A New Cloudinid Fossil Assemblage from the Terminal Ediacaran of Nevada, USA

Total Page:16

File Type:pdf, Size:1020Kb

A New Cloudinid Fossil Assemblage from the Terminal Ediacaran of Nevada, USA Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: https://www.tandfonline.com/loi/tjsp20 A new cloudinid fossil assemblage from the terminal Ediacaran of Nevada, USA Tara Selly, James D. Schiffbauer, Sarah M. Jacquet, Emily F. Smith, Lyle L. Nelson, Brock D. Andreasen, John Warren Huntley, Michael A. Strange, Gretchen R. O’Neil, Casey A. Thater, Natalia Bykova, Michael Steiner, Ben Yang & Yaoping Cai To cite this article: Tara Selly, James D. Schiffbauer, Sarah M. Jacquet, Emily F. Smith, Lyle L. Nelson, Brock D. Andreasen, John Warren Huntley, Michael A. Strange, Gretchen R. O’Neil, Casey A. Thater, Natalia Bykova, Michael Steiner, Ben Yang & Yaoping Cai (2020) A new cloudinid fossil assemblage from the terminal Ediacaran of Nevada, USA, Journal of Systematic Palaeontology, 18:4, 357-379, DOI: 10.1080/14772019.2019.1623333 To link to this article: https://doi.org/10.1080/14772019.2019.1623333 Published online: 22 Jul 2019. Submit your article to this journal Article views: 248 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Journal of Systematic Palaeontology, 2020 Vol. 18, No. 4, 357–379, http://dx.doi.org/10.1080/14772019.2019.1623333 A new cloudinid fossil assemblage from the terminal Ediacaran of Nevada, USA à à Tara Sellya,b , James D. Schiffbauerb,a , Sarah M. Jacquetb , Emily F. Smithc , Lyle L. Nelsonc, Brock D. Andreasend,b, John Warren Huntleyb, Michael A. Strangee, Gretchen R. O’Neilf, Casey A. Thaterb, Natalia Bykovag, Michael Steinerh, Ben Yangi and Yaoping Caij aX-ray Microanalysis Core Facility, University of Missouri, Columbia, Missouri 65211, USA; bDepartment of Geological Sciences, University of Missouri, Columbia, MO 65211, USA; cEarth and Planetary Sciences, Johns Hopkins University, Baltimore, MA 21218, USA; dCollege of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA; eDepartment of Geoscience, University of Nevada, Las Vegas, NV 89154, USA; fDepartment of Geosciences, North Dakota State University, Fargo, North Dakota 58108, USA; gTrofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch Russian Academy of Sciences, Novosibirsk 630090, Russia; hFachbereich Geowissenschaften, Institut fur€ Geologische Wissenschaften, Freie Universitat€ Berlin, Berlin 12449, Germany; iInstitute of Geology, Chinese Academy of Geological Sciences Baiwanzhuang Road 26, Beijing 100037, People's Republic of China; jEarly Life Institute, State Key Laboratory of Continental Dynamics, and Department of Geology, Northwest University, Xi’an 710069, People's Republic of China (Received 11 November 2018; accepted 16 May 2019) Owing to their temporal position during the decline of the classic Ediacara biota and the appearance of the more recognizable metazoans of the Cambrian Period, the terminal Ediacaran (551–539 Ma) assemblages of tubular fossil forms hold potential to improve understanding of biotic turnover near the end of the Ediacaran Period. Cloudinid taxa, including the terminal Ediacaran index fossil Cloudina, are the most well studied of these Ediacaran tubular forms due to their global palaeogeographical distribution. Recent reports revealed ecosystems of tubicolous organisms from the Great Basin region, Nevada, USA, and assigned taxa to such genera as Conotubus, Gaojiashania and Wutubus,well known from contemporaneous Chinese deposits. Appreciating the role that these organisms may have played in the evolutionary history of metazoans and recognizing their potential global distribution, however, requires careful taxonomic study. Here, we detail pyritized fossils from the Deep Spring and Wood Canyon formations of Esmeralda and Nye counties, Nevada, USA, respectively. Our investigation focused on the most abundant tubular taxon from the Nevada sites, which was previously generically assigned to Conotubus. While outwardly similar in morphology to this Gaojiashan taxon, our investigation determines that those fossils previously figured as Conotubus are instead two distinct taxa. The first represents a new species of Saarina – Saarina hagadorni sp. nov. – a genus previously known only