Stark Broadening of Cr III Spectral Lines: DO White Dwarfs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sky Highlights for 2021
JANUARY 2021 OBSERVING Celestial Calendar by Bob King Sky Highlights for 2021 Courtesy of Sky & Telescope Sky Highlights for 2021 A full year of observing enjoyment awaits. F or our January Celestial Calendar installment, we’ve decided to pres- The limb of the eclipsed ent a “sneak-peek” selection of some of the most interesting celestial Moon pokes out from highlights for 2021. (Each event will be described in greater detail in upcoming issues.) the umbra in this photo The coming year has its share of excitement, with several fi ne eclipses, captured during the the return of a few modestly bright periodic comets, and the usual April 15, 2014, total assortment of meteor showers and eye-catching conjunctions. lunar eclipse. This view January 3: The Quadrantid meteor shower peaks around 6:30 a.m. PST is similar to how the (14:30 UT). The timing of the peak means the display favors skywatchers Moon will appear at on the West Coast and in Alaska. Unfortunately, light from the waning gibbous Moon in Leo will blot out many of the fainter meteors. maximum eclipse during March 4: Vesta, the brightest and second-most massive asteroid, reaches November’s partial lunar opposition 1¼° northeast of 3.3-magnitude Theta Leonis, in the tail of eclipse. Leo. At magnitude 6.0, Vesta is bright enough to be glimpsed by keen- eyed observers without optical aid from a dark sky. Binoculars will make the asteroid an easy catch. KING BOB Page 1 March 5: Mercury and Jupiter are though many other locations will be just 21′ apart, low in the east-southeast able to see at least part of the event. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
Magnetism, Dynamo Action and the Solar-Stellar Connection
Living Rev. Sol. Phys. (2017) 14:4 DOI 10.1007/s41116-017-0007-8 REVIEW ARTICLE Magnetism, dynamo action and the solar-stellar connection Allan Sacha Brun1 · Matthew K. Browning2 Received: 23 August 2016 / Accepted: 28 July 2017 © The Author(s) 2017. This article is an open access publication Abstract The Sun and other stars are magnetic: magnetism pervades their interiors and affects their evolution in a variety of ways. In the Sun, both the fields themselves and their influence on other phenomena can be uncovered in exquisite detail, but these observations sample only a moment in a single star’s life. By turning to observa- tions of other stars, and to theory and simulation, we may infer other aspects of the magnetism—e.g., its dependence on stellar age, mass, or rotation rate—that would be invisible from close study of the Sun alone. Here, we review observations and theory of magnetism in the Sun and other stars, with a partial focus on the “Solar-stellar connec- tion”: i.e., ways in which studies of other stars have influenced our understanding of the Sun and vice versa. We briefly review techniques by which magnetic fields can be measured (or their presence otherwise inferred) in stars, and then highlight some key observational findings uncovered by such measurements, focusing (in many cases) on those that offer particularly direct constraints on theories of how the fields are built and maintained. We turn then to a discussion of how the fields arise in different objects: first, we summarize some essential elements of convection and dynamo theory, includ- ing a very brief discussion of mean-field theory and related concepts. -
Milan Dimitrijevic Avgust.Qxd
1. M. Platiša, M. Popović, M. Dimitrijević, N. Konjević: 1975, Z. Fur Natur- forsch. 30a, 212 [A 1].* 1. Griem, H. R.: 1975, Stark Broadening, Adv. Atom. Molec. Phys. 11, 331. 2. Platiša, M., Popović, M. V., Konjević, N.: 1975, Stark broadening of O II and O III lines, Astron. Astrophys. 45, 325. 3. Konjević, N., Wiese, W. L.: 1976, Experimental Stark widths and shifts for non-hydrogenic spectral lines of ionized atoms, J. Phys. Chem. Ref. Data 5, 259. 4. Hey, J. D.: 1977, On the Stark broadening of isolated lines of F (II) and Cl (III) by plasmas, JQSRT 18, 649. 5. Hey, J. D.: 1977, Estimates of Stark broadening of some Ar III and Ar IV lines, JQSRT 17, 729. 6. Hey, J. D.: Breger, P.: 1980, Stark broadening of isolated lines emitted by singly - ionized tin, JQSRT 23, 311. 7. Hey, J. D.: Breger, P.: 1981, Stark broadening of isolated ion lines by plas- mas: Application of theory, in Spectral Line Shapes I, ed. B. Wende, W. de Gruyter, 201. 8. Сыркин, М. И.: 1981, Расчеты электронного уширения спектральных линий в теории оптических свойств плазмы, Опт. Спектроск. 51, 778. 9. Wiese, W. L., Konjević, N.: 1982, Regularities and similarities in plasma broadened spectral line widths (Stark widths), JQSRT 28, 185. 10. Konjević, N., Pittman, T. P.: 1986, Stark broadening of spectral lines of ho- mologous, doubly ionized inert gases, JQSRT 35, 473. 11. Konjević, N., Pittman, T. P.: 1987, Stark broadening of spectral lines of ho- mologous, doubly - ionized inert gases, JQSRT 37, 311. 12. Бабин, С. -
