Рівень Поліморфізму Та Диференціація Популяцій Iris Pumila L

Total Page:16

File Type:pdf, Size:1020Kb

Рівень Поліморфізму Та Диференціація Популяцій Iris Pumila L УДК 575.17: 582.579.2 РІВЕНЬ ПОЛІМОРФІЗМУ ТА ДИФЕРЕНЦІАЦІЯ ПОПУЛЯЦІЙ IRIS PUMILA L. ЗАДАНИМИ ТРЬОХ ТИПІВ ПЛР-МАРКЕРІВ О.М. БУБЛИК \ І.Ю. ПАРНІКОЗАВ.А. КУНАХ1 1 Інститут молекулярної біології'і генетики НАН України, вул. Акад. Заболотного, 150, Київ, 03143, Україна 2 ДУ Національний антарктичний науковий центр МОН України, бульвар Тараса Шевченка, 16, Київ, 01601, Україна E-mail: [email protected], [email protected], [email protected] Генетичний поліморфізм рідкісного селекційно і деко­ Здебільшого для рідкісних та зникаючих ви­ ративно цінного виду Iris pumila досліджено за до­ дів обмежені відомості про геномні послідов­ помогою ПЛР-аналізу з праймерами трьох типів: на ності, тому актуальним завданням є розробка основі мікросателітних послідовностей (ISSR), послі­ ефективних підходів та вибір адекватних марке­ довностей МГЕ (IRAP та iPBS) та генів відповіді на абіотичний стрес (LP-PCR). Виявлено високий рівень рів для дослідження генетичного поліморфізму внутрішньовидового та внутрішньопопуляційного гене­ кожного нового виду. За літературними дани­ тичного поліморфізму, який не поступався значенням ми при вивченні генетичної мінливості рослин інших видів роду Iris. Основні показники генетичного широко використовують як ПЛР-маркери на поліморфізму п ’яти популяцій І. pumila з території основі послідовностей некодувальних ділянок України склали: частка поліморфних локусів (Р) — ДНК (Garrido-Cardenas et al., 2018), так і різних 26,5—68,5 %, індекс Шеннона (S) — 0,105—0,285, генне генів (Gupta, Rustgi, 2004; Soumaya et al., 2020) різноманіття (Н ) — 0,069—0,190. Залежність рівня та ретротранспозонів (Kalendaret al., 2018). При мінливості від розміру популяції була прямою у ISSR- розробці програм збереження останнім часом аналізі і оберненою за даними інших двох маркерів. Пряму залежність генетичних та географічних дис­ зростає інтерес до використання поряд із до­ танцій між популяціями виявили лише ISSR-маркери. бре вивченими і найбільш поширеними ней­ Найвищий рівень поліморфізму виявляли LP-PCR- тральними анонімними маркерами і тих, що маркери, але встановити популяційну приналежність відображають адаптивну генетичну мінливість усіх особин дозволили лише ISSR-маркери. Апробована (Rodriguez-Quilon et al., 2016; Flanagan et al., система ПЛР-маркерів може бути застосована для 2018). Саме вони дозволяють відібрати матері­ моніторингу стану генофонду, вивчення генетичної ал для збереження, який буде мати вищу стій­ структури популяцій та міграційних процесів. кість до кліматичних змін, різноманітних стре­ Ключові слова: Iris pumila і., рідкісний вид, ПЛР- сів, хвороб і в кінцевому рахунку забезпечить аналіз, генетичний поліморфізм, генетична структу­ адаптацію і виживання популяцій, а також у ра популяцій. подальшому може бути застосований у селек­ Вступ. Одним із ключових сучасних напрям­ ції для збагачення господарсько-цінних видів ків природоохоронної біології є збереження корисними ознаками (Gupta et al., 2004; Allen- генетичного різноманіття. Головним завдан­ dorf, 2017). Розуміння особливостей мінливості ням при охороні видів є збереження макси­ різних типів ДНК-маркерів і їх адекватне за­ мального еволюційного потенціалу, що