from the East European platform, and the second is established as a novel genus and species, Costatubus bibendi gen. et sp. nov. http://zoobank.org/urn:lsid:zoobank.org:pub:CC391194-FF96-4BDF-B9B2-E4361DA64A5B Keywords: Nevada; Ediacaran; tubular fossils; cloudinids; Saarina; Costatubus Introduction by Schiffbauer et al. 2016). While these small, tubular fossils of the terminal Ediacaran may not look as charis- The final 12 million years of the Ediacaran Period (c. matic as those from either earlier Ediacaran assemblages 551–539 Ma; Linnemann et al. 2019) represent a ful- or post-‘Cambrian Explosion’ lagerst€atten, they bore crum in the evolution of complex multicellular eukar- witness to several key ecological and environmental yotes, marking a transition between the peak diversity events at the dawn of animals (Fike et al. 2006; of the classic Ediacara biota and the subsequent rise of Marshall 2006; Schiffbauer et al. 2016; Darroch nearly all modern metazoan phyla during the Cambrian. et al. 2018). This interval is characterized by a reduced diversity of The cosmopolitan distribution and stratigraphical earlier Ediacaran forms, with only a few representative range of the terminal Ediacaran tubular fauna during the rangeomorphs, arboreomorphs and erniettomorphs decline of the classic Ediacara biota (Darroch et al. (Laflamme et al. 2013; Darroch et al. 2015), and an 2015, 2016, 2018; Schiffbauer et al. 2016) is a direct increased diversity of organisms with broadly cylindrical reflection of their ecological success and plasticity (e.g. or tubular morphologies (called the ‘wormworld fauna’ Germs 1972; Cai et al. 2014; Cortijo et al. 2015; Smith à Corresponding authors. Emails: [email protected] [email protected] # The Trustees of the Natural History Museum, London 2019. All rights reserved. Published online 22 Jul 2019 358 T. Selly et al. et al. 2017; Warren et al. 2017). Their ecological suc- biostratigraphical and ecological significance of cloudi- cess in the changing benthic ecological landscape can nomorphs in the terminal Ediacaran. With initial reports likely be attributed to several evolutionarily advanta- of a diverse tubular fauna, including specimens generic- geous characteristics – foremost of which may have ally, but loosely, assigned to Conotubus, Gaojiashania been their ability to biomineralize, even if only weakly Yang, Zhang & Lin in Lin et al., 1986 and Wutubus (providing no structural support) to lightly (providing Chen et al., 2014, from south-central Nevada (Smith improved structural integrity). The biological construc- et al. 2016, 2017), the onus now shifts towards provid- tion of external shells at least impeded attacks from ing a thorough taxonomic assessment of these fossils to another novel group of organisms during this interval – better understand their relationship to other terminal drilling predators (Bengtson & Yue 1992; Hua et al. Ediacaran tubular forms. Herein, from these Nevada 2003, 2005). Given their pivotal position in the sites, we provide formalized and detailed descriptions of evolution of biologically mediated mineralization at the two distinct nested tubular taxa. dawn of diverse metazoan life, these tubular taxa may have served as an evolutionary bridge across the Ediacaran–Cambrian transition (e.g. Yang et al. 2016; Locality, geological setting and taphonomy Han et al. 2017; Cai et al. 2017, 2019). Indeed, numer- ous biomineral tube-builders, similar in outward appear- Tubicolous fossils were collected from both float mater- ance and potentially phylogenetically related, are known ial and in situ strata from the south-central Nevada from small shelly deposits of the early Cambrian, Deep Spring and Wood Canyon formations. Deep including Feiyanella manica Han et al., 2017, Spring Formation fossils specifically came from two Multiconotubus chinensis Cai et al., 2017, Rajatubulus separate fault blocks of the Esmeralda Member at costatus (Mambetov in Missarzhevsky & Mambetov, Mount Dunfee, Esmeralda County, and Wood Canyon 1981), and various others (e.g. Yang et al. 2016; Cai Formation materials were collected from five fault et al. 2019). blocks of the lower member at the Montgomery The most renowned of the Ediacaran shell-builders, Mountains site, Nye