Error Cascades in Collective Behavior

Total Page:16

File Type:pdf, Size:1020Kb

Error Cascades in Collective Behavior Error Cascades in Collective Behavior A Case Study of the Gradient Algorithm on 1000 Physical Agents ∗ Melvin Gauci Monica E. Ortiz* Harvard University Harvard University Cambridge, MA, USA Cambridge, MA, USA [email protected] [email protected] Michael Rubenstein Radhika Nagpal Northwestern University Harvard University Evanston, IL, USA Cambridge, MA, USA [email protected] [email protected] ABSTRACT The gradient, or hop count, algorithm is inspired by nat- ural phenomena such as the morphogen gradients present in multi-cellular development. It has several applications in multi-agent systems and sensor networks, serving as a basis for self-organized coordinate system formation, and finding shortest paths for message passing. It is a simple and well- understood algorithm in theory. However, we show here that in practice, it is highly sensitive to specific rare errors that emerge at larger scales. We implement it on a system of 1000 physical agents (Kilobot robots) that communicate asynchronously via a noisy wireless channel. We observe that spontaneous, short-lasting rare errors made by a sin- gle agent (e.g. due to message corruption) propagate spa- tially and temporally, causing cascades that severely hinder the algorithm's functionality. We develop a mathematical model for temporal error propagation and validate it with experiments on 100 agents. This work shows how multi- agent algorithms that are believed to be simple and robust Figure 1: The gradient algorithm running on 1000 physical from theoretical insight may be highly challenging to im- agents (Kilobot robots, inset). Increasing gradient values are plement on physical systems. Systematically understanding represented by the repeating cycle of colors red, magenta, and quantifying their current limitations is a first step in the blue, cyan, green, and yellow. direction of improving their robustness for implementation. 1. INTRODUCTION CCS Concepts The biological world abounds with self-organizing systems where large numbers of relatively simple agents use local in- •Computing methodologies ! Multi-agent systems; teractions to produce impressive global behaviors, such that •Hardware ! Transient errors and upsets; System-level the system as a whole is greater than the sum of its parts. fault tolerance; •Networks ! Network performance mod- These systems exhibit several properties that are highly de- eling; sirable from an engineering perspective, such as robustness, scalability, and flexibility [3, 4, 12]. Presently, however, Keywords there exists a substantial gap between the large body of lit- Complex systems; spatio-temporal error propagation; multi- erature on mathematical and computational models of self- agent systems in hardware; reality gap; Kilobots organizing systems and the small body of work on realizable physical systems that could verify the predictions made by such models. These models necessarily involve simplifica- ∗ tions, and can fail to manifest emergent behaviors that arise Co-first authors. through the intricate physical interactions and variability that exists in real systems. As such, their utility is lim- Appears in: Proceedings of the 16th International Confer- ited if the fidelity to the physical world remains untested. ence on Autonomous Agents and Multiagent Systems (AA- This leaves a wide gap in our scientific understanding { we MAS 2017), S. Das, E. Durfee, K. Larson, M. Winikoff critically need physical experimental systems to discover and (eds.), May 8{12, 2017, S~aoPaulo, Brazil. Copyright c 2017, International Foundation for Autonomous Agents and develop effective mathematical tools for predicting how such Multiagent Systems (www.ifaamas.org). All rights reserved. complex systems will scale, adapt, or fail. 1404 In this paper we take a well-known collective behavior{the represents the minimum number of hops that a message orig- gradient algorithm{and study how it behaves in an physical inating from the seed must make in order to reach that agent. system as we increase the size of the collective (Figure 1). In an ideal scenario, each agent continuously transmits This algorithm is inspired by biological phenomena such as the minimum of its received gradient values from its neigh- the morphogen gradients present in multi-cellular develop- bors, plus one. Under these conditions, the algorithm is ment [13]. It is used as a component behavior for many provably correct, and converges to a stable equilibrium in higher-level collective behaviors, such as coordinate system linear time with respect to the network's diameter. It is formation [8], message routing and programming in sensor also self-repairing; that is, if there is a change in the net- networks [3, 5, 6], and self-assembly in modular robots [3, work topology (e.g., in the location of the seed), the system 10, 11, 12]. Unlike many other collective behaviors, it is re-converges in finite time to correctly reflect this change [7]. well-understood analytically in models of