може стосування може бути корисне не лише для забезпечити підтриманням найвищої можливої різнобічної характеристики генетичного полі­ генетичної мінливості. Цей підхід грунтується морфізму, а і для уточнення класифікації так­ на попередньому визначенні рівня і розподілу сономічних груп і підвищення ефективності генетичної мінливості рідкісних видів, вивчен­ застосування маркерних систем у селекцій­ ні генетичних процесів у їхніх популяціях та них програмах (Biswas et al., 2010; Mahmud et адаптації до умов довкілля. Кінцевим ета­ al., 2018). пом є розробка на основі цих даних науково У цьому дослідженні ми порівняли пошире­ обгрунтованих рекомендацій щодо збережен­ ні методи ISSR, IRAP і порівняно нові — iPBS ня та експлуатації видів (Allendorf, 2017; Frank- та LP-PCR за здатністю визначати генетичний ham et al., 2017; Holderegger et al., 2019). поліморфізм. ISSR-ПЛР (Inter-Simple Sequence Repeat) призначений для аналізу ділянок ге­ © O.M. БУБЛИК, І.Ю. ПАРНІКОЗА, В.А. КУНАХ, 2021 ному, фланкованих інвертованими повторами 42 ISSN 0564—3783. Цитологія і генетика. 2021. Т. 55. № 1 Рівень поліморфізму та диференціація популяцій Iris pumila L. мікросателітних локусів (Zietkiewicz et al., пуляційної структури та виявлення адаптивних 1994). Другий тип застосованих нами марке­ генетичних змін. рів пов’язаний із мобільними генетичними Матеріали і методи. Матеріалом для дослід­ елементами (МГЕ): [RAP (Inter-Retrotransposon ження були 49 рослин І. pumila з п’яти при­ Amplified Polymorphism) використовує прай- родних популяцій, географічне розміщення мери на основі послідовностей LTR — довгих яких охоплює широти від південного Криму кінцевих фрагментів ретротранспозонів, а до північної межі поширення виду в Україні: iPBS — на основі послідовностей праймер- 11 рослин з популяції поблизу с. Мигія (Пер- зв’язувального сайту (primer binding site) зво­ вомайський р-н Миколаївської обл.), 9 рос­ ротної транскриптази (Kalendar et al., 2010). лин з півострова Аляуди (м. Миколаїв), 10 — з Ефективність цих маркерів зумовлена присут­ околиць с. Каравеллово (до 2016 р. Коларово, ністю великої кількості ретроелементів у ге­ Жовтневий р-н Миколаївської обл.), 10 — з номах більшості рослин і їх здатністю до ут­ околиць с. Андріївка (Полтавський район, Пол­ ворення нових копій. Також ми використали тавська обл.), 9 рослин з околиць Балаклави LP-PCR (Long Primer PCR) — праймери, го­ (м. Севастополь, АР Крим). Розміри популяцій мологічні до консервативних послідовностей складали: Мигія — більше тисячі особин, Аляу­ генів відповіді на абіотичний стрес: гену теп­ ди — близько сорока, Каравеллово та Андріїв­ лового шоку Hvhspl7 та гену стресу посухи ка — близько пятидесяти, Балаклава — близько АБАЗ (Liviero et al., 2002). Функція зазначених двохсот. генів безпосередньо пов’язана із забезпечен­ ДНК виділяли за (Doyle, Doyle, 1987) із су­ ням життєздатності організму в умовах стре­ хого матеріалу за допомогою СТАБ із подаль­ су, тому мінливість, яку вони виявляють, по­ шою очисткою хлороформом. тенційно має адаптивний характер. Для генетичного аналізу були використані ві­ Об’єкт дослідження — Iris pumila L. (Irida- дібрані в попередньому дослідженні (17) прай­ ceae) — вид, який використовується у селекції мери різних типів, ефективність яких визначали та декоративному садівництві, типовий ксеро­ за показником розпізнавальна