County (Fig. 1). Cloudina Germs, 1972, is an index fossil of the terminal Ediacaran owing to its cosmopolitan distribution and Mount Dunfee relatively high preservational potential. The cloudinids, The Mount Dunfee fossil site is located c. 5 km to the more generally, are a group of tubular fossils character- east of Gold Point, Nevada, on the north-eastern side of ized by multi-layered construction and repeating growth Mount Dunfee proper. The fossils reported herein are ‘ ’ units, usually described as funnel-in-funnel units, or specifically found in the lower portion of measured sec- ‘ ’ collars. While the terminology cloudinid should refer tion E1421 of Smith et al.(2016) within the Esmeralda specifically to members of the Family Cloudinidae Member of the Deep Spring Formation. This locality is Hahn & Pflug, 1985 (including the genera Cloudina and one of the most distal, carbonate-dominated sections of Conotubus Zhang & Lin in Lin et al., 1986), its usage terminal Ediacaran–lower Cambrian strata preserved in in the
Recommended publications
  • Discovery of Bilaterian-Type Through-Guts in Cloudinomorphs from the Terminal Ediacaran Period
    ARTICLE https://doi.org/10.1038/s41467-019-13882-z OPEN Discovery of bilaterian-type through-guts in cloudinomorphs from the terminal Ediacaran Period James D. Schiffbauer 1,2*, Tara Selly 1,2*, Sarah M. Jacquet 1, Rachel A. Merz3, Lyle L. Nelson4, Michael A. Strange5, Yaoping Cai6 & Emily F. Smith 4 The fossil record of the terminal Ediacaran Period is typified by the iconic index fossil Cloudina and its relatives. These tube-dwellers are presumed to be primitive metazoans, but resolving 1234567890():,; their phylogenetic identity has remained a point of contention. The root of the problem is a lack of diagnostic features; that is, phylogenetic interpretations have largely centered on the only available source of information—their external tubes. Here, using tomographic analyses of fossils from the Wood Canyon Formation (Nevada, USA), we report evidence of recog- nizable soft tissues within their external tubes. Although alternative interpretations are plausible, these internal cylindrical structures may be most appropriately interpreted as digestive tracts, which would be, to date, the earliest-known occurrence of such features in the fossil record. If this interpretation is correct, their nature as one-way through-guts not only provides evidence for establishing these fossils as definitive bilaterians but also has implications for the long-debated phylogenetic position of the broader cloudinomorphs. 1 Department of Geological Sciences, University of Missouri, Columbia, MO 65211, USA. 2 X-ray Microanalysis Core, University of Missouri, Columbia, MO 65211, USA. 3 Biology Department, Swarthmore College, Swarthmore, PA 19081, USA. 4 Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
    [Show full text]
  • The Ediacaran Frondose Fossil Arborea from the Shibantan Limestone of South China
    Journal of Paleontology, 94(6), 2020, p. 1034–1050 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.43 The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China Xiaopeng Wang,1,3 Ke Pang,1,4* Zhe Chen,1,4* Bin Wan,1,4 Shuhai Xiao,2 Chuanming Zhou,1,4 and Xunlai Yuan1,4,5 1State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China <[email protected]><[email protected]> <[email protected]><[email protected]><[email protected]><[email protected]> 2Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA <[email protected]> 3University of Science and Technology of China, Hefei 230026, China 4University of Chinese Academy of Sciences, Beijing 100049, China 5Center for Research and Education on Biological Evolution and Environment, Nanjing University, Nanjing 210023, China Abstract.—Bituminous limestone of the Ediacaran Shibantan Member of the Dengying Formation (551–539 Ma) in the Yangtze Gorges area contains a rare carbonate-hosted Ediacara-type macrofossil assemblage. This assemblage is domi- nated by the tubular fossil Wutubus Chen et al., 2014 and discoidal fossils, e.g., Hiemalora Fedonkin, 1982 and Aspidella Billings, 1872, but frondose organisms such as Charnia Ford, 1958, Rangea Gürich, 1929, and Arborea Glaessner and Wade, 1966 are also present.
