of wave, or anything we want to model. We assume that each input vector has a dimensionality d and d is finite. The second variable y 2 f1; : : : ; kg = Y denotes the class label of the classes fC1;:::; Ckg. The choice of the class labels is arbitrary. They do not need to be positive integers. For example, in binary classification, one can choose y 2 f0; 1g or y 2 {−1; +1g, depending which one is more convenient mathematically. In supervised learning, we assume that we have a training set D. A training set is a collection of paired variables (xj; yj), for j = 1; : : : ; n. The vector xj denotes the j-th sample input in D, and yj denotes the corresponding class label. The relationship between xj and yj is specified by the target function f : X!Y such that yj = f(xj).
    [Show full text]
  • Linear Classification Overview Logistic Regression Model I Logistic
    Overview I Logistic regression model I Linear classifiers I Gradient descent and SGD Linear classification I Multinomial logistic regression model COMS 4771 Fall 2019 0 / 27 1 / 27 Logistic regression model I Logistic regression model II d t I Suppose x is given by d real-valued features, so x R , while I Sigmoid function σ(t) := 1/(1 + e− ) ∈ y 1, +1 . I Useful property: 1 σ(t) = σ( t) ∈ {− } − − I Logistic regression model for (X,Y ): I Pr(Y = +1 X = x) = σ(xTw) | T T I Y X = x is Bernoulli (but taking values in 1, +1 rather than I Pr(Y = 1 X = x) = 1 σ(x w) = σ( x w) | {− } − | − − 0, 1 ), with “heads probability” parameter I Convenient formula: for each y 1, +1 , { } ∈ {− } 1 . Pr(Y = y X = x) = σ(yxTw). 1 + exp( xTw) | − d I w R is parameter vector of interest 1 ∈ I w not involved in marginal distribution of X (which we don’t care 0.8 much about) 0.6 0.4 0.2 0 -6 -4 -2 0 2 4 6 Figure 1: Sigmoid function 2 / 27 3 / 27 Log-odds in logistic regression model Optimal classifier in logistic regression model I Log-odds in the model is given by a linear function: I Recall that Bayes classifier is Pr(Y = +1 X = x) T ln | = x w. ? +1 if Pr(Y = +1 X = x) > 1/2 Pr(Y = 1 X = x) f (x) = | − | 1 otherwise. (− I Just like in linear regression, common to use feature expansion! d+1 If distribution of (X,Y ) comes from logistic regression model with I E.g., affine feature expansion ϕ(x) = (1, x) R I ∈ parameter w, then Bayes classifier is +1 if xTw > 0 f ?(x) = 1 otherwise.
    [Show full text]
  • Differentially Private Empirical Risk Minimization
    JournalofMachineLearningResearch12(2011)1069-1109 Submitted 6/10; Revised 2/11; Published 3/11 Differentially Private Empirical Risk Minimization Kamalika Chaudhuri [email protected] Department of Computer Science and Engineering University of California, San Diego La Jolla, CA 92093, USA Claire Monteleoni [email protected] Center for Computational Learning Systems Columbia University New York, NY 10115, USA Anand D. Sarwate [email protected] Information Theory and Applications Center University of California, San Diego La Jolla, CA 92093-0447, USA Editor: Nicolas Vayatis Abstract Privacy-preserving machine learning algorithms are crucial for the increasingly common setting in which personal data, such as medical or financial records, are analyzed. We provide general techniques to produce privacy-preserving approximations of classifiers learned via (regularized) empirical risk minimization (ERM). These algorithms are private under the ε-differential privacy definition due to Dwork et al. (2006). First we apply the output perturbation ideas of Dwork et al. (2006), to ERM classification. Then we propose a new method, objective perturbation, for privacy-preserving machine learning algorithm design. This method entails perturbing the objective function before optimizing over classifiers. If the loss and regularizer satisfy certain convexity and differentiability criteria, we prove theoretical results showing that our algorithms preserve privacy, and provide generalization bounds for linear and nonlinear kernels. We further present a privacy- preserving technique for tuning the parameters in general machine learning algorithms, thereby providing end-to-end privacy guarantees for the training process. We apply these results to produce privacy-preserving analogues of regularized logistic regression and support vector machines. We obtain encouraging results from evaluating their performance on real demographic and benchmark data sets.