здатність DL. фіт європейської степової зони. Це багаторіч­ Показник Dl розраховували за формулою: ник, шо розмножується клонально та насін­ ням, запилюється комахами, є строго пере­ DL=1-Ip„ хреснозапильним, з низькою здатністю до роз­ де р. — частота і-го набору фрагментів (патер- повсюдження насіння. Цей вид — алополіплоїд ну) з числа утворюваних праймером (Tessier et (2п = 32), що імовірно утворився внаслідок al., 1999). Загалом було застосовано сім ISSR- природної гібридизації між /. attica (2п = 16) праймерів (tri6 = 53 °С), два IRAP-праймери and I. pseudopumila (2п =16). Внаслідок згубно­ (tri6p = 58 °С), чотири iPBS-праймери (t = го антропогенного впливу та природних фак­ 50 °С) та два LP-PCR-праймери (tri6p=55 °С). торів чисельність іриса низького скорочується, Послідовності та характеристики використаних відбувається руйнування його середовища іс­ праймерів наведено у табл. 1. нування і фрагментація ареалу. На сьогодніш­ Реакційна суміш для проведення ПЛР ній день вид охороняється на території низки об’ємом 20 мкл містила: 20 нг ДНК, 0,2 мМ областей України (Parnikoza et al., 2017), шо дНТФ, 1,25 U Taq-полімерази, 1 х (NH4)2S04 обумовлює актуальність визначення загрози буфер («Fermentas», Литва), 2 мМ MgCl2, 1 мкМ збіднення його генетичного різноманіття. праймера. На реакційну суміш нашаровували У цьому дослідженні ми ставили перед со­ 15 мкл мінеральної олії для запобігання випа­ бою подвійну мету — поглиблене дослідження ровуванню. Як негативний контроль викорис­ генетичного поліморфізму І. pumila за допомо­ товували стандартну реакційну суміш без ДНК. гою ПЛР-маркерів трьох типів — ISSR, МГЕ та ПЛР проводили в термоциклері Терцик МС2 LP-PCR — і порівняння їх ефективності для ви­ («Біотехнологія», Росія) за наступного темпе­ значення рівня мінливості, диференціації по­ ратурного режиму: 94 °С — 2 хв., 35 х (94 °С — пуляцій та окремих особин, встановлення по­ 20 с, tri6p- 30 с, 72 °С - 90 с), 72 °С - 5 хв. ISSN 0564—3783. Цитологія і генетика. 2021. І 55. № 1 43 О.М. Бублик, І.Ю. Парнікоза, В. А. Кучах Продукти ПЛР фракціонували електрофо­ нітність Нея (очікувана гетерозиготність Не) — резом у 1,5%-ному агарозному гелі в буфері розраховували за допомогою програми GenAl- 0,5*ТВЕ і візуалізували забарвленням бромис­ Ех (Peakall, Smouse, 2006). За допомогою цієї ж тим етидієм. програми у тесті Мантеля (Mantel, 1967) з 999 Кожну реакцію проводили у двох повтор- пермутаціями визначали кореляції між матри­ ностях, враховували лише чіткі і відтворювані цями генетичних та географічних дистанцій. А амплікони. На основі матриць бінарних ознак також застосовували аналіз молекулярної дис­ (наявність-відсутність амплікона) за допомо­ персії (AM OVA) для оцінки розподілу загаль­ гою програми FAMD (Schlüter, Harris, 2006) ної генетичної мінливості між трьома регіона­ розраховували генетичні відстані Жакарда між ми (Миколаївська обл., Полтавська обл., АР рослинами, на їх основі методом UPGMA бу­ Крим), п’ятьма популяціями та в їх межах. дували дендрограми генетичної подібності. Генетичну структуру популяцій
Recommended publications
  • Qrno. 1 2 3 4 5 6 7 1 CP 2903 77 100 0 Cfcl3