multi-agent sys- In a practical scenario, such as a wireless sensor network, tems and has attractive self-stabilizing features [7, see asyn- agents communicate with each other by passing discrete chronous breadth-first search]. While theoretical models in- messages and do not operate in lock step (i.e., they are asyn- corporate some non-idealities (e.g. asynchrony, message loss, chronous) [5, 6]. Under these conditions, the gradient algo- agent failure/removal), how the algorithm behaves in real rithm is typically implemented with agents having a polling large-scale systems has not yet been tested. period during which they collect as many neighbor messages We tested the basic gradient algorithm using the Kilobot as possible. During each period, an agent collects messages robot [9], which allows us to create networks of 10 to 1000 from its neighbors, and transmits its gradient value as com- agents that communicate wirelessly with their local neigh- puted at the end of the previous period. The period duration bors. We observed the emergence of error cascades, where is chosen to be large enough so as to minimize the chance a single, short-lived agent error is amplified by correct ap- of message loss (i.e. of not receiving any message from a plication of the algorithm to cause large scale errors and neighbor a period), but not too large that it slows down the instabilities in the system. Small-scale experimental sys- gradient formation time. If an agent receives no messages tems behave as predicted by analytical models; however as (from any neighbor) during a period, it retains its gradient the network size goes up, the system shows a high level of value from the previous period. The algorithm as used in instability, and a 1000-agent network never achieves a stable this paper is presented below: gradient. We show that these cascades are caused by rare er- rors not considered before in analytical models, that exploit own value = random number (≥ 1) this algorithm's vulnerability. The rare error is amplified by min neighbor value = 1 an agent's neighbors, resulting in an error `infection' that last updated = timer rapidly spreads both temporally and spatially in a way that while (1) do is exponentially related to system scale. These error cas- if message received = 1 then cades/infections occur in small systems (e.g. 100 agents) if neighbor value < min neighbor value then but are quickly self-corrected. However, as the system size min neighbor value = neighbor value increases, the entire system exhibits instability due to am- message received = 0 plification and overlapping of cascades{a phenomenon which end is counter to expectations from previous analytical models. end We present a mathematical model that demonstrates what if timer > last updated + PERIOD then properties a rare error must have to create a cascade in the if min neighbor value < 1 then gradient algorithm, and how local connectivity amplifies the own value = min neighbor value + 1 errors spatially, and local asynchrony amplifies them tempo- min neighbor value = 1 rally. Using this model, we are able to predict the probabil- end ity of a particular agent being in error as a function of both last updated = timer the probability of such rare errors and the network size. We end validate our new model with controlled experiments where end errors are purposefully injected into a simple line network. Algorithm 1: The gradient algorithm as implemented in Our experimental case study highlights the need for in- this work. It is assumed that a \timer" variable is available termediate systems that can close the gap between existing that increases in the background at a known, fixed rate. It theory and large-scale implementation by uncovering emer- is also assumed that whenever a message from a neighbor gent behaviors and providing a basis for new theory models. arrives, an interrupt handler stores the \neighbor value" and sets the \message received" flag to 1. 2. AGENT AND GRADIENT MODEL Consider a network of spatially-distributed agents, in which 3. THE KILOBOT ROBOT each agent can communicate with its neighbors within a We implemented the gradients algorithm using the Kilo- fixed distance threshold [2, 3, 5, 6]. Within this context, bot robot [9] as a physical agent. The Kilobot is a low-cost the gradient algorithm assumes the presence of a designated robot designed for being operated in large collectives, with seed agent (see Figure 2, right) from which the gradient em- no need for individual attention. Here we use the Kilobot as anates. The seed agent has a fixed gradient value of zero. a static agent in a wireless sensor network, and will there- Each non-seed agent computes its estimated `distance' from fore only describe its communication capabilities. Kilobots the seed agent in the form of a hop count: The agent con- communicate with each other via an infrared transceiver lo- siders its neighbors within a limited visibility range, and cated at the bottom of the robot, with a communication computes its own gradient value as the minimum gradient distance of up to three body lengths.