Arxiv:1401.4252V1 [Astro-Ph.EP] 17 Jan 2014
Elemental Compositions of Two Extrasolar Rocky Planetesimals 1 S. Xu(¸rz)a, M. Juraa, D. Koesterb, B. Kleina, B. Zuckermana ABSTRACT We report Keck/HIRES and HST/COS spectroscopic studies of extrasolar rocky planetesimals accreted onto two hydrogen atmosphere white dwarfs, G29- 38 and GD 133. In G29-38, 8 elements are detected, including C, O, Mg, Si, Ca, Ti, Cr and Fe while in GD 133, O, Si, Ca and marginally Mg are seen. These two extrasolar planetesimals show a pattern of refractory enhancement and volatile depletion. For G29-38, the observed composition can be best interpreted as a blend of a chondritic object with some refractory-rich material, a result from post-nebular processing. Water is very depleted in the parent body accreted onto G29-38, based on the derived oxygen abundance. The inferred total mass accretion rate in GD 133 is the lowest of all known dusty white dwarfs, possibly due to non-steady state accretion. We continue to find that a variety of extrasolar planetesimals all resemble to zeroth order the elemental composition of bulk Earth. Subject headings: planetary systems { stars: abundances { white dwarfs 1. Introduction Based upon models of planet formation, we understand the variety of elemental compo- sitions of planetesimals as a familiar three step process (McSween & Huss 2010). (i) Under arXiv:1401.4252v1 [astro-ph.EP] 17 Jan 2014 aDepartment of Physics and Astronomy, University of California, Los Angeles CA 90095-1562; [email protected], [email protected], [email protected], [email protected] bInstitut fur Theoretische Physik und Astrophysik, University of Kiel, 24098 Kiel, Germany; [email protected] 1Some of the data presented herein were obtained at the W.M. -
Magnetic Doppler Imaging of 53 Camelopardalis in All Four Stokes Parameters
A&A 414, 613–632 (2004) Astronomy DOI: 10.1051/0004-6361:20031595 & c ESO 2004 Astrophysics Magnetic Doppler imaging of 53 Camelopardalis in all four Stokes parameters O. Kochukhov1,, S. Bagnulo2,G.A.Wade3, L. Sangalli3, N. Piskunov1,J.D.Landstreet4, P. Petit5, and T. A. A. Sigut4 1 Uppsala Astronomical Observatory, Box 515, 751 20 Uppsala, Sweden 2 European Southern Observatory, Casilla 19001, Santiago 19, Chile 3 Department of Physics, Royal Military College of Canada, Box 17000, Kingston, Ontario, K7K 4B4 Canada 4 Physics and Astronomy Department, University of Western Ontario, London, Ontario, N6A 3K7 Canada 5 Observatoire Midi-Pyr´en´ees, 14 avenue Edouard´ Belin, 31400 Toulouse, France Received 30 June 2003 / Accepted 10 October 2003 Abstract. We present the first investigation of the structure of the stellar surface magnetic field using line profiles in all four Stokes parameters. We extract the information about the magnetic field geometry and abundance distributions of the chemically peculiar star 53 Cam by modelling time-series of high-resolution spectropolarimetric observations with the help of a new magnetic Doppler imaging code. This combination of the unique four Stokes parameter data and state-of-the-art magnetic imaging technique makes it possible to infer the stellar magnetic field topology directly from the rotational variability of the Stokes spectra. In the magnetic imaging of 53 Cam we discard the traditional multipolar assumptions about the structure of magnetic fields in Ap stars and explore the stellar magnetic topology without introducing any global a priori constraints on the field structure. The complex magnetic model of 53 Cam derived with our magnetic Doppler imaging method achieves a good fit to the observed intensity, circular and linear polarization profiles of strong magnetically sensitive Fe spectral lines. -
Imaging Extrasolar Giant Planets Brendan P