    QRNo. General description of Type of Tariff line code(s) affected, based on Detailed Product Description WTO Justification (e.g. National legal basis and entry into Administration, modification of previously the restriction restriction HS(2012) Article XX(g) of the GATT, etc.) force (i.e. Law, regulation or notified measures, and other comments (Symbol in and Grounds for Restriction, administrative decision) Annex 2 of e.g., Other International the Decision) Commitments (e.g. Montreal Protocol, CITES, etc) 12 3 4 5 6 7 1 Prohibition to CP 2903 77 100 0 CFCl3 (CFC-11) Trichlorofluoromethane Article XX(h) GATT Board of Eurasian Economic Import/export of these ozone destroying import/export ozone CP-X Commission substances from/to the customs territory of the destroying substances 2903 77 200 0 CF2Cl2 (CFC-12) Dichlorodifluoromethane Article 46 of the EAEU Treaty DECISION on August 16, 2012 N Eurasian Economic Union is permitted only in (excluding goods in dated 29 may 2014 and paragraphs 134 the following cases: transit) (all EAEU 2903 77 300 0 C2F3Cl3 (CFC-113) 1,1,2- 4 and 37 of the Protocol on non- On legal acts in the field of non- _to be used solely as a raw material for the countries) Trichlorotrifluoroethane tariff regulation measures against tariff regulation (as last amended at 2 production of other chemicals; third countries Annex No. 7 to the June 2016) EAEU of 29 May 2014 Annex 1 to the Decision N 134 dated 16 August 2012 Unit list of goods subject to prohibitions or restrictions on import or export by countries- members of the
    [Show full text]
  • Population Genetic Structure of Iris Pumila L. in Ukraine: Effects of Habitat Fragmentation
    ACTA BIOLOGICA CRACOVIENSIA Series Botanica 62/1: 51–61, 2020 10.24425/abcsb.2020.131665 POPULATION GENETIC STRUCTURE OF IRIS PUMILA L. IN UKRAINE: EFFECTS OF HABITAT FRAGMENTATION Olena Bublyk1 , Igor Andreev1* , Ivan Parnikoza1,2 , Viktor Kunakh1 1Institute of Molecular Biology and Genetics of NAS of Ukraine, Akad. Zabolotny str., 150, Kyiv, 03143, Ukraine 2National Antarctic Scientific Center of Ukraine, Boulevard Tarasa Shevchenka 16, 01601 Kyiv, Ukraine Received January 10, 2020; revision accepted April 17, 2020 Habitat fragmentation is one of serious threats to biodiversity of nature in today's world. The present study of a typical steppe species Iris pumila L. (Iridaceae) has analyzed the impacts of geographical isolation and population size on genetic diversity and population structure in conditions of habitat fragmentation. The key indices of population genetic variability calculated from the ISSR markers data were on average as follows: Shannon diversity index (S) – 0.188; unbiased Nei’s gene diversity (He) – 0.123; and the average measure of Jaccard’s genetic distances between individuals within populations – 58.4%. Although the largest population had significantly higher values of S and He, the small and marginal populations also showed a comparable level of variation. Most of the genetic variation of I. pumila was distributed within the populations. A strong correlation was found between Nei’s genetic distances and geographic distances between the populations. According to the Bayesian analysis, genetic structure of the populations was highly homogeneous; however, the presence of admixed genotypes indicated the possibility of gene flow between the populations at present. Keywords: conservation, genetic polymorphism, habitat fragmentation, ISSR markers, population genetics INTRODUCTION (Aguilar et al., 2008; Ewers and Didham, 2006).