Recommended publications
  • A Complex Adaptive Systems Perspective to Appreciative Inquiry: a Theoretical Analysis Payam Saadat George Fox University
    http://journals.sfu.ca/abr ADVANCES IN BUSINESS RESEARCH 2015, Volume 6, pages 1-13 A Complex Adaptive Systems Perspective to Appreciative Inquiry: A Theoretical Analysis Payam Saadat George Fox University Appreciate inquiry is utilized to facilitate organizational change by encouraging stakeholders to explore positives and generative capacities within their organization. In the literature, analysis of the effectiveness of AI is confined to psychological and managerial explanations such as highlighting the promotion of positive mindset and collective organizational planning. This paper will discuss a complex adaptive systems (CAS) perspective and present a new model for understanding the functionality of AI. The emphasis of this paper is placed on exploring the effects of AI on the behavior and interactions of agents/employees related to how they cope with change. An analysis of AI’s functionality through the lens of CAS reveals two critical insights: a) AI enhances adaptability to change by strengthening communication among agents, which in turn fosters the emergence of effective team arrangements and a more rapid collective response to change and b) AI possesses the potential to generate a collective memory for social systems within an organization. Furthermore, a systematic analysis of AI indicates a close connection between this method and CAS-based styles of management. This paper concludes by suggesting that AI might represent a potential method with the capacity to place organizational teams at the edge of chaos. Keywords: appreciative inquiry, organizational change, management, complex adaptive systems, edge of chaos Introduction In today’s fast-paced world where the fluctuating preferences of consumers, the growth in the global web of interdependence, and technological advancements guide the co-evolving relationship between the dominant business environment and the social systems within its domain, an organization’s capacity to cope with change in a timely manner determines its survival (Hesselbein & Goldsmith, 2006; Macready & Meyer, 1999; Senge, 2006).
    [Show full text]
  • Chapter 17: Social Change and Collective Behavior
    CHAPTER 17 SocialSocial ChangeChange andand CollectiveCollective BehaviorBehavior 566 U S Your Sections I Sociological N Imagination 1. Social Change G 2. Theoretical Perspectives on Social Change hen you see photos or films showing the Plains Indians of the 3. Collective Behavior WOld West—Sioux, Crow, and so forth—what do you think about the culture 4. Social Movements of those Native Americans? If you’re like most of us, you may assume that it had re- mained unchanged for many centuries—that these people dressed and acted in exactly Learning Objectives the same way as their ancestors. We often assume that nonindustrial soci- eties such as these stand still over time. After reading this chapter, you will be able to Actually, though, sociology teaches us that change comes to all societies. Whether by ❖ illustrate the three social processes that borrowing from other cultures, discovering contribute to social change. new ways of doing things, or creating inven- ❖ discuss how technology, population, nat- tions that ripple through society, all peoples ural environment, revolution, and war experience social change. cause cultures to change. Let’s return to the example of the Plains Indians. You may picture these tribes as ❖ describe social change as viewed by the fierce, buffalo-hunting warriors. Perhaps im- functionalist and conflict perspectives. ages of Sitting Bull and Crazy Horse astride ❖ discuss rumors, fads, and fashions. fast horses attacking Custer come to mind, ❖ compare and contrast theories of crowd leading you to think that their ancestors for centuries had also ridden horses. In fact, behavior. horses were a relatively recent introduction ❖ compare and contrast theories of social to Plains Indian culture in the 1800s.