    [Show full text]
  • The Polyp and the Medusa Life on the Move
    The Polyp and the Medusa Life on the Move Millions of years ago, unlikely pioneers sparked a revolution. Cnidarians set animal life in motion. So much of what we take for granted today began with Cnidarians. FROM SHAPE OF LIFE The Polyp and the Medusa Life on the Move Take a moment to follow these instructions: Raise your right hand in front of your eyes. Make a fist. Make the peace sign with your first and second fingers. Make a fist again. Open your hand. Read the next paragraph. What you just did was exhibit a trait we associate with all animals, a trait called, quite simply, movement. And not only did you just move your hand, but you moved it after passing the idea of movement through your brain and nerve cells to command the muscles in your hand to obey. To do this, your body needs muscles to move and nerves to transmit and coordinate movement, whether voluntary or involuntary. The bit of business involved in making fists and peace signs is pretty complex behavior, but it pales by comparison with the suites of thought and movement associated with throwing a curve ball, walking, swimming, dancing, breathing, landing an airplane, running down prey, or fleeing a predator. But whether by thought or instinct, you and all animals except sponges have the ability to move and to carry out complex sequences of movement called behavior. In fact, movement is such a basic part of being an animal that we tend to define animalness as having the ability to move and behave.
    [Show full text]
  • Cassiopea Xamachana (Upside-Down Jellyfish)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Cassiopea xamachana (Upside-down Jellyfish) Order: Rhizostomeae (Eight-armed Jellyfish) Class: Scyphozoa (Jellyfish) Phylum: Cnidaria (Corals, Sea Anemones and Jellyfish) Fig. 1. Upside-down jellyfish, Cassiopea xamachana. [http://images.fineartamerica.com/images-medium-large/upside-down-jellyfish-cassiopea-sp-pete-oxford.jpg, downloaded 9 March 2016] TRAITS. Cassiopea xamachana, also known as the upside-down jellyfish, is quite large with a dominant medusa (adult jellyfish phase) about 30cm in diameter (Encyclopaedia of Life, 2014), resembling more of a sea anemone than a typical jellyfish. The name is associated with the fact that the umbrella (bell-shaped part) settles on the bottom of the sea floor while its frilly tentacles face upwards (Fig. 1). The saucer-shaped umbrella is relatively flat with a well-defined central depression on the upper surface (exumbrella), the side opposite the tentacles (Berryman, 2016). This depression gives the jellyfish the ability to stick to the bottom of the sea floor while it pulsates gently, via a suction action. There are eight oral arms (tentacles) around the mouth, branched elaborately in four pairs. The most commonly seen colour is a greenish grey-blue, due to the presence of zooxanthellae (algae) embedded in the mesoglea (jelly) of the body, and especially the arms. The mobile medusa stage is dioecious, which means that there are separate males and females, although there are no features which distinguish the sexes. The polyp stage is sessile (fixed to the substrate) and small (Sterrer, 1986). UWI The Online Guide to the Animals of Trinidad and Tobago Ecology DISTRIBUTION.
    [Show full text]
  • PROGRAMME ABSTRACTS AGM Papers
    The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia, Spain PROGRAMME ABSTRACTS AGM papers Palaeontological Association 6 ANNUAL MEETING ANNUAL MEETING Palaeontological Association 1 The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia The programme and abstracts for the 63rd Annual Meeting of the Palaeontological Association are provided after the following information and summary of the meeting. An easy-to-navigate pocket guide to the Meeting is also available to delegates. Venue The Annual Meeting will take place in the faculties of Philosophy and Philology on the Blasco Ibañez Campus of the University of Valencia. The Symposium will take place in the Salon Actos Manuel Sanchis Guarner in the Faculty of Philology. The main meeting will take place in this and a nearby lecture theatre (Salon Actos, Faculty of Philosophy). There is a Metro stop just a few metres from the campus that connects with the centre of the city in 5-10 minutes (Line 3-Facultats). Alternatively, the campus is a 20-25 minute walk from the ‘old town’. Registration Registration will be possible before and during the Symposium at the entrance to the Salon Actos in the Faculty of Philosophy. During the main meeting the registration desk will continue to be available in the Faculty of Philosophy. Oral Presentations All speakers (apart from the symposium speakers) have been allocated 15 minutes. It is therefore expected that you prepare to speak for no more than 12 minutes to allow time for questions and switching between presenters. We have a number of parallel sessions in nearby lecture theatres so timing will be especially important.