    [Show full text]
  • (A) Journals with the Largest Number of Papers Reporting Estimates Of
    Supplementary Materials Figure S1. (a) Journals with the largest number of papers reporting estimates of genetic diversity derived from cpDNA markers; (b) Variation in the diversity (Shannon-Wiener index) of the journals publishing studies on cpDNA markers over time. Figure S2. (a) The number of publications containing estimates of genetic diversity obtained using cpDNA markers, in relation to the nationality of the corresponding author; (b) The number of publications on genetic diversity based on cpDNA markers, according to the geographic region focused on by the study. Figure S3. Classification of the angiosperm species investigated in the papers that analyzed genetic diversity using cpDNA markers: (a) Life mode; (b) Habitat specialization; (c) Geographic distribution; (d) Reproductive cycle; (e) Type of flower, and (f) Type of pollinator. Table S1. Plant species identified in the publications containing estimates of genetic diversity obtained from the use of cpDNA sequences as molecular markers. Group Family Species Algae Gigartinaceae Mazzaella laminarioides Angiospermae Typhaceae Typha laxmannii Angiospermae Typhaceae Typha orientalis Angiospermae Typhaceae Typha angustifolia Angiospermae Typhaceae Typha latifolia Angiospermae Araliaceae Eleutherococcus sessiliflowerus Angiospermae Polygonaceae Atraphaxis bracteata Angiospermae Plumbaginaceae Armeria pungens Angiospermae Aristolochiaceae Aristolochia kaempferi Angiospermae Polygonaceae Atraphaxis compacta Angiospermae Apocynaceae Lagochilus macrodontus Angiospermae Polygonaceae Atraphaxis
    [Show full text]
  • José Guadalupe García-Franco
    CURRICULUM VITAE JOSÉ GUADALUPE GARCÍA-FRANCO 20/08/2015 Curriculun Vitae García-Franco Contenido 1. DATOS PERSONALES ..................................................................................................................... 5 2. DATOS LABORALES ....................................................................................................................... 5 3. FORMACIÓN PROFESIONAL ............................................................................................................ 5 3.1. Licenciatura: .......................................................................................................................... 5 3.2. Maestría: ................................................................................................................................ 5 3.3. Doctorado: ............................................................................................................................. 5 4. PERTENENCIA AL SISTEMA NACIONAL DE INVESTIGADORES ......................................................... 5 5. DOMINIO DE IDIOMAS EXTRANJEROS ............................................................................................ 5 6. BECAS OBTENIDAS PARA SU FORMACIÓN PROFESIONAL ............................................................... 5 7. EXPERIENCIA LABORAL ................................................................................................................ 6 8. ASISTENCIA A CURSOS Y TALLERES DE CAPACITACIÓN .............................................................. 6 9.
    [Show full text]
  • 12.2% 122,000 135M Top 1% 154 4,800
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE We are IntechOpen, provided by IntechOpen the world’s leading publisher of Open Access books Built by scientists, for scientists 4,800 122,000 135M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com 18 Living on the Edge: Various Modes of Persistence at the Range Margins of Some Far Eastern Species Elena Artyukova, Marina Kozyrenko, Olga Koren, Alla Kholina, Olga Nakonechnaya and Yuri Zhuravlev Institute of Biology and Soil Science, Far East Branch of Russian Academy of Sciences Russia 1. Introduction Present-day patterns of plant distribution have been formed under the influence of various biotic and abiotic factors. Plant distribution reflects the habitat preferences of species and the outcome of their competition as well as the complex evolutionary processes resulting in the specificity of mating systems, the genetic structure of different species and other aspects of species biology. Together, these factors determine the current ranges and distributions of plant species. At the edge of a species' range, the significance of particular interactions with the environment becomes more pronounced. However, our understanding of this class of interactions is limited. There is debate about whether these interactions represent a distinct and ordered set of related phenomena or whether they are unrelated and without order.
    [Show full text]
  • Various Modes of Persistence at the Range Margins of Some Far Eastern Species
    18 Living on the Edge: Various Modes of Persistence at the Range Margins of Some Far Eastern Species Elena Artyukova, Marina Kozyrenko, Olga Koren, Alla Kholina, Olga Nakonechnaya and Yuri Zhuravlev Institute of Biology and Soil Science, Far East Branch of Russian Academy of Sciences Russia 1. Introduction Present-day patterns of plant distribution have been formed under the influence of various biotic and abiotic factors. Plant distribution reflects the habitat preferences of species and the outcome of their competition as well as the complex evolutionary processes resulting in the specificity of mating systems, the genetic structure of different species and other aspects of species biology. Together, these factors determine the current ranges and distributions of plant species. At the edge of a species' range, the significance of particular interactions with the environment becomes more pronounced. However, our understanding of this class of interactions is limited. There is debate about whether these interactions represent a distinct and ordered set of related phenomena or whether they are unrelated and without order. Different approaches to this problem are needed in different situations. Understanding the processes of microevolution in species at the edges of their ranges is of great interest, particularly in view of the continuing decline in worldwide biodiversity and ongoing and future climate changes. When the area of a plant's habitat is sufficient, most populations exist in a relatively stable condition, and changes in their genetic structure follow slow processes, such as gene flow and genetic drift. However, in populations growing at the edge of their range, the rates of genetic processes can change dramatically.