    [Show full text]
  • Collective Behaviour
    COLLECTIVE BEHAVIOUR DEFINED COLLECTIVE BEHAVIOUR • The term "collective behavior" was first used by Robert E. Park, and employed definitively by Herbert Blumer, to refer to social processes and events which do not reflect existing social structure (laws, conventions, and institutions), but which emerge in a "spontaneous" way. Collective Behaviour defined • Collective behaviour is a meaning- creating social process in which new norms of behaviour that challenges conventional social action emerges. Examples of Collective Behaviour • Some examples of this type of behaviour include panics, crazes, hostile outbursts and social movements • Fads like hula hoop; crazes like Beatlemania; hostile outbursts like anti- war demonstrations; and Social Movements. • Some argue social movements are more sophisticated forms of collective behaviour SOCIAL MOVEMENTS • Social movements are a type of group action. They are large informal groupings of individuals and/or organizations focused on specific political or social issues, in other words, on carrying out, resisting or undoing a social change. CBs and SMs 19th C. ROOTS • Modern Western social movements became possible through education and the increased mobility of labour due to the industrialisation and urbanisation of 19th century societies Tilly’s DEFINITION SM • Charles Tilly defines social movements as a series of contentious performances, displays and campaigns by which ordinary people made collective claims on others [Tilly, 2004].]: Three major elements of SMs • For Tilly, social movements are a major vehicle for ordinary people's participation in public politics [Tilly, 2004:3]. • He argues that there are three major elements to a social movement [Tilly, 2004 THREE ELEMENTS OF SMs 1. Campaigns: a sustained, organized public effort making collective claims on target authorities; 2.
    [Show full text]
  • Threshold Models of Collective Behavior!
    Threshold Models of Collective Behavior! Mark Granovetter State University of New York at Stony Brook Models of collective behavior are developed for situations where actors have two alternatives and the costs and/or benefits of each depend on how many other actors choose which alternative. The key concept is that of "threshold": the number or proportion of others who must make one decision before a given actor does so; this is the point where net benefits begin to exceed net costs for that particular actor. Beginning with a frequency distribution of thresholds, the models allow calculation of the ultimate or "equilibrium" number making each decision. The stability of equilibrium results against various possible changes in threshold distributions is considered. Stress is placed on the importance of exact distributions for outcomes. Groups with similar average preferences may generate very different results; hence it is hazardous to infer individual dispositions from aggregate outcomes or to assume that behavior was directed by ultimately agreed-upon norms. Suggested applications are to riot behavior, innovation and rumor diffusion, strikes, voting, and migra­ tion. Issues of measurement, falsification, and verification are dis­ cussed. BACKGROUND AND DESCRIPTION OF THE MODELS Because sociological theory tends to explain behavior by institutionalized norms and values, the study of behavior inexplicable in this way occupies a peripheral position in systematic theory. Work in the subfields which embody this concern-deviance for individuals and collective behavior for groups-often consists of attempts to show what prevented the established patterns from exerting their usual sway. In the field of collective behavior, one such effort involves the assertion that new norms or beliefs "emerge" 1 This report is heavily indebted to three co-workers.