    [Show full text]
  • Fossils from the Lower Cambrian of Bornholm
    CHR. POULSEN FOSSILS FROM THE LOWER CAMBRIAN OF BORNHOLM Det Kongelige Danske Videnskabernes Selskab Matematisk-fysiske Meddelelser 36, 2 Kommissionær: Munksgaard København 1967 Synopsis A Lower Cambrian fauna from Bornholm consisting of 34 species is described. The ol- dest of the Lower Cambrian rocks, the Balka quartzite, contains trace fossils referable to Diplocraterion, Tigillites, and Skolithos, and in addition to these some worm remains com- parable to Byronia MATTHEW. After a hiatus follows siltstone („Green shales” of several au- thors) and Bispebjerg sandstone which represent one single cycle of sedimentation. The silt- stone contains a rich fauna which is essentially endemic. Two new genera and seventeen new species are established. The Lower Cambrian age of the siltstone appears clearly from the occurrence of Fordilla troyensis WALCOTT and Hyolilhellus micans BILLINGS. The Bispebjerg sandstone has only yielded a fragment of Hyolithellus micans and a single specimen of the trace fossil Cruziana dispar LINNARSSON. The conditions of sedimentation and the stratigra- phical position of the Bornholm Lower Cambrian are disscussed. PRINTED IN DENMARK BIANCO LUNOS BOGTRYKKERI A-S CONTENTS Page Preface 5 Introduction 6 The sediments 7 Fossils from the Balka quartzite 13 Annelida 13 Genus et sp. ind. (cf. Byronia MATTHEW) 13 Trace fossils 13 Fossils from the siltstone ("Green shales") 14 Porifera 14 Genus et sp. ind. I (cf. Pyrifonema MCov) 14 — — — — II 15 III 15 Pelecypoda 15 Fordilla Iroyensis WALCOTT 15 Genus et sp. ind. 16 Monoplacophora 17 Proplina? prfsca n. sp. 17 Pollicino? cambrica (MOBERG) 18 Gastropoda 19 Prosinuites bornholmensis n. g. et n. sp. 19 Calyptoptomatida 20 Circotheca sp.
    [Show full text]
  • Lee-Riding-2018.Pdf
    Earth-Science Reviews 181 (2018) 98–121 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Marine oxygenation, lithistid sponges, and the early history of Paleozoic T skeletal reefs ⁎ Jeong-Hyun Leea, , Robert Ridingb a Department of Geology and Earth Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea b Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA ARTICLE INFO ABSTRACT Keywords: Microbial carbonates were major components of early Paleozoic reefs until coral-stromatoporoid-bryozoan reefs Cambrian appeared in the mid-Ordovician. Microbial reefs were augmented by archaeocyath sponges for ~15 Myr in the Reef gap early Cambrian, by lithistid sponges for the remaining ~25 Myr of the Cambrian, and then by lithistid, calathiid Dysoxia and pulchrilaminid sponges for the first ~25 Myr of the Ordovician. The factors responsible for mid–late Hypoxia Cambrian microbial-lithistid sponge reef dominance remain unclear. Although oxygen increase appears to have Lithistid sponge-microbial reef significantly contributed to the early Cambrian ‘Explosion’ of marine animal life, it was followed by a prolonged period dominated by ‘greenhouse’ conditions, as sea-level rose and CO2 increased. The mid–late Cambrian was unusually warm, and these elevated temperatures can be expected to have lowered oxygen solubility, and to have promoted widespread thermal stratification resulting in marine dysoxia and hypoxia. Greenhouse condi- tions would also have stimulated carbonate platform development, locally further limiting shallow-water cir- culation. Low marine oxygenation has been linked to episodic extinctions of phytoplankton, trilobites and other metazoans during the mid–late Cambrian.