Publications of the Astronomical Society of the Pacific, 128:102001 (38pp), 2016 October doi:10.1088/1538-3873/128/968/102001 © 2016. The Astronomical Society of the Pacific. All rights reserved. Printed in the U.S.A. Imaging Extrasolar Giant Planets Brendan P. Bowler1 McDonald Observatory and the University of Texas at Austin, Department of Astronomy, 2515 Speedway, Stop C1400, Austin, TX 78712, USA; [email protected] Received 2016 March 18; accepted 2016 May 8; published 2016 August 29 Abstract High-contrast adaptive optics (AO) imaging is a powerful technique to probe the architectures of planetary systems from the outside-in and survey the atmospheres of self-luminous giant planets. Direct imaging has rapidly matured over the past decade and especially the last few years with the advent of high-order AO systems, dedicated planet- finding instruments with specialized coronagraphs, and innovative observing and post-processing strategies to suppress speckle noise. This review summarizes recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of large- scale surveys and dedicated instruments. I conclude with a statistical meta-analysis of deep imaging surveys in the literature. Based on observations of 384 unique and single young (≈5–300 Myr) stars spanning stellar masses between 0.1 and 3.0 Me, the overall occurrence rate of 5–13 MJup companions at orbital distances of 30–300 au is +0.7 0.6-0.5 % assuming hot-start evolutionary models. The most massive giant planets regularly accessible to direct imaging are about as rare as hot Jupiters are around Sun-like stars. -
Biography of Horace Welcome Babcock
NATIONAL ACADEMY OF SCIENCES H O R ACE W ELCOME B A B COC K 1 9 1 2 — 2 0 0 3 A Biographical Memoir by GEO R G E W . P R ESTON Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2007 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Photograph by Mount Wilson and Los Campanas Observatories HORACE WELCOME BABCOCK September 13, 1912−August 29, 2003 BY GEORGE W . P RESTON ORACE BABCOCK’S CAREER at the Mount Wilson and Palomar H(later, Hale) Observatories spanned more than three decades. During the first 18 years, from 1946 to 1964, he pioneered the measurement of magnetic fields in stars more massive than the sun, produced a famously successful model of the 22-year cycle of solar activity, and invented important instruments and techniques that are employed throughout the world to this day. Upon assuming the directorship of the observatories, he devoted his last 14 years to creating one of the world’s premier astronomical observatories at Las Campanas in the foothills of the Chilean Andes. CHILDHOOD AND EDUCATION Horace Babcock was born in Pasadena, California, the only child of Harold and Mary Babcock. Harold met Horace’s mother, Mary Henderson, in Berkeley during his student days at the College of Electrical Engineering, University of California. After brief appointments as a laboratory assis- tant at the National Bureau of Standards in 1906 and as a physics teacher at the University of California, Berkeley, in 1907, Horace’s father was invited by George Ellery Hale in 1908 to join the staff of the Mount Wilson Observatory (MWO), where he remained for the rest of his career. -
On the Application of Stark Broadening Data Determined with a Semiclassical Perturbation Approach
Atoms 2014, 2, 357-377; doi:10.3390/atoms2030357 OPEN ACCESS atoms ISSN 2218-2004 www.mdpi.com/journal/atoms Article On the Application of Stark Broadening Data Determined with a Semiclassical Perturbation Approach Milan S. Dimitrijević 1,2,* and Sylvie Sahal-Bréchot 2 1 Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia 2 Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique, Observatoire de Paris, UMR CNRS 8112, UPMC, 5 Place Jules Janssen, 92195 Meudon Cedex, France; E-Mail: [email protected] (S.S.-B.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +381-64-297-8021; Fax: +381-11-2419-553. Received: 5 May 2014; in revised form: 20 June 2014 / Accepted: 16 July 2014 / Published: 7 August 2014 Abstract: The significance of Stark broadening data for problems in astrophysics, physics, as well as for technological plasmas is discussed and applications of Stark broadening parameters calculated using a semiclassical perturbation method are analyzed. Keywords: Stark broadening; isolated lines; impact approximation 1. Introduction Stark broadening parameters of neutral atom and ion lines are of interest for a number of problems in astrophysical, laboratory, laser produced, fusion or technological plasma investigations. Especially the development of space astronomy has enabled the collection of a huge amount of spectroscopic data of all kinds of celestial objects within various spectral ranges. Consequently, the atomic data for trace elements, which had not been -
Vente De 2 Ans Montés Samedi 14 Mai Breeze Le 13 Mai