    [Show full text]
  • Information Socialtaxis and Efficient Collective Behavior Emerging In
    Information socialtaxis and efficient collective behavior emerging in groups of information-seeking agents Ehud D. Karpasa, Adi Shklarsha, and Elad Schneidmana,1 aDepartment of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel Edited by Curtis G. Callan Jr., Princeton University, Princeton, NJ, and approved April 17, 2017 (received for review October 31, 2016) Individual behavior, in biology, economics, and computer science, is highly efficient in finding a sparsely signaling source in a tur- is often described in terms of balancing exploration and exploita- bulent environment. These infotaxis search trajectories resemble tion. Foraging has been a canonical setting for studying reward the paths of foraging insects, suggesting a biological implication seeking and information gathering, from bacteria to humans, of this model. mostly focusing on individual behavior. Inspired by the gradient- In nature, many species, including bacteria (15), amoebae (16), climbing nature of chemotaxis, the infotaxis algorithm showed insects (17, 18), fish (19), birds (3), and mammals (20, 21), dis- that locally maximizing the expected information gain leads to play complex group behavior, including foraging. The mecha- efficient and ethological individual foraging. In nature, as well as nisms that underlie group behavior have been of great experi- in theoretical settings, conspecifics can be a valuable source of mental and theoretical interest, focusing on the computation that information about the environment. Whereas the nature and role each individual performs (22–24) and emergent collective behav- of interactions between animals have been studied extensively, ior (24, 25). In terms of social behavior, such models have been the design principles of information processing in such groups used to describe exploration and exploitation of the environment, are mostly unknown.
    [Show full text]
  • Society As a Complex Adaptive System
    59. Society as a CompIex Adaptive System WALTER DUCKLEY WE HAVE ARGUED at some length in another place1 istic is its functioning to maintain the given struc- that the mechanical equilibrium model and the ture of the system within pre-established limits. It organismic homeostasis models of society that involves feedback loops with its environment, and have underlain most modern sociological theory possibly information as well as pure energy inter- have outlived their usefulness. A more viable changes, but these are geared principally to self- model, one much more faithful to the kind of regubtion (structure maintenance) rather than adap- system that society is more and more recognized tation (change of system structure). The complex to k,is in process of developing out of, or is in adaptive systems {species, psychological and socio- keeping with, the modern systems perspective cultural systems) are also open and negentropic. (which we use loosely here to refer to general But they are oppn "internally" us well as externally systems research, cybernetics, information and in that the interchanges among their components communication theory, and related fields). Society, may result in significant changr.s in the nature of or the sociocultural system, is not, then, principally the components theinselves with important con- an equilibrium system or a homeostatic system, sequences for the system as a whole. And the but what we shalt simply refer to as a complex energy level that may be mobilized by the system adaptive system. is subject to relatively wide fluctuation. Internal To summarize the argument in ove~lysimplified as well as external interchanges are mediated form: Equilibria1 systems are relatively closed and characteristically by infirmation flows (via chemi- entropic.
    [Show full text]
  • A Survey on Efficient and Scalable Method for Learning Collective
    21705 Umesh B.Shingote et al./ Elixir Comp. Sci. & Engg. 67 (2014) 21705-21709 Available online at www.elixirpublishers.com (Elixir International Journal) Computer Science and Engineering Elixir Comp. Sci. & Engg. 67 (2014) 21705-21709 A survey on Efficient and Scalable method for Learning Collective Behavior Umesh B.Shingote* and Setu Chaturvedi Department of Computer Science & Engineering, Technocrats Institute of Technology, Bhopal, Madhya Pradesh, India. ARTICLE INFO ABSTRACT Article history: For the many people in world social networks are playing major role day to day life. Received: 27 January 2014; Depending on the user’s behavior and interaction with each other, the social networking Received in revised form: sites are reshaped. Growing interest and development of social network sites like Facebook, 7 February 2014; Twitter, Flicker, YouTube etc. imposing many research challenges. And hence this is Accepted: 13 February 2014; allowing researchers to do many research studies using data mining concepts. The main challenge of such online social networking websites is to find out the individuals behavior Keywords over social network. Understanding the user’s behavior on social networking websites is Social networks, called as collective behavior. There are many data mining techniques presented to identify Users Behavior, the behavior of individuals. Such methods of collective behavior allows to learn and predict Learning, the users online behavior and based on it assign the appropriate label to actor in network. Prediction of behavior, But the another main problem occurs in such methods is the networks scalability due to k-means variant, which this systems becomes poor in performance and many not be work if the network size Clustering.