    [Show full text]
  • The Spence Shale Lagerstätte: an Important Window Into Cambrian Biodiversity
    Downloaded from http://jgs.lyellcollection.org/ by guest on September 24, 2021 Accepted Manuscript Journal of the Geological Society The Spence Shale Lagerstätte: an Important Window into Cambrian Biodiversity Julien Kimmig, Luke C. Strotz, Sara R. Kimmig, Sven O. Egenhoff & Bruce S. Lieberman DOI: https://doi.org/10.1144/jgs2018-195 Received 31 October 2018 Revised 21 February 2019 Accepted 28 February 2019 © 2019 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/). Published by The Geological Society of London. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics Supplementary material at https://doi.org/10.6084/m9.figshare.c.4423145 To cite this article, please follow the guidance at http://www.geolsoc.org.uk/onlinefirst#cit_journal Downloaded from http://jgs.lyellcollection.org/ by guest on September 24, 2021 The Spence Shale Lagerstätte: an Important Window into Cambrian Biodiversity 1* 1,2 1,3 4 1,2 Julien Kimmig , Luke C. Strotz , Sara R. Kimmig , Sven O. Egenhoff & Bruce S. Lieberman 1Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA 2 Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS, USA 3Pacific Northwest National Laboratory, Richland, WA 99354, USA 4Department of Geosciences, Colorado State University, Fort Collins, CO 80523, USA *Correspondence: [email protected] Abstract: The Spence Shale Member of the Langston Formation is a Cambrian (Miaolingian: Wuliuan) Lagerstätte in northeastern Utah and southeastern Idaho. It is older than the more well- known Wheeler and Marjum Lagerstätten from western Utah, and the Burgess Shale from Canada.
    [Show full text]
  • Curriculum Vitae Page 1 of 7 Selly
    Curriculum Vitae Page 1 of 7 Dr. Tara Selly X-ray Microanalysis Core Assistant Director / Assistant Research Professor Department of Geological Sciences University of Missouri [email protected] EDUCATION: 2018 Ph.D. in Geologic Sciences with a minor in College Teaching, Department of Geological Sciences, University of Missouri, College of Arts and Sciences 2015 M.S. in Geologic Sciences, Department of Geological Sciences, University of Missouri, College of Arts and Sciences 2013 B.A. in Geology and Biology, Geology Department, Gustavus Adolphus College EMPLOYMENT HISTORY: 2019–Current Assistant Director, X-ray Microanalysis Core Facility; Department of Geological Sciences, University of Missouri 2019–Current Assistant Research Professor, Department of Geological Sciences, University of Missouri 2018–2019 Postdoctoral Researcher, Lab Manager of the X-ray Microanalysis Core Facility; Department of Geological Sciences, University of Missouri RESEARCH INTERESTS: • Implementing advanced microscopy techniques for data analysis • Taphonomy, actualistic studies, and experimental laboratory decay to analyze fossil preservation • Ediacaran and Cambrian taxonomy PUBLICATIONS, ABSTRACTS, AND PRESENTATIONS PUBLISHED ARTICLES: 9. Yang, B., Steiner, M., Schiffbauer, J.D., Selly, T., Wu, X., and Liu, P. [2020] Ultrastructure of Ediacaran cloudinids suggests diverse taphonomic histories and affinities with non- biomineralized annelids. Scientific Reports, 10: 1–12. doi: 10.1038/s41598-019-56317-x 8. Schiffbauer, J.D., Selly, T., Jacquet, S.M., Nelson, L.L., Strange, M.A., Cai, Y., and Smith, E.F. (2020). Discovery of bilaterian-type through-guts in cloudinomorphs from the terminal Ediacaran Period. Nature Communications, 11: 1–12. doi: 10.1038/s41467-019-13882-z 7. Lekakh, S., Zhang, X., Tucker, W., Lee, H., Selly, T., and Schiffbauer, J.D.