    [Show full text]
  • Plastid DNA Variation of the Endemic Species Oxytropis Glandulosa Turcz
    Turkish Journal of Botany Turk J Bot (2018) 42: 38-50 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1706-11 Plastid DNA variation of the endemic species Oxytropis glandulosa Turcz. (Fabaceae) 1, 1 1 2 3 2 Alla KHOLINA *, Marina KOZYRENKO , Elena ARTYUKOVA , Denis SANDANOV , Inessa SELYUTINA , Daba CHIMITOV 1 Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia 2 Institute of General and Experimental Biology, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Russia 3 Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Received: 06.06.2017 Accepted/Published Online: 15.09.2017 Final Version: 11.01.2018 Abstract: Oxytropis glandulosa Turcz. (Fabaceae) is a rare perennial plant endemic to Buryatia (Russia). We sequenced three intergenic spacers (the psbA–trnH, trnL–trnF, and trnS–trnG) of chloroplast DNA (cpDNA) in specimens of four populations from two geographic regions (Barguzin and Yeravna depressions) within this species range. The levels of haplotype and nucleotide diversity varied in the range of 0.133–0.911 and 0.0002–0.0059, respectively. The highest values of these parameters are characteristic of populations located in the Barguzin depression. Variable sites detected within the intergenic spacers allowed the identification of eleven haplotypes; nine of them were found in the populations from the Barguzin depression and only two haplotypes were found in the populations from the Yeravna depression. No common haplotypes for all four populations were found. A high level of population differentiation (ΦST = 0.758, P < 0.0001) and the absence of evidence for isolation by distance were also found in O.
    [Show full text]
  • Iris Tibetica, a New Combination in I. Ser. Lacteae (Iridaceae) from China: Evidence from Morphological and Chloroplast DNA Analyses
    Phytotaxa 338 (3): 223–240 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.338.3.1 Iris tibetica, a new combination in I. ser. Lacteae (Iridaceae) from China: evidence from morphological and chloroplast DNA analyses EUGENY V. BOLTENKOV1,2*, ELENA V. ARTYUKOVA3, MARINA M. KOZYRENKO3 & ANNA TRIAS- BLASI4 1Botanical Garden-Institute, Far Eastern Branch, Russian Academy of Sciences, ul. Makovskogo 142, 690024 Vladivostok, Russian Federation; e-mail: [email protected] 2Komarov Botanical Institute, Russian Academy of Sciences, ul. Prof. Popova 2, 197376 St. Petersburg, Russian Federation 3Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, prospect 100- letiya Vladivostoka 159, 690022 Vladivostok, Russian Federation 4Royal Botanic Gardens, Kew, Richmond TW9 3AE, U.K. *author for correspondence Abstract Historically, the species composition of Iris ser. Lacteae has been controversial. Morphological and molecular analyses have been conducted here including specimens covering most of their distribution range. The results suggest I. ser. Lacteae includes three species: the well-known I. lactea and I. oxypetala, plus a newly defined taxon which is endemic to the Gansu and Qinghai provinces, China. We here propose it as a new combination at the species rank, I. tibetica. Morphologically, this species is close to I. lactea but differs by its horizontal, creeping rhizome, scapes with no more than two flowers, its bracts reach the middle of the first flower, its broader inner perianth segments, its obovate with obtuse apex outer perianth segments, and its fruit apex always abruptly narrowed to a very short beak.