    [Show full text]
  • Evolving Collective Behavior in an Artificial Ecology
    Evolving Collective Behavior in an Christopher R. Ward University of Nottingham Artificial Ecology School of Computer Science Fernand Gobet∗ University of Nottingham School of Psychology Graham Kendall University of Nottingham Abstract Collective behavior refers to coordinated group School of Computer Science motion, common to many animals. The dynamics of a group can be seen as a distributed model, each “animal” applying the same rule set. This study investigates the use of evolved sensory controllers to produce schooling behavior. A set of artificial creatures “live” in an artificial world with hazards Keywords and food. Each creature has a simple artificial neural network ALife, artificial ecology, coexistence brain that controls movement in different situations. A of prey and predator, evolution, fish, flocking, schooling, sensor chromosome encodes the network structure and weights, which may be combined using artificial evolution with another chromosome, if a creature should choose to mate. Prey and predators coevolve without an explicit fitness function for schooling to produce sophisticated, nondeterministic, behavior. The work highlights the role of species’ physiology in understanding behavior and the role of the environment in encouraging the development of sensory systems. 1 Introduction Collective behaviors such as conformity, obedience, and leadership have been studied for years in social psychology. Yet we can see primitive characteristics of these behav- iors in animals, such as fish schools, insect swarms, and bird flocks. Even across such a diverse set of species, the dynamics of the group are very similar. Partridge [18] states that collective behavior occurs when animals move “in unison, more like a single organ- ism than a collection of individuals” (p.
    [Show full text]
  • Linking Individual and Collective Behavior in Adaptive Social Networks
    week ending PRL 116, 128702 (2016) PHYSICAL REVIEW LETTERS 25 MARCH 2016 Linking Individual and Collective Behavior in Adaptive Social Networks Flávio L. Pinheiro,1,2,3 Francisco C. Santos,1,3 and Jorge M. Pacheco2,3,4 1INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, 2744-016 Porto Salvo, Portugal 2Centro de Biologia Molecular e Ambiental da Universidade do Minho, 4710-057 Braga, Portugal 3ATP-group, P-2744-016 Porto Salvo, Portugal 4Departamento de Matemática e Aplicações da Universidade do Minho, 4710-057 Braga, Portugal (Received 11 December 2015; published 24 March 2016) Adaptive social structures are known to promote the evolution of cooperation. However, up to now the characterization of the collective, population-wide dynamics resulting from the self-organization of individual strategies on a coevolving, adaptive network has remained unfeasible. Here we establish a (reversible) link between individual (micro)behavior and collective (macro)behavior for coevolutionary processes. We demonstrate that an adaptive network transforms a two-person social dilemma locally faced by individuals into a collective dynamics that resembles that associated with an N-person coordination game, whose characterization depends sensitively on the relative time scales between the entangled behavioral and network evolutions. In particular, we show that the faster the relative rate of adaptation of the network, the smaller the critical fraction of cooperators required for cooperation to prevail, thus establishing a direct link between network adaptation and the evolution of cooperation. The framework developed here is general and may be readily applied to other dynamical processes occurring on adaptive networks, notably, the spreading of contagious diseases or the diffusion of innovations.
    [Show full text]
  • Research Statement Radhika Nagpal
    Research Statement Radhika Nagpal My research interest is developing programming paradigms for robust collective behavior, inspired by biology. Cells with identical DNA cooperate to form complex structures, such as ourselves, with incredible reliability in the face of constantly dying and replacing parts. Emerging technologies are making it possi- ble to bulk-manufacture and embed millions of tiny computing and sensing agents into materials and the environment. We would like to build novel applications from these technologies, like smart materials and self-reconfiguring robots, that achieve the kind of complexity and reliability that biological systems achieve. This requires solving two problems: How do we take a high-level description of global cooperative goals and translate it into local instruc- • tions for identically-programmed agents? How do we achieve robust and predictable behavior from vast numbers of unreliable parts? • I am interested in using morphogenesis and developmental biology as a source of algorithms and general principles for organizing complex behavior from locally interacting individuals. My approach is to formalize these general principles as programming languages — with explicit primitives, means of combination, and means of abstraction — thus providing a framework for the design and analysis of self-assembling systems. My PhD dissertation is an example of using this approach for shape formation on an intelligent recon- figurable surface composed of thousands of identically-programmed agents. I developed a programming language for specifying the desired global shape at an “abstract” level, as a folding construction on a contin- uous sheet of paper, which is then automatically compiled to produce the program run by an agent.