    [Show full text]
  • Tutorial on Support Vector Machine (SVM) Vikramaditya Jakkula, School of EECS, Washington State University, Pullman 99164
    Tutorial on Support Vector Machine (SVM) Vikramaditya Jakkula, School of EECS, Washington State University, Pullman 99164. Abstract: In this tutorial we present a brief introduction to SVM, and we discuss about SVM from published papers, workshop materials & material collected from books and material available online on the World Wide Web. In the beginning we try to define SVM and try to talk as why SVM, with a brief overview of statistical learning theory. The mathematical formulation of SVM is presented, and theory for the implementation of SVM is briefly discussed. Finally some conclusions on SVM and application areas are included. Support Vector Machines (SVMs) are competing with Neural Networks as tools for solving pattern recognition problems. This tutorial assumes you are familiar with concepts of Linear Algebra, real analysis and also understand the working of neural networks and have some background in AI. Introduction Machine Learning is considered as a subfield of Artificial Intelligence and it is concerned with the development of techniques and methods which enable the computer to learn. In simple terms development of algorithms which enable the machine to learn and perform tasks and activities. Machine learning overlaps with statistics in many ways. Over the period of time many techniques and methodologies were developed for machine learning tasks [1]. Support Vector Machine (SVM) was first heard in 1992, introduced by Boser, Guyon, and Vapnik in COLT-92. Support vector machines (SVMs) are a set of related supervised learning methods used for classification and regression [1]. They belong to a family of generalized linear classifiers. In another terms, Support Vector Machine (SVM) is a classification and regression prediction tool that uses machine learning theory to maximize predictive accuracy while automatically avoiding over-fit to the data.
    [Show full text]
  • 2DI70 - Statistical Learning Theory Lecture Notes
    2DI70 - Statistical Learning Theory Lecture Notes Rui Castro April 3, 2018 Some of the material in these notes will be published by Cambridge University Press as Statistical Machine Learning: A Gentle Primer by Rui M. Castro and Robert D. Nowak. This early draft is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. c Rui M. Castro and Robert D. Nowak, 2017. 2 Contents Contents 2 1 Introduction 9 1.1 Learning from Data..................................9 1.1.1 Data Spaces...................................9 1.1.2 Loss Functions................................. 10 1.1.3 Probability Measure and Expectation.................... 11 1.1.4 Statistical Risk................................. 11 1.1.5 The Learning Problem............................. 12 2 Binary Classification and Regression 15 2.1 Binary Classification.................................. 15 2.2 Regression........................................ 18 2.3 Empirical Risk Minimization............................. 19 2.4 Model Complexity and Overfitting.......................... 21 2.5 Exercises........................................ 25 3 Competing Goals: approximation vs. estimation 29 3.1 Strategies To Avoid Overfitting............................ 30 3.1.1 Method of Sieves................................ 31 3.1.2 Complexity Penalization Methods...................... 32 3.1.3 Hold-out Methods............................... 33 4 Estimation of Lipschitz smooth functions 37 4.1 Setting.......................................... 37 4.2 Analysis........................................
    [Show full text]
  • Linear Classifiers 1
    Linear Classifiers 1 Christian Hardmeier (based in part on materials by Joakim Nivre and Ryan McDonald) 2018-04-05 Binary classification Input: x 2 X e. g., a document or a sentence with words x = w1w2 ::: wn, or a series of previous actions Output: y 2 Y = f−1; 1g We assume a mapping from inputs pairs x to a high-dimensional feature vector f¹xº : X! Rm To keep notation simple, we’ll write f¹xº as x 2 Rm most of the time. m For any vector v 2 R , let vj be the jth value. Features and classes We want to work in a real vector space. All features must be numerical. Numerical features are represented directly as fi¹x; yº 2 R. Boolean features are represented as fi¹x; yº 2 f0; 1g. Categorical features are translated into sets of Boolean features (one-hot representation) A data set in 2D space x2 5 4 3 2 1 x1 1 2 3 4 5 How will the next point be classified? x2 5 4 1-NN classifier 3 2 1 x1 1 2 3 4 5 How will the next point be classified? Decision tree x2 ≤ 2 x1 5 x1 x 1 > 2 4 :1 1 < x 2 3 ≤ 3 x1 x2 x1 2 1:1 ≤ x2 < 3:5 x 1 > 3 x 1 2 > 3 :5 ≤ 4 x1 x1 1 2 3 4 5 x1 x 1 > 4 How will the next point be classified? x2 5 4 Linear classifier 3 2 1 x1 1 2 3 4 5 Decision boundary of a linear classifier The decision boundary of a linear classifier is a hyperplane in feature space.
    [Show full text]