    [Show full text]
  • Cypris 2016-2017
    CYPRIS 2016-2017 Illustrations courtesy of David Siveter For the upper image of the Silurian pentastomid crustacean Invavita piratica on the ostracod Nymphateline gravida Siveter et al., 2007. Siveter, David J., D.E.G. Briggs, Derek J. Siveter, and M.D. Sutton. 2015. A 425-million-year- old Silurian pentastomid parasitic on ostracods. Current Biology 23: 1-6. For the lower image of the Silurian ostracod Pauline avibella Siveter et al., 2012. Siveter, David J., D.E.G. Briggs, Derek J. Siveter, M.D. Sutton, and S.C. Joomun. 2013. A Silurian myodocope with preserved soft-parts: cautioning the interpretation of the shell-based ostracod record. Proceedings of the Royal Society London B, 280 20122664. DOI:10.1098/rspb.2012.2664 (published online 12 December 2012). Watermark courtesy of Carin Shinn. Table of Contents List of Correspondents Research Activities Algeria Argentina Australia Austria Belgium Brazil China Czech Republic Estonia France Germany Iceland Israel Italy Japan Luxembourg New Zealand Romania Russia Serbia Singapore Slovakia Slovenia Spain Switzerland Thailand Tunisia United Kingdom United States Meetings Requests Special Publications Research Notes Photographs and Drawings Techniques and Methods Awards New Taxa Funding Opportunities Obituaries Horst Blumenstengel Richard Forester Franz Goerlich Roger Kaesler Eugen Kempf Louis Kornicker Henri Oertli Iraja Damiani Pinto Evgenii Schornikov Michael Schudack Ian Slipper Robin Whatley Papers and Abstracts (2015-2007) 2016 2017 In press Addresses Figure courtesy of Francesco Versino,
    [Show full text]
  • Review and Prospect on the Botryoidal Structures from the Sinian Dengying Formation, Sichuan Basin, China
    Petroleum xxx (2017) 1e7 Contents lists available at ScienceDirect Petroleum journal homepage: www.keaipublishing.com/en/journals/petlm Review and prospect on the botryoidal structures from the Sinian Dengying Formation, Sichuan Basin, China * Chengbo Lian a, b, , Guanxiong Ren a, Fang Qu a, Xiucheng Tan a, b, Ling Li a, Wei Zeng a, Guang Hu a, Hong Liu a a School of Geoscience and Technology, Southwest Petroleum University, Chengdu, 610500, Sichuan, China b Department of Sedimentology and Hydrocarbon Accumulation, PetroChina Key Laboratory of Carbonate Reservoir, Southwest Petroleum University, Chengdu, 610500, Sichuan, China article info abstract Article history: Fabric of carbonate rock is the important foundation and one of main research contents for study on Received 15 March 2016 carbonate sedimentology, and has always been the attention of the academic circles. Botryoidal Received in revised form structures from the Sinian Dengying Formation in the Sichuan Basin is a kind of special carbonate 10 October 2016 fabric, the fabric is named after the shape of a grape. In this paper, from four aspects of the research Accepted 2 December 2016 status, the definition of the botryoidal structures and the related terms, the construction charac- teristics of the botryoidal structures, the component of the botryoidal structures, geochemical Keywords: characteristics and the genesis of the botryoidal structures are reviewed. It points out the current Botryoidal structures Construction research issues of botryoidal structures from the Sinian Dengying Formation in the Sichuan Basin, Lamina and put forward that future research should focus on the accurate analysis of its internal con- Genesis struction, precipitation mechanism of the major components, and the construction mechanism of botryoidal structures.
    [Show full text]
  • The Origin of Tetraradial Symmetry in Cnidarians
    The origin of tetraradial symmetry in cnidarians JERZY DZIK, ANDRZEJ BALINSKI AND YUANLIN SUN Dzik, J., Balinski, A. & Sun, Y. 2017: The origin of tetraradial symmetry in cnidarians. Lethaia, DOI: 10.1111/let.12199. Serially arranged sets of eight septa-like structures occur in the basal part of phosphatic tubes of Sphenothallus from the early Ordovician (early Floian) Fenxi- ang Formation in Hubei Province of China. They are similar in shape, location and number, to cusps in chitinous tubes of extant coronate scyphozoan polyps, which supports the widely accepted cnidarian affinity of this problematic fossil. However, unlike the recent Medusozoa, the tubes of Sphenothallus are flattened at later stages of development, showing biradial symmetry. Moreover, the septa (cusps) in Sphenothallus are obliquely arranged, which introduces a bilateral component to the tube symmetry. This makes Sphenothallus similar to the Early Cambrian Paiutitubulites, having similar septa but with even more apparent bilat- eral disposition. Biradial symmetry also characterizes the Early Cambrian tubular fossil Hexaconularia, showing a similarity to the conulariids. However, instead of being strictly tetraradial like conulariids, Hexaconularia shows hexaradial symme- try superimposed on the biradial one. A conulariid with a smooth test showing signs of the ‘origami’ plicated closure of the aperture found in the Fenxiang For- mation supports the idea that tetraradial symmetry of conulariids resulted from geometrical constrains connected with this kind of closure. Its minute basal attachment surface makes it likely that the holdfasts characterizing Sphenothallus and advanced conulariids are secondary features. This concurs with the lack of any such holdfast in the earliest Cambrian Torellella, as well as in the possibly related Olivooides and Quadrapyrgites.
    [Show full text]