    [Show full text]
  • The Leipzig Catalogue of Plants (LCVP) ‐ an Improved Taxonomic Reference List for All Known Vascular Plants
    Freiberg et al: The Leipzig Catalogue of Plants (LCVP) ‐ An improved taxonomic reference list for all known vascular plants Supplementary file 3: Literature used to compile LCVP ordered by plant families 1 Acanthaceae AROLLA, RAJENDER GOUD; CHERUKUPALLI, NEERAJA; KHAREEDU, VENKATESWARA RAO; VUDEM, DASHAVANTHA REDDY (2015): DNA barcoding and haplotyping in different Species of Andrographis. In: Biochemical Systematics and Ecology 62, p. 91–97. DOI: 10.1016/j.bse.2015.08.001. BORG, AGNETA JULIA; MCDADE, LUCINDA A.; SCHÖNENBERGER, JÜRGEN (2008): Molecular Phylogenetics and morphological Evolution of Thunbergioideae (Acanthaceae). In: Taxon 57 (3), p. 811–822. DOI: 10.1002/tax.573012. CARINE, MARK A.; SCOTLAND, ROBERT W. (2002): Classification of Strobilanthinae (Acanthaceae): Trying to Classify the Unclassifiable? In: Taxon 51 (2), p. 259–279. DOI: 10.2307/1554926. CÔRTES, ANA LUIZA A.; DANIEL, THOMAS F.; RAPINI, ALESSANDRO (2016): Taxonomic Revision of the Genus Schaueria (Acanthaceae). In: Plant Systematics and Evolution 302 (7), p. 819–851. DOI: 10.1007/s00606-016-1301-y. CÔRTES, ANA LUIZA A.; RAPINI, ALESSANDRO; DANIEL, THOMAS F. (2015): The Tetramerium Lineage (Acanthaceae: Justicieae) does not support the Pleistocene Arc Hypothesis for South American seasonally dry Forests. In: American Journal of Botany 102 (6), p. 992–1007. DOI: 10.3732/ajb.1400558. DANIEL, THOMAS F.; MCDADE, LUCINDA A. (2014): Nelsonioideae (Lamiales: Acanthaceae): Revision of Genera and Catalog of Species. In: Aliso 32 (1), p. 1–45. DOI: 10.5642/aliso.20143201.02. EZCURRA, CECILIA (2002): El Género Justicia (Acanthaceae) en Sudamérica Austral. In: Annals of the Missouri Botanical Garden 89, p. 225–280. FISHER, AMANDA E.; MCDADE, LUCINDA A.; KIEL, CARRIE A.; KHOSHRAVESH, ROXANNE; JOHNSON, MELISSA A.; STATA, MATT ET AL.
    [Show full text]
  • Index Seminum 2020
    Южно-Уральский Ботанический сад- институт Уфимского федерального исследовательского центра Российской академии наук (ЮУБСИ УФИЦ РАН) South-Ural Botanical Garden-Institute of the Ufa Federal Research Centre of the Russian Academy of Sciences (SUBGI UFRC RAS) СПИСОК СЕМЯН с б о р а 2 0 20 г о д а предлагаемых для обмена INDEX SEMINUM anno 2020 collectorum quae pro mutua commutatione offert Уфа 2021 Ufa 2021 Южно-Уральский Ботанический сад-институт Уфимского федерального исследовательского центра Российской академии наук (ЮУБСИ УФИЦ РАН) 450080 Башкортостан, г. Уфа, ул. Менделеева 195, корп.3 тел. / факс: (347) 286-12-33, 286-12-55. website: http://ufabotgarden.ru/ e-mail: [email protected] e-mail: [email protected] South-Ural Botanical Garden-Institute of the Ufa Federal Research Centre of the Russian Academy of Sciences (SUBGI UFRC RAS) Mendeleeva str., 195, build. 3 450080 Ufa, Bashkortostan, Russian Federation tel. / fax: (347) 286-12-33, 286-12-55. website: http://ufabotgarden.ru/ e-mail: [email protected] e-mail: [email protected] Директор Шигапов З.Х. Director Shigapov Z. Куратор Программы обмена семенами Даньшина Д.Е. Curator of seeds exchange program Danshina D. На обложке: сеянцы Ели черной (фото Вафина Р.) On the cover: seedlings of Picea mariana (Mill.) Britton, Sterns et Poggenb (foto Vafin R.) INDEX SEMINUM UFA, 2020 ОБЩИЕ СВЕДЕНИЯ Южно-Уральский Ботанический сад-институт основан в 1932 году. Расположен в юго-восточной части г. Уфы, в междуречье рек Уфа и Сутолока. Территория сада занимает 19 га. Важнейшими направлениями