11saint-cloud Vente de 2 ans montés Samedi 14 mai Breeze le 13 mai en association avec Index_Alpha_14_05 24/03/11 19:09 Page 71 Index alphabétique Alphabetical index NomsNOM des yearlings . .SUF . .Nos LOT NOM LOT ALKATARA . .0142 N(FAB'S MELODY 2009) . .0030 AMESBURY . .0148 N(FACTICE 2009) . .0031 FORCE MAJEUR . .0003 N(FAR DISTANCE 2009) . .0032 JOHN TUCKER . .0103 N(FIN 2009) . .0034 LIBERTY CAT . .0116 N(FLAMES 2009) . .0035 LUCAYAN . .0051 N(FOLLE LADY 2009) . .0036 MARCILHAC . .0074 N(FRANCAIS 2009) . .0037 MOST WANTED . .0123 N(GENDER DANCE 2009) . .0038 N(ABBEYLEIX LADY 2009) . .0139 N(GERMANCE 2009) . .0039 N(ABINGTON ANGEL 2009) . .0140 N(GILT LINKED 2009) . .0040 N(AIR BISCUIT 2009) . .0141 N(GREAT LADY SLEW 2009) . .0041 N(ALL EMBRACING 2009) . .0143 N(GRIN AND DARE IT 2009) . .0042 N(AMANDIAN 2009) . .0144 N(HARIYA 2009) . .0043 N(AMAZON BEAUTY 2009) . .0145 N(HOH MY DARLING 2009) . .0044 N(AMY G 2009) . .0146 N(INFINITY 2009) . .0045 N(ANSWER DO 2009) . .0147 N(INKLING 2009) . .0046 N(ARES VALLIS 2009) . .0149 N(JUST WOOD 2009) . .0048 N(AUCTION ROOM 2009) . .0150 N(KACSA 2009) . .0049 N(AVEZIA 2009) . .0151 N(KASSARIYA 2009) . .0050 N(BARCONEY 2009) . .0152 N(LALINA 2009) . .0052 N(BASHFUL 2009) . .0153 N(LANDELA 2009) . .0053 N(BAYOURIDA 2009) . .0154 N(LES ALIZES 2009) . .0054 N(BEE EATER 2009) . .0155 N(LIBRE 2009) . .0055 N(BELLA FIORELLA 2009) . .0156 N(LOUELLA 2009) . .0056 N(BERKELEY LODGE 2009) . .0157 N(LUANDA 2009) . .0057 N(BLACK PENNY 2009) . .0158 N(LUNA NEGRA 2009) . -
Post-Main-Sequence Planetary System Evolution Rsos.Royalsocietypublishing.Org Dimitri Veras
Post-main-sequence planetary system evolution rsos.royalsocietypublishing.org Dimitri Veras Department of Physics, University of Warwick, Coventry CV4 7AL, UK Review The fates of planetary systems provide unassailable insights Cite this article: Veras D. 2016 into their formation and represent rich cross-disciplinary Post-main-sequence planetary system dynamical laboratories. Mounting observations of post-main- evolution. R. Soc. open sci. 3: 150571. sequence planetary systems necessitate a complementary level http://dx.doi.org/10.1098/rsos.150571 of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the Received: 23 October 2015 interpretation and modelling of currently known systems and Accepted: 20 January 2016 upcoming discoveries. 1. Introduction Subject Category: Decades of unsuccessful attempts to find planets around other Astronomy Sun-like stars preceded the unexpected 1992 discovery of planetary bodies orbiting a pulsar [1,2]. The three planets around Subject Areas: the millisecond pulsar PSR B1257+12 were the first confidently extrasolar planets/astrophysics/solar system reported extrasolar planets to withstand enduring scrutiny due to their well-constrained masses and orbits. However, a retrospective Keywords: historical analysis reveals even more surprises. We now know that dynamics, white dwarfs, giant branch stars, the eponymous celestial body that Adriaan van Maanen observed pulsars, asteroids, formation in the late 1910s [3,4]isanisolatedwhitedwarf(WD)witha metal-enriched atmosphere: direct evidence for the accretion of planetary remnants. These pioneering discoveries of planetary material around Author for correspondence: or in post-main-sequence (post-MS) stars, although exciting, Dimitri Veras represented a poor harbinger for how the field of exoplanetary e-mail: [email protected] science has since matured. -
Popular Names of Deep Sky (Galaxies,Nebulae and Clusters) Viciana’S List
POPULAR NAMES OF DEEP SKY (GALAXIES,NEBULAE AND CLUSTERS) VICIANA’S LIST 2ª version August 2014 There isn’t any astronomical guide or star chart without a list of popular names of deep sky objects. Given the huge amount of celestial bodies labeled only with a number, the popular names given to them serve as a friendly anchor in a broad and complicated science such as Astronomy The origin of these names is varied. Some of them come from mythology (Pleiades); others from their discoverer; some describe their shape or singularities; (for instance, a rotten egg, because of its odor); and others belong to a constellation (Great Orion Nebula); etc. The real popular names of celestial bodies are those that for some special characteristic, have been inspired by the imagination of astronomers and amateurs. The most complete list is proposed by SEDS (Students for the Exploration and Development of Space). Other sources that have been used to produce this illustrated dictionary are AstroSurf, Wikipedia, Astronomy Picture of the Day, Skymap computer program, Cartes du ciel and a large bibliography of THE NAMES OF THE UNIVERSE. If you know other name of popular deep sky objects and you think it is important to include them in the popular names’ list, please send it to [email protected] with at least three references from different websites. If you have a good photo of some of the deep sky objects, please send it with standard technical specifications and an optional comment. It will be published in the names of the Universe blog. It could also be included in the ILLUSTRATED DICTIONARY OF POPULAR NAMES OF DEEP SKY.