    [Show full text]
  • Collective Irrationality and Positive Feedback
    Collective Irrationality and Positive Feedback Stamatios C. Nicolis1*, Natalia Zabzina1, Tanya Latty2, David J. T. Sumpter1 1 Mathematics Department, Uppsala University, Uppsala, Sweden, 2 School of Biological Sciences, University of Sydney, Sydney, New South Wales, Australia Abstract Recent experiments on ants and slime moulds have assessed the degree to which they make rational decisions when presented with a number of alternative food sources or shelter. Ants and slime moulds are just two examples of a wide range of species and biological processes that use positive feedback mechanisms to reach decisions. Here we use a generic, experimentally validated model of positive feedback between group members to show that the probability of taking the best of n options depends crucially on the strength of feedback. We show how the probability of choosing the best option can be maximized by applying an optimal feedback strength. Importantly, this optimal value depends on the number of options, so that when we change the number of options the preference of the group changes, producing apparent ‘‘irrationalities’’. We thus reinterpret the idea that collectives show "rational" or "irrational" preferences as being a necessary consequence of the use of positive feedback. We argue that positive feedback is a heuristic which often produces fast and accurate group decision-making, but is always susceptible to apparent irrationality when studied under particular experimental conditions. Citation: Nicolis SC, Zabzina N, Latty T, Sumpter DJT (2011) Collective Irrationality and Positive Feedback. PLoS ONE 6(4): e18901. doi:10.1371/journal. pone.0018901 Editor: Yamir Moreno, University of Zaragoza, Spain Received December 21, 2010; Accepted March 11, 2011; Published April 26, 2011 Copyright: ß 2011 Nicolis et al.
    [Show full text]
  • Collective Information Processing and Pattern Formation in Swarms, Flocks and Crowds
    Collective information processing and pattern formation in swarms, flocks and crowds Mehdi Moussaid1, 2, Simon Garnier2, Guy Theraulaz2, and Dirk Helbing1 1ETH Zurich, Swiss Federal Institute of Technology, Chair of Sociology, UNO D11, Universitätstrasse 41, 8092 Zurich, Switzerland. Phone +41 44 632 88 81; Fax +41 44 632 17 67. 2Centre de Recherches sur la Cognition Animale, UMR-CNRS 5169, Université Paul Sabatier, Bât 4R3, 118 Route de Narbonne, 31062 Toulouse cedex 9, France. Phone: +33 5 61 55 64 41 ; Fax: +33 5 61 55 61 54. Keywords: Self-organization - Social interactions - Information transfer - Living beings - Distributed cognition - Collective behaviors. 1 Abstract The spontaneous organization of collective activities in animal groups and societies has attracted a considerable amount of attention over the last decade. This kind of coordination often permits group-living species to achieve collective tasks that are far beyond single individuals capabilities. In particular, a key benefit lies in the integration of partial knowledge of the environment at the collective level. In this contribution we discuss various self-organization phenomena in animal swarms and human crowds from the point of view of information exchange among individuals. In particular, we provide a general description of collective dynamics across species and introduce a classification of these dynamics not only with respect to the way information is transferred among individuals, but also with regard to the knowledge processing at the collective level. Finally, we highlight the fact that the individuals’ ability to learn from past experiences can have a feedback effect on the collective dynamics, as experienced with the development of behavioral conventions in pedestrian crowds.
    [Show full text]