    [Show full text]
  • Iridaceae) in Russia
    Phytotaxa 340 (3): 201–216 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.340.3.1 A taxonomic revision of Iris section Psammiris (Iridaceae) in Russia NINA B. ALEXEEVA Komarov Botanical Institute, Professor Popov Street, 2, St. Petersburg 197376, Russia; e-mail: [email protected] Abstract Until now, as few as 2–4 species of the genus Iris sect. Psammiris (Iris bloudowii, I. humilis, I. mandshurica, and I. potani- nii) have been reported in Russia in botanical publications. We have analysed the diagnostic value of morphological charac- ters. At the series level, features of the root system, the shape of basal leaves, the height of flowering scape, and the length of perianth tube are most significant. The shape and size of spathes are also usable for species identification. In the present contribution, a synopsis of I. sect. Psammiris in Russia is presented, including the description of a new series, Vorobievia. In that country, the section comprises 7 species belonging to 3 series and occurring mainly in Siberia and the Far East, one spe- cies extending to the Eastern Europe. A key for species determination is compiled, and the distribution areas of the accepted species are specified. Types are indicated for all involved names, two of which (lectotypes) are designated here. Furthermore, previous results of molecular studies including taxa in this section are analysed and discussed, which demonstrate that I. sect. Psammiris is indeed monophyletic according to the morphological and molecular data available so far.
    [Show full text]
  • A Case Study on Iris Pumila
    Biologia 72/1: 24—35, 2017 Section Botany DOI: 10.1515/biolog-2017-0002 The current state of steppe perennial plants populations: A case study on Iris pumila Ivan Yu. Parnikoza1, Igor O. Andreev1,OlenaM.Bublyk1,KaterynaV.Spiridonova1, Joanna Gol˛ebiewska2, Magdalena Kubiak2, Anna Kuczynska´ 2, Katarzyna Mystkowska2, Natalia Ol˛edrzynska´ 2,BarbaraUrasinska´ 3, Anna Sl˛´ ezak-Parnikoza2,MarcinGórniak3,KrzysztofWojciechowski4, Yakiv P. Didukh5 &ViktorA.Kunakh1 1Institute of Molecular Biology and Genetics NAS of Ukraine, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine; e-mail: [email protected] 2Department of Plant Taxonomy and Nature Conservation, University of Gda´nsk, Wita Stwosza Str. 59,PL-80-308 Gda´nsk, Poland 3Department of Molecular Evolution, University of Gda´nsk, Wita Stwosza Str. 59,PL-80-308 Gda´nsk, Poland 4Administration of Regional landscape parks of Lublin Vojevodship, Graniczna Str. 4, 20-010 Lublin, Poland 5M. Kholodny Institute of Botany NAS of Ukraine, Tereshchenkivska Street 2, 01601 Kyiv, Ukraine Abstract: A comprehensive study of a typical steppe perennial Iris pumila L. were carried out in the central zone of the European part of this species’ range, namely in Ukraine. Intraspecific differentiation, population size and isolation degree and its consequences, the threat of human impact were analyzed, as well as ecological amplitude and genetic variation in ISSR markers and selected chloroplast regions were determined. The species was found to have a low intraspecific differentiation that indicates the uniformity of the gene pool in the studied part of the range. Moreover, the results of isolation assessment, population and ecological study of I. pumila confirm the potential risk of extinction.
